

Multi-differential Jet Substructure Measurement in High Q² DIS Events with HERA-II Data

Vinicius M. Mikuni, on behalf of the H1 Collaboration

1: Definition of measure observables

2: Unfolding methodology

$\mathbf{x}_{j_{i3}}$ $\mathbf{x}_{j_{i4}}$ $\mathbf{x}_{j_{i4}}$

3: Multi-differential cross section results

Jet angularities

Use jet observables to study different aspects of QCD physics:

- IRC safe λ_{a}^{1} , a = [0,0.5,1] and unsafe **p**_T**D** angularities
- Charge dependent observables:
 - Q, and N
- Study the evolution of the observables with energy scale $Q^2 = -q^2$

- - q: charge
- R. distance from jet axis in (eta,phi)

$$\lambda_{eta}^{\kappa} = \sum_{i \in \mathrm{int}} z_i^{\kappa} \left(rac{R_i}{R_0}
ight)^{eta}$$

$$\tilde{\lambda}_0^{\kappa} = Q_{\kappa} = \sum_{i \in \mathrm{int}} q_i \times z_i^{\kappa}.$$

Experimental setup

Using 228 pb⁻¹ of data collected by the H1 Experiment during 2006 and 2007 at 318 GeV center-of-mass energy

Phase space definition:

- 0.2 < y < 0.7
- $Q^2 > 150 \text{ GeV}^2$
- Jet $p_{\tau} > 10 \text{ GeV}$
- $-1 < \eta_{lah} < 2.5$

Jets are clustered with **kt** algorithm with **R=1.0**

27.5 GeV e⁺⁻ (k) 920 GeV p (P)

P: incoming proton 4-vector

k: incoming electron 4-vector

q=k-k': 4-momentum transfer

Reconstructed hadrons using combined detector information: **energy flow algorithm**

Total experimental uncertainty at reconstruction level at the **% level**!

Part 2

Unfolding strategy

Omnifold*

2 step iterative approach

- Simulated events after detector interaction are reweighted to match the data
- Create a "new simulation" by transforming weights to a proper function of the generated events

Machine learning is used to approximate **2** likelihood functions:

- reco MC to Data reweighting
- Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 (2020)

Omnifold

Different input levels for each step

- Step 1 particles are used as inputs
- Step 2 uses the set of observables planned to unfold

Extracting particle information

- Particle information is extracted using a Point cloud transformer* model
- Model takes **kinematic properties** of particles and use the distance between particles in η - φ to learn the relationship between particles
- Built in symmetries: permutation invariance
- Consider up to 30 particles per jet

All distributions are unfolded simultaneously without binning and without jet substructure information used at reco level!

Verify the model
consistency: start from the
Rapgap simulation and
unfold the response based
on the Djangoh simulation

Total of **6 iterations** used to derive the main results

Part 3

Unfolded results

Inclusive

Jet Charge $(\tilde{\lambda}_0^1)$

Dedicated DIS generators do a good job **everywhere**, especially **Rapgap**

Herwig does a good job for all distributions besides charge particle multiplicity

Alternative parton showers for **Pythia** do better than nominal, specially **Dire**

Multi-differential

More quark-like distributions as Q² increases

Agreement between general purpose generators **improve** at higher Q²

Conclusions

Conclusions and prospects

- Jet observables are an unique laboratory to study QCD properties
- Energy scale evolution for each jet observable measured in multiple Q² intervals from 150 to 5000 GeV²
- Detector effects are corrected using the **Omnifold method** with particles as inputs using **graph neural networks**
 - Unbinned and simultaneous unfolding
 - Good agreement for dedicated DIS generators, **Herwig** described all distributions besides track multiplicity while **Dire** parton shower has the best agreement for the **Pythia** implementations
- First step towards unfolding any jet observable in one go
- Preliminary results available at: <u>H1prelim-22-034</u>

THANKS!

Any questions?

Backup

Systematic uncertainties

Systematic uncertainties currently considered

- HFS energy scale: +- 1%
- HFS azimuthal angle: +- 20 mrad
- Lepton energy: +- 0.5% (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- **Non-closure uncertainty:** Differences between the expected and obtained values of the closure test
- **QED uncertainty**: Use the variation of measured quantities when radiation is turned off in the simulation
- **Statistical uncertainty:** Standard deviation of 100 bootstrap samples with replacement

MC Generators

Lund string hadronization model and CTEQ6L PDF set

- Djangoh: Dipole model from Ariadne
- Rapgap: PS from leading log approximation

Pythia 8.3: default NNPDF3.1 PDF

- Vincia: p_{τ} ordered antenna and NNPDF3.1 PDF
- **Dire**: dipole model, similar to Ariadne and MMHT14nlo68cl PDF

Herwig 7.2: Cluster hadronization and CT14 PDF set More details on <u>Ilkka's talk</u>:

Multi Differential

Multi Differential

Multi Differential

