Measurements of untagged and HF-tagged inclusive jet distributions in proton-proton collisions by ALICE.

Sebastian Bysiak
on behalf of the ALICE Collaboration
Institute of Nuclear Physics of Polish Academy of Science (IFJ PAN), Kraków

this work is supported by grant 2020/37/N/ST2/02313 funded by:
Measurements of inclusive untagged and heavy-flavour tagged (HF) jets test our understanding of strong interactions.

Compared to hadrons, jets are:

- not sensitive to fragmentation functions
- under better perturbative control

HF jets allow to study:

- differences between quark and gluons fragmentation (at higher p_T)
- impact of quark mass (at lower p_T)

Ratio of pp spectra to NLO pQCD:

Brewer et al. [2108.13434]
Jet measurements in ALICE

Jet is defined by jet algorithm: usually anti-kt, parameter R. Various R show different sensitivity to perturbative effects, hadronization and UE. Taking ratio of two R is beneficial from both exp. and theory side (see backup for details).

All results corrected to particle-level using unfolding
Jet measurements in ALICE

Jet is defined by jet algorithm: usually anti-kt, parameter R. Various R show different sensitivity to perturbative effects, hadronization and UE. Taking ratio of two R is beneficial from both exp. and theory side (see backup for details).

All results corrected to particle-level using unfolding.
Jet measurements in ALICE

Jet is defined by jet algorithm: usually anti-kt, parameter R. Various R show different sensitivity to perturbative effects, hadronization and UE. Taking ratio of two R is beneficial from both exp. and theory side (see backup for details).

All results corrected to particle-level using unfolding

ALICE measures jets with $5 < p_{T,jet} < 140$ GeV/c

Two types of jets distinguished:

“charged”, i.e. using only charged constituents measured in ITS+TPC
better acceptance, preferred for substructure measurements

“full”, including also neutral particles from EMCAL
more direct comparison to theoretical calculations, possible high p_T trigger
Charged jet production cross section, pp $\sqrt{s} = 13$ TeV

- **PYTHIA**: overestimates the cross section
- **POWHEG+PYTHIA**: good description above 10-20 GeV/c, below: large difference even 50-100%

arXiv:2202.01548
Charged jet production cross section, pp $\sqrt{s} = 13$ TeV

- **PYTHIA**: overestimates the cross section
- **POWHEG+PYTHIA**: good description above 10-20 GeV/c, below: large difference even 50-100%
R – ratios

- Both PYTHIA and POWHEG+PY able to describe ratios at higher p_T
- Overestimation of cross section at low p_T increases with R \Rightarrow ratio underestimated
- For PYTHIA predictions: underlying event subtraction plays crucial role
- No significant dependence on collision energy (nor system) observed
- Universal behaviour: higher p_T jets are more collimated
- Both PYTHIA and POWHEG+PY able to describe ratios at higher p_T
- Overestimation of cross section at low p_T increases with R => ratio underestimated
- For PYTHIA predictions: underlying event subtraction plays crucial role
- No significant dependence on collision energy (nor system) observed
- Universal behaviour: higher p_T jets are more collimated
R – ratios

- Both PYTHIA and POWHEG+PY able to describe ratios at higher p_T
- Overestimation of cross section at low p_T increases with $R \Rightarrow$ ratio underestimated
- For PYTHIA predictions: underlying event subtraction plays crucial role
- No significant dependence on collision energy (nor system) observed
- Universal behaviour: higher p_T jets are more collimated

ALICE

Anti-k_T, $|\eta_{\text{jet}}| < 0.3$

$p_{T,\text{track}} > 0.15$ GeV/c

$R=0.2 / R=0.4$

$R=0.2 / R=0.6$

$\sigma(R=0.2) / \sigma(R=0.4)$

$\sigma(R=0.2) / \sigma(R=0.6)$

$|\eta_{\text{jet}}| < 0.3$

$p_{T,\text{track}} > 0.15$ GeV/c

$\sqrt{s_{\text{NN}}} = 5.02$ TeV (UE subt.)

$\sqrt{s} = 7$ TeV (UE subt.)

$\sqrt{s} = 13$ TeV (UE subt.)

$\sqrt{s} = 5.02$ TeV (UE subt.)
Full jets and analytical calculation

- **Full** jets, pp at $\sqrt{s} = 5$ TeV, R down to 0.1
- Two theoretical calculations:
 - POWHEG+PYTHIA8 – event generator
 - NLO+NLL – **analytical calculation** + non-perturbative correction

 $NP\ corr. = \frac{\text{ratio of inclusive jet spectrum}}{\text{(PYTHIA hadron-level, MPI on) / (PYTHIA parton-lvl, MPI off)}}$

Both describe most of the data within uncertainties. Tension at low p_T and small R can arise from mismodelling of NP correction, which is large there.
Ratio of jet cross sections: HF to untagged jets

HF jets

untagged jets

ratio

for more see also:
charmed jets: Ravindra on this session
beauty jets: Pietro: Wed, WG4, 12:30

- HF fraction vs p_T: increase then flatten
- tension with POWHEG hvq prediction of D^0-tagged jet fraction at low p_T
- b-jet fraction is well described by POWHEG dijet

Note the difference in $p_{T,\text{ch jet}}$ ranges and NLO calculations interfaced via POWHEG
See backup for POWHEG hvq and dijet comparison with previous measurement at $\sqrt{s} = 7$ TeV

arXiv:2204.10167
Groomed observables

\[z_g = \frac{p_T^{\text{subleading}}}{p_T^{\text{leading}} + p_T^{\text{subleading}}} \]
\[\theta_g = \frac{R_g}{R} = \frac{\sqrt{\Delta y^2 + \Delta \phi^2}}{R} \]

Aim of grooming: reduce impact of hadronization and UE to provide direct link with QCD calculations \((z_g\) is Sudakov safe and \(\theta_g\) collinear-infrared safe)

Procedure: recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization. Then iteratively remove soft branches until grooming condition is met.

For soft-drop:

\[z_i > z_{\text{cut}} \theta_i^\beta \]

Soft drop removes wide-angle, soft radiation.

larger \(\beta \leftrightarrow \) less grooming, particularly collinear
Groomed observables

Aim of grooming: reduce impact of hadronization and UE to provide direct link with QCD calculations (z_g is Sudakov safe and θ_g collinear-infrared safe)

Procedure: recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization. Then iteratively remove soft branches until grooming condition is met. For soft-drop:

\[z_i > z_{cut} \theta_i^\beta \]

Soft drop removes wide-angle, soft radiation. Larger β \(\Leftrightarrow\) less grooming, particularly collinear

- PYTHIA describes most of data within \sim20% (except low θ_g)
- Jets groomed with smaller β are more collimated
- θ_g compared with pQCD calculation: SCET (Soft-Collinear Effective Theory) framework incl. all order resummation of large logarithms
- Good agreement within uncertainties in the perturbative region
Groomed observables

Aim of grooming: reduce impact of hadronization and UE to provide direct link with QCD calculations (z_g is Sudakov safe and θ_g collinear-infrared safe)

Procedure: recluster the jet with Cambridge-Aachen algorithm (angular ordered) and unwind the jet clusterization. Then iteratively remove soft branches until grooming condition is met. For soft-drop:

$$z_i > z_{cut} \theta_i^\beta$$

Soft drop removes wide-angle, soft radiation. larger $\beta \Leftrightarrow$ less grooming, particularly collinear

- PYTHIA describes most of data within $\sim 20\%$ (except low θ_g)
- Jets groomed with smaller β are more collimated
- θ_g compared with pQCD calculation: SCET (Soft-Collinear Effective Theory) framework incl. all order resummation of large logarithms
- **Good agreement within uncertainties in the perturbative region**

arXiv:2204.10246
Substructure of charm jets

Soft-drop ($z_{\text{cut}} = 0.1, \beta = 0$)

$$z_i > z_{\text{cut}}$$

n_{SD} = number of splittings satisfying soft-drop condition

Compared to untagged jets, D0-tagged jets have:

- **less symmetric splittings** ($z_g \approx 0.5$) – consistent with expected impact of mass on QCD splitting function [P. Ilten et al. PRD 96 (2017) 054019]

- **significantly fewer splittings satisfy grooming condition** (with high enough p_T)
 -> consistent w/ hardening of the fragmentation of charm quarks compared to light quarks due to presence of dead-cone (suppressed collinear splittings)
 (but difference in fragmentation of quarks and gluons also plays a role)
ALICE has rich and unique jet program:

- pQCD predictions tested via cross section and substructure measurements
- Impact of non-perturbative effects studied and mitigated by variation in R and grooming techniques
- No strong tension with the calculations in their applicability region with current precision
- HF jet sector explored via production (charm and beauty) and jet substructure (charm) measurements
- ... and much more not included

Upgraded ALICE in Run3 targets:

- High precision measurements in HF sector
- Substructure measurements in beauty jets
- Further nuclear modification studies
Measurement at various R

- anti-kt parameter R changes the relative strength of various effects on the jet transverse momentum:
 - perturbative (magnitude $\downarrow R$)
 - non-perturbative: hadronisation $\downarrow R$ and underlying event (UE) $\uparrow R$
- sensitive to radial distribution of particles inside jet

Dasgupta et al. JHEP 0802 (2008) 055
Measurement at various R

- anti-kt parameter R changes the relative strength of various effects on the jet transverse momentum:
 - perturbative (magnitude $\downarrow R$)
 - non-perturbative: hadronisation $\downarrow R$ and underlying event (UE) $\uparrow R$
- sensitive to radial distribution of particles inside jet

Computing the ratio of two R is beneficial from two perspectives:
 ➢ *experimentally*: many uncertainties cancel out
 ➢ *theoretically*: calculations are effectively one order higher: NLO becomes effectively NNLO

example from first ALICE jet paper, ratio much more conclusive than individual R: PLB 722 (2013) 262-272
D⁰-tagged jets cross section

D⁰ is reconstructed in hadronic channel: D⁰ → K⁻π⁺ using PID and topological cuts

- Hardening of the spectrum with \sqrt{s} observed
- PYTHIA Monash overestimates the cross section, SoftQCD Mode 2 works better
- POWHEG describe the higher p_T region, at lower p_T data points are at the upper band
- Uncertainties in MC much larger than in data
in ratio plot (right) the inclusive jet cross section (denominator) uses POWHEG dijet in both cases
\[R(\theta) \]

- \[\theta \text{ (rad)} \]
- \[\ln(1/\theta) \]

D^0

ALICE Preliminary

\[2 < p_{T,D} < 36 \text{ GeV/c} \]

charged jets, anti-\(k_T \), \(R=0.4 \)

\[|n_{\text{coll}}| < 0.5 \]

side-band subtracted

Inclusive

ALICE Preliminary

\[5 < p_{T,\text{jet}} < 50 \text{ GeV/c} \]

charged jets, anti-\(k_T \), \(R=0.4 \)

\[|n_{\text{coll}}| < 0.5 \]

\[k_2 > \Lambda_{\text{QCD}}, \Lambda_{\text{QCD}} = 200 \text{ MeV/c} \]
Dead-cone effect

Dead-cone effect: suppression of radiation at small angles ($\theta < m/E$) relative to the direction of emitter. It is a fundamental feature of all gauge quantum field theories.

ALICE provides first evidence of dead-cone effect at hadronic collider:

- **significant suppression of small angle ($\text{large } \ln(1/\theta)$) radiation**
- as expected: effect strongest for low E_{radiator}, suppression threshold changes with E_{radiator} (shaded area)
- outlook: with same measurement for beauty, could provide constraints for quark masses

![Reclustering steps and dead-cone effect diagram](image)