Identification of b-jets using QCD-inspired observables

Oleh Fedkevych

April 27, 2022

Why do we study jets?

A $Z+b$ event candidate recorded by CMS collaboration (credits: CERN)
Why do we study jets?
SoftDrop groomer: \(\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R} \right)^{\beta} \)
SoftDrop groomer: \(\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R} \right)^\beta \)
SoftDrop groomer: \[\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > Z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R} \right)^\beta \]
SoftDrop groomer: $$\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > Z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R} \right)^{\beta}$$
SoftDrop groomer: \[\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R} \right)^{\beta} \]
We study jet angularities in $Z+$jet production

The jet angularities are defined as

$$\lambda_{\alpha}^\kappa = \sum_{i \in \text{jet}} \left(\frac{p_{T,i}}{\sum_{j \in \text{jet}} p_{T,j}} \right)^\kappa \left(\frac{\Delta_i}{R_0} \right)^\alpha,$$

where

$$\Delta_i = \sqrt{(y_i - y_{\text{jet}})^2 + (\phi_i - \phi_{\text{jet}})^2},$$

is the Euclidean azimuth-rapidity distance of particle i from the jet axis.

- The concept of infrared and collinear (IRC) safety requires $\kappa = 1$ and $\alpha > 0$.
- We consider $\lambda_{1/2}^1$ (LHA), λ_1^1 (Width) and λ_2^1 (Thrust) cases.
- For the grooming we use SoftDrop with $\beta = 0$ and $z_{\text{cut}} = 0.1$.
We study jet angularities in Z+jet production

We use the selection cuts from the recent CMS measurements:

- We require all final state particles to have pseudo-rapidity $|\eta| < 5$
- Z-boson decays into muons. For both muon candidates we require $p_T,\mu > 26$ GeV, and $|\eta_\mu| < 2.4$
- The lepton pair has to pass the additional conditions 70 GeV $< m_{\mu^+\mu^-} < 110$ GeV, and $p_T,\mu^+\mu^- > 30$ GeV
- The leading AK8 (AK4) jet has to satisfy $y_{\text{jet}} < 1.7$ and $p_T,\text{jet} \in [50, 1500]$ GeV

Additionally, we impose the constraint

$$\Delta p_T \equiv \left| \frac{p_T,\text{jet} - p_T,\mu^+\mu^-}{p_T,\text{jet} + p_T,\mu^+\mu^-} \right| < 0.3.$$

and require the Z-boson and the leading jet to be well separated in azimuthal angle

$$\Delta \phi \equiv |\phi_Z - \phi_{\text{jet}}| > 2.$$
Comparison against recent CMS data for the Jet Thrust angularity, $p_{T,\text{jet}} \in [408, 1500]$ GeV.

Theory: JHEP 07 (2021) 076, CMS data: JHEP 01 (2022) 188
To build a Lund plane:

- Recluster your jet using CA algorithm
- Then compute:
 \[
 \Delta_{ab} \equiv \sqrt{(y_a - y_b)^2 + (\phi_a - \phi_b)^2},
 \]
 \[
 k_t \equiv p_T b \Delta_{ab}.
 \]
- Discard softest branch and repeat.
Training input

Jet flavour

- Jets are labelled as b-jets if they are matched to at least one weakly decaying b-hadron having $p_T \geq 5$ GeV within a cone of size $\Delta R = 0.3$ around the jet axis.
- Similarly, a jet matched to a c-hadron is labelled as a c-jet.
- After assigning b- and c-jet labels we dub the remaining jets as light-jets.
- The training and validation samples are produced using PYTHIA LO MC simulations.
- To check a stability of our results against different MC models we also produce a control data set using HERWIG LO MC simulations.
- We use $\lambda_{1/2}^1$, λ_1^1 and λ_2^1 to train our DNN and Lund plane projection to train our CNN.
- We consider ungroomed and groomed distributions separately.
An example of observables we consider as an input for our DNN / CNN taggers.
The ROC curves obtained for one-dimensional angularity distributions, multivariable DNN classification and Lund plane CNN classification.

The ROC curves obtained for one-dimensional angularity distributions, multivariable DNN classification and Lund plane CNN classification.

Summary

- We found that one can use jet angularities and Lund plane projection as an input for DNN / CNN discriminators.
- Our DNN/CNN discriminators show performance compatible to JetFitter and IP3D taggers used by ATLAS.
- The discriminating features we use can be added to a list of already considered ones and, therefore, can be used to improve performance of e.g. DL1 tagger (which is NL trained upon multiple variables).
Thank you for your attention!

This work has received funding from the grant “Using jets to challenge the Standard Model of particle physics” from Università di Genova.