Measurements of Z boson production in association with jets at ATLAS

Federico Sforza (UniGE & INFN), on behalf of the ATLAS Collaboration

DIS 2022 -03/05/2022

Santiago de Compostela, Spain

Key role of W or Z plus jet production at LHC

Abundant production of W or Z + jets & clear experimental signature

- → Test of state-of-the-art pheno predictions: fixed-order perturbative QCD (pQCD) and MC simulations
- → Large & irreducible background to BSM searches or Higgs measurements: *crucial for experiments to rely on precise models affected by small uncertainties!*

production of W+4-partons with NLO contribution

 \mathbf{z} \mathbf{z}

Z+1 parton @LO from qg initial state

 \rightarrow Clearly, also sensitive of proton PDFs:

Check new results in F. Giuli's talk tomorrow!

Challenging new measurements of Z+jets with ATLAS experiment

Several key measurements have been obtained using ATLAS Run 2 *pp* collision data at 13 TeV, a relevant past examples:

- Early Z+jets measurements with 3.2 fb⁻¹ [EPJC 77 (2017) 361]
 - \rightarrow important for first benchmark of V+jets MC @13 TeV
- First Z+b(b)-jets measurement with 36 fb⁻¹ [JHEP 07 (2020) 44]
 - \rightarrow probing MC modeling of heavy flavour jets, substantial differences depending of Flavour Number Scheme of simulation

Today's focus on results accessible thanks to improved reconstruction/full dataset large statistics:

• Z + large-radius jet, flavour inclusive and with 2 b-tags, 36 fb⁻¹ [arXiv:2204.12355]

- NEW!
- → first probe of jet sub-structure in boosted regime, also testing kinematics of close-by b-quarks
- $Z + high-p_T$ jets in extreme phase-space, with 139 fb⁻¹ [arXiv:2205.02597]
 - → probe of cutting edge MC and pQCD predictions in scarcely explored areas (e.g. collinear Z-jet)

Z plus a large-radius jet and identification of bb final state

Investigating Z production in association with: **high-p**_T, **boosted**, **coloured object**, **w/ or w/o 2 b-jets**

 $Z \rightarrow II$ (I=e/mu) selection: efficient for online/offline identification, final state with low background from other SM processes

Large Jet (J) reconstruction and double-b-tagging:

- "J" definition: Anti- k_t ΔR =1.0 & *trimming* ΔR =0.2 subjets if p_T <0.05 p_T (J) \rightarrow suppress PU, UE
- Boosted object phase space definition: $p_T(J) > 200 \text{ GeV}$, $|\eta| < 2$
- **Double b-tagging:** 2 small track-jets (Anti- $k_t \Delta R$ =0.2) matched to **J** and passing a b-hadron MVA selection (MV2c10) with eff_b~70%, eff_c~14%, eff_{light}~0.8% (on tt simulation)

Signal MC estimate and syst. using ME+PS matched/merged simulations:

Sherpa 2.2.1: with ME 0-2p NLO + 3-4p LO

MG5_aMC+Py8: with ME 0-4p LO (CKKW-L)

Z + J: sample composition and correction to particle level

Analysis of selected data:

- → flavour-inclusive
- \rightarrow double b-tag

Sherpa 2.2.1 signal MC shows overestimate in inclusive vs under-estimate in 2-b-tag

	Inclusive		2-tag		
	ee	μμ	ee	μμ	
$Z+b\bar{b}$	324 ± 4	305 ± 4	163.8 ± 2.6	157.2 ± 2.5	
$Z+c\bar{c}$	536 ± 10	530 ± 9	12.3 ± 1.8	19.3 ± 2.0	
Z+bc	89 ± 2	81 ± 2	14.6 ± 1.2	12.1 ± 0.9	
Z+b	2588 ± 13	2423 ± 12	14.8 ± 1.1	12.4 ± 1.3	
Z+c	5073 ± 32	4862 ± 39	5.5 ± 1.3	6.9 ± 1.7	
Z+l	53808 ± 164	51206 ± 145	9.4 ± 1.1	11.1 ± 1.5	
$t\bar{t}$	5960 ± 46	5204 ± 43	82.7 ± 5.3	75.4 ± 5.6	
W+jets	73 ± 4	7 ± 1	0.4 ± 0.1	< 0.1	
Diboson	2042 ± 17	1834 ± 16	21.5 ± 1.4	20.7 ± 1.4	
MC total	70493 ± 175	66452 ± 158	324.9 ± 6.8	315.1 ± 7.2	
Data	66 481	65 034	391	384	

Correction at particle level: *using Fully Bayesian Unfolding method* [arXiv:1201.4612]:

- \rightarrow Likelihood of data d given signals σ , nuisances Λ
- \rightarrow Use pdf priors: flat for signal, Gauss for sys. nuisances
- \rightarrow Compute posterior by MCMC sampling from pdf(σ , \wedge)

$$\mathcal{L}(d|\sigma,\Lambda) = \prod_{i \in \text{ recobins}} \text{Poiss}(d_i|x_i(\sigma,\Lambda))$$

$$x_i(\sigma,\Lambda) = L(\Lambda) \times (b_i(\Lambda) + M_{ij}(\Lambda) \ \sigma_j)$$
 luminosity background response matrix

Z + J: measurement in flavour-inclusive phase-space

Differential measurements in flavour-inclusive boosted phase-space focusing on large-R jets

Main uncertainty:

 \rightarrow large-R J reco. and calib.

Predictions test of new Sherpa 2.2.10 and MGaMC+Py8 NLO (FxFx)

All MCs overestimate cross-section, but ok within uncertainties, although slightly high large-R jet p_T - best description from FxFx

Z + J: results in the double b-jet tagged region

Differential measurements in double b-tagged boosted phase-space focusing on bb subjets

Main uncertainties:

- \rightarrow large-R J reco. and calib.
- \rightarrow residual top bkg.
- \rightarrow b-tag efficiency calib.

Predictions test also include 4 vs 5 Flavour Number Scheme MCs

Underestimate in 4FNS generators. Similar performance for Fusing 4+5FNS

Data

Sherpa 2.2.10 5F

Sherpa 2.2.1 5F Sherpa 2.2.10 4F

Stat+sys unc.

Sherpa 2.2.10 fusing MGaMC+Py8.244 5F MGaMC+Py8.244 4F

0.8

 $\Delta R(b,b)$

Z + high- p_T jets in extreme phase-space with full Run 2 dataset

Also here, investigating Z production in association with high p_T jets, but full 13 TeV dataset of 139 fb⁻¹ follows to pin down precisely areas of the phase-space challenging to model for QCD predictions

Selection: Z \rightarrow II (I=e/ μ) plus \geq 1 jet (Anti-k_t Δ R=0.4), p_T>100 GeV **Inclusive** analysis further divided in multiple measurements:

- **High-p**_T: presence of $p_T(jet_1) > 500 \text{ GeV}$
- **Collinear**: High- p_T + $\Delta R(Z,closest-jet) < 1.4$
- **Back-to-back:** High- p_T + $\Delta R(Z,closest-jet) > 2.0$
- **High-S**_T: i.e. large jet activity with $S_T = \sum_{jets} p_T^{jet} > 600 \text{ GeV}$

Sizable SM background at high p_T originates from $t\bar{t}$ contamination:

 \Rightarrow data-driven estimate with e μ to reduce top modeling uncertainties

$Z + high-p_T jets$: reco, unfolding, systematic uncertainties

- → Newest Sherpa v2.2.11 (0-2p NLO + 3-5p LO) developed for ATLAS full Run 2 analyses and towards Run 3 [arXiv:2112.09588] used for nominal signal modeling and correction to particle level
- \rightarrow Iterative unfolding (standard) method with 2 iterations
- \rightarrow Latest JER/JES calibration give good precision up to high-p_T

Uncertainty source [%]	Inclusive	$\mathit{High-p_T}$	Collinear	Back-to-back	$High$ - S_{T}
JER/JES	2.6	3.2	2.8	3.6	2.8
Lepton	0.9	1.6	1.4	2.0	1.1
Luminosity	1.7	1.7	1.7	1.7	1.7
Pile-up	0.1	0.4	0.4	0.4	0.4
Unfolding	0.5	1.0	1.1	1.4	0.8
Background modelling	0.5	2.0	2.0	1.9	1.7
Signal modelling	0.5	1.2	1.1	1.1	1.1
Total syst. uncertainty	3.4	4.8	4.4	5.3	4.2
Data stat. uncertainty	0.1	2.1	2.9	2.7	1.2
Total uncertainty	3.4	5.3	5.3	5.9	4.4

$Z + high-p_T jets$: Comparison with theoretical predictions

Theoretical predictions:

State-of-the-art NLO ME+PS QCD (sh2.2.11 includes also NLO EW) and pQCD in NNLO:

Sherpa v.2.2.11	0-2p NLO, 3-5p LO	
MG5_aMC+Py8 FxFx	0-3p NLO	
Sherpa v.2.2.1	0-2p NLO, 3-4p LO	
MG5_aMC+Py8 CKKWL	0-4p LO	
NNLOJET@NNLO	1p NNLO	
NNLOJET@NLO	1p NLO	

→ Data cross section always more precise than predictions!

 \rightarrow 7-point scale uncertainties show relevant variations between predictions

$Z + high-p_T jets$: inclusive and high-p_T results

 Zp_T , leading jet p_T , N-jets: key variables in pQCD predictions but also crucial for searches/measurements because correct modeling with MC simulation allows to place selection cuts with reduced uncertainties

NB: sizable scale uncertainty differences: sh2.2.1 ~ sh2.2.11 > MGaMG FxFx ~ NLO >> NNLO

$Z + high-p_T jets$: results in collinear & back-to-back phase-space

Study of $r_{7,i}$ variable interesting in back-to-back and collinear regions:

$$r_{Z,j} = rac{p_{T,\ell\ell}}{p_{T, ext{closest-jet}}}$$

- \rightarrow Collinear: low r_{7i} , as expected. Good agreement in new predictions
- \rightarrow back-to-back: $r_{Z,j}$ ~1, confirms Z+1-hard jet, sensitive to EW corrections Historical modeling issues in collinear region solved in new generators!

Summary and conclusions

V+jets extreme phase-space became accessible thanks to improved reconstruction techniques and to the large stat. of full LHC Run $2 \Rightarrow$ crucial for benchmarking QCD predictions, test of MC modeling, and relevant for BSM searches or new Higgs measurements

Presented two new results comparing extreme phase-space data to state-of-the-art predictions:

- Z + large-radius jet, flavour inclusive and with 2 b-tags [arXiv:2204.12355]
- $Z + high-p_T$ jets in extreme phase-space with full Run 2 dataset [STDM-2018-49]

Good agreement with data within (still large) uncertainties in boosted regime, while agreement is excellent in collinear and back-to-back topologies when comparing to new NLO ME+PS matched/merged status and to NNLO predictions

Results have been already partially used to test next generation of ATLAS V+jets MC simulation [arXiv:2112.09588], e.g. Sherpa 2.2.11 (0-2p NLO +3-5 LO) and MGaMC FxFx (0-3p NLO)

ATLAS Detector

Identification of heavy-hadrons ($m_b^{\sim}4.2$ GeV) decay at O(100 μ m) w.r.t. primary vertex (PV) improved with new Run 2 pixel detector (IBL) very close to beamline

b-jet identification: Selection and Efficiency Calibration

Tracking & jet information condensed using multivariate (MV) algorithms for separation of b-jets vs different flavour jets - c or light-flavour

- b-jet identification performance evaluated on MC but crucial to calibrate it with reference candles in $Data \Rightarrow$ inaccuracy in detector description or QCD simulation of b/c/light-jets
- Example of $t\bar{t}$ events used for the extraction of the efficiency correction (<u>EPJC 79(2019)970</u>)

Iterative Unfolding with Bayesian method

Response matrix accounts for migrations using MC simulation:

$$M_{ij}=M(R_i|T_j)$$

Conditional probability that the effect R_i is produced by the cause T_j

How to extract "prediction-unbiased" probability using iterative Bayesian unfolding:

Bayes theorem:

$$M(T_i|R_i) = M(R_i|T_i) P_0(T_i) / Sum_i M(R_i|T_i) P_0(T_i)$$

 Particle level MC used as initial prior, P₀(T_j), to determine a first estimate of the unfolded data distribution:

$$T_{j} = Sum_{i} M(T_{j} | R_{i})R_{i}$$

 In each further iteration the estimator of the unfolded distribution from previous iteration is used as a new prior

Z+≥1 b-jet and Z+≥2 b-jets inclusive cross-section: Results

- 4FS largely undershoots $Z+\ge 1$ b-jets cross-section in all configuration
- $Z+\geq 2$ b-jets uncertainties still too large to favour any of the more recent predictions

Differential cross-section measurements in resolved Z+b(b)

Z+ \geq 1 b-jet & Z+ \geq 2 b-jets phase space (mostly) well described by 5FS, while 4FS shows deficits in Z+ \geq 1 b-jet

Some tensions with data at high m_{bb} (and high jet- p_{T}) but large errors in both theory and measurement:

⇒ challenge for searches and test of other process in such phase space...

$Z + high-p_T jets$: results vs jet activity and at high S_T

Low H_T , dominated by di-lepton p_T , well modelled therefore disagraphent at higher H from iets

 \Rightarrow therefore disagreement at higher H_T from jets!

 $S_T > 600 \text{ GeV shapes } \Delta R(Z, \text{closest-jet})$

 \rightarrow less back-to-back, dominated by di-jet events

Again, excellent modeling from recent NLO ME+PS generators (Sh2.2.11, MGaMC FxFx), and NNLO pQCD

$Z + high-p_T jets$: jet multiplicities

Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment [arXiv:2112.09588]

 \rightarrow Sh. 2.2.11: 0-2p NLO, 3-5LO stat. enhancing function: $log(max H_T, Vp_T)$

 \rightarrow MGaMC FxFx: 0-3p NLO FxFx stat. enhancing function: H_T^2

	$\sigma(pp o \ell\ell)$ [pb]	$\sigma(pp \to \mu \nu)$ [pb]
SHERPA 2.2.1 SHERPA 2.2.11	$2160 \pm 86 \text{ (scale)} \pm 53 \text{ (PDF+}\alpha_{\text{S}})$ $2221 \pm 155 \text{ (scale)} \pm 47 \text{ (PDF+}\alpha_{\text{S}})$	$20697 \pm 828 \text{ (scale)} \pm 507 \text{ (PDF+}\alpha_{\text{S}}\text{)}$ $21781 \pm 1525 \text{ (scale)} \pm 462 \text{ (PDF+}\alpha_{\text{S}}\text{)}$
MG5_AMC@NLO+Pythia	2268 ± 92 (scale) ± 23 (PDF)	22163 ± 898 (scale) ± 225 (PDF)
NNLO QCD	2067 ⁺¹⁰ ₋₁₄ (scale) ⁺⁵² ₋₃₉ (PDF)	20080 ⁺¹⁰⁰ ₋₁₆₁ (scale) ⁺⁵²² ₋₄₀₁ (PDF)

Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment [arXiv:2112.09588]

