Contribution ID: 6 Type: Parallel talk

Are Jets Narrowed or Broadened in e+A SIDIS?

Tuesday 3 May 2022 18:10 (20 minutes)

We compute the in-medium jet broadening $\langle p_\perp^2 \rangle$ to leading order in energy in the opacity expansion. At leading order in α_s the elastic energy loss gives a jet broadening that grows with $\ln E$. The next-to-leading order in α_s result is a jet narrowing, due to destructive LPM interference effects, that grows with $\ln^2 E$. We find that in the opacity expansion the jet broadening asymptotics are - unlike for the mean energy loss - extremely sensitive to the correct treatment of the finite kinematics of the problem; integrating over all emitted gluon transverse momenta leads to a prediction of jet broadening rather than narrowing. We compare the asymptotics from the opacity expansion to a recent twist-4 derivation of $\langle p_\perp^2 \rangle$ and find a qualitative disagreement: the twist-4 derivation predicts a jet broadening while the opacity expansion method predicts a narrowing. Comparison with current jet measurements cannot distinguish between the broadening or narrowing predictions. We comment on the origin of the difference between the opacity expansion and twist-4 results.

Submitted on behalf of a Collaboration?

No

Authors: CLAYTON, Hannah (University of Cambridge); SIEVERT, Matthew (University of Illinois at Urbana-Champaign); HOROWITZ, William (University of Cape Town)

Presenter: SIEVERT, Matthew (University of Illinois at Urbana-Champaign)

Session Classification: WG4: QCD with Heavy Flavours and Hadronic Final States

Track Classification: WG4: QCD with Heavy Flavours and Hadronic Final States