Measurements of Z boson production in association with jets at ATLAS Federico Sforza (UniGE & INFN), on behalf of the ATLAS Collaboration DIS 2022 -03/05/2022 Santiago de Compostela, Spain ## Key role of W or Z plus jet production at LHC Abundant production of W or Z + jets & clear experimental signature - → Test of state-of-the-art pheno predictions: fixed-order perturbative QCD (pQCD) and MC simulations - → Large & irreducible background to BSM searches or Higgs measurements: *crucial for experiments to rely on precise models affected by small uncertainties!* production of W+4-partons with NLO contribution \mathbf{z} \mathbf{z} Z+1 parton @LO from qg initial state \rightarrow Clearly, also sensitive of proton PDFs: Check new results in F. Giuli's talk tomorrow! ## Challenging new measurements of Z+jets with ATLAS experiment Several key measurements have been obtained using ATLAS Run 2 *pp* collision data at 13 TeV, a relevant past examples: - Early Z+jets measurements with 3.2 fb⁻¹ [EPJC 77 (2017) 361] - \rightarrow important for first benchmark of V+jets MC @13 TeV - First Z+b(b)-jets measurement with 36 fb⁻¹ [JHEP 07 (2020) 44] - \rightarrow probing MC modeling of heavy flavour jets, substantial differences depending of Flavour Number Scheme of simulation #### Today's focus on results accessible thanks to improved reconstruction/full dataset large statistics: • Z + large-radius jet, flavour inclusive and with 2 b-tags, 36 fb⁻¹ [arXiv:2204.12355] - NEW! - → first probe of jet sub-structure in boosted regime, also testing kinematics of close-by b-quarks - $Z + high-p_T$ jets in extreme phase-space, with 139 fb⁻¹ [arXiv:2205.02597] - → probe of cutting edge MC and pQCD predictions in scarcely explored areas (e.g. collinear Z-jet) ## Z plus a large-radius jet and identification of bb final state Investigating Z production in association with: **high-p**_T, **boosted**, **coloured object**, **w/ or w/o 2 b-jets** $Z \rightarrow II$ (I=e/mu) selection: efficient for online/offline identification, final state with low background from other SM processes #### Large Jet (J) reconstruction and double-b-tagging: - "J" definition: Anti- k_t ΔR =1.0 & *trimming* ΔR =0.2 subjets if p_T <0.05 p_T (J) \rightarrow suppress PU, UE - Boosted object phase space definition: $p_T(J) > 200 \text{ GeV}$, $|\eta| < 2$ - **Double b-tagging:** 2 small track-jets (Anti- $k_t \Delta R$ =0.2) matched to **J** and passing a b-hadron MVA selection (MV2c10) with eff_b~70%, eff_c~14%, eff_{light}~0.8% (on tt simulation) Signal MC estimate and syst. using ME+PS matched/merged simulations: Sherpa 2.2.1: with ME 0-2p NLO + 3-4p LO MG5_aMC+Py8: with ME 0-4p LO (CKKW-L) ## Z + J: sample composition and correction to particle level #### Analysis of selected data: - → flavour-inclusive - \rightarrow double b-tag Sherpa 2.2.1 signal MC shows overestimate in inclusive vs under-estimate in 2-b-tag | | Inclusive | | 2-tag | | | |--------------|-----------------|-----------------|-----------------|-----------------|--| | | ee | μμ | ee | μμ | | | $Z+b\bar{b}$ | 324 ± 4 | 305 ± 4 | 163.8 ± 2.6 | 157.2 ± 2.5 | | | $Z+c\bar{c}$ | 536 ± 10 | 530 ± 9 | 12.3 ± 1.8 | 19.3 ± 2.0 | | | Z+bc | 89 ± 2 | 81 ± 2 | 14.6 ± 1.2 | 12.1 ± 0.9 | | | Z+b | 2588 ± 13 | 2423 ± 12 | 14.8 ± 1.1 | 12.4 ± 1.3 | | | Z+c | 5073 ± 32 | 4862 ± 39 | 5.5 ± 1.3 | 6.9 ± 1.7 | | | Z+l | 53808 ± 164 | 51206 ± 145 | 9.4 ± 1.1 | 11.1 ± 1.5 | | | $t\bar{t}$ | 5960 ± 46 | 5204 ± 43 | 82.7 ± 5.3 | 75.4 ± 5.6 | | | W+jets | 73 ± 4 | 7 ± 1 | 0.4 ± 0.1 | < 0.1 | | | Diboson | 2042 ± 17 | 1834 ± 16 | 21.5 ± 1.4 | 20.7 ± 1.4 | | | MC total | 70493 ± 175 | 66452 ± 158 | 324.9 ± 6.8 | 315.1 ± 7.2 | | | Data | 66 481 | 65 034 | 391 | 384 | | #### **Correction at particle level**: *using Fully Bayesian Unfolding method* [arXiv:1201.4612]: - \rightarrow Likelihood of data d given signals σ , nuisances Λ - \rightarrow Use pdf priors: flat for signal, Gauss for sys. nuisances - \rightarrow Compute posterior by MCMC sampling from pdf(σ , \wedge) $$\mathcal{L}(d|\sigma,\Lambda) = \prod_{i \in \text{ recobins}} \text{Poiss}(d_i|x_i(\sigma,\Lambda))$$ $$x_i(\sigma,\Lambda) = L(\Lambda) \times (b_i(\Lambda) + M_{ij}(\Lambda) \ \sigma_j)$$ luminosity background response matrix ## Z + J: measurement in flavour-inclusive phase-space Differential measurements in flavour-inclusive boosted phase-space focusing on large-R jets #### Main uncertainty: \rightarrow large-R J reco. and calib. Predictions test of new Sherpa 2.2.10 and MGaMC+Py8 NLO (FxFx) All MCs overestimate cross-section, but ok within uncertainties, although slightly high large-R jet p_T - best description from FxFx ## Z + J: results in the double b-jet tagged region Differential measurements in double b-tagged boosted phase-space focusing on bb subjets #### Main uncertainties: - \rightarrow large-R J reco. and calib. - \rightarrow residual top bkg. - \rightarrow b-tag efficiency calib. #### Predictions test also include 4 vs 5 Flavour Number Scheme MCs Underestimate in 4FNS generators. Similar performance for Fusing 4+5FNS Data Sherpa 2.2.10 5F Sherpa 2.2.1 5F Sherpa 2.2.10 4F Stat+sys unc. Sherpa 2.2.10 fusing MGaMC+Py8.244 5F MGaMC+Py8.244 4F 0.8 $\Delta R(b,b)$ ## Z + high- p_T jets in extreme phase-space with full Run 2 dataset Also here, investigating Z production in association with high p_T jets, but full 13 TeV dataset of 139 fb⁻¹ follows to pin down precisely areas of the phase-space challenging to model for QCD predictions **Selection**: Z \rightarrow II (I=e/ μ) plus \geq 1 jet (Anti-k_t Δ R=0.4), p_T>100 GeV **Inclusive** analysis further divided in multiple measurements: - **High-p**_T: presence of $p_T(jet_1) > 500 \text{ GeV}$ - **Collinear**: High- p_T + $\Delta R(Z,closest-jet) < 1.4$ - **Back-to-back:** High- p_T + $\Delta R(Z,closest-jet) > 2.0$ - **High-S**_T: i.e. large jet activity with $S_T = \sum_{jets} p_T^{jet} > 600 \text{ GeV}$ Sizable SM background at high p_T originates from $t\bar{t}$ contamination: \Rightarrow data-driven estimate with e μ to reduce top modeling uncertainties ## $Z + high-p_T jets$: reco, unfolding, systematic uncertainties - → Newest Sherpa v2.2.11 (0-2p NLO + 3-5p LO) developed for ATLAS full Run 2 analyses and towards Run 3 [arXiv:2112.09588] used for nominal signal modeling and correction to particle level - \rightarrow Iterative unfolding (standard) method with 2 iterations - \rightarrow Latest JER/JES calibration give good precision up to high-p_T | Uncertainty source [%] | Inclusive | $\mathit{High-p_T}$ | Collinear | Back-to-back | $High$ - S_{T} | |-------------------------|-----------|---------------------|-----------|--------------|---------------------------| | JER/JES | 2.6 | 3.2 | 2.8 | 3.6 | 2.8 | | Lepton | 0.9 | 1.6 | 1.4 | 2.0 | 1.1 | | Luminosity | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | | Pile-up | 0.1 | 0.4 | 0.4 | 0.4 | 0.4 | | Unfolding | 0.5 | 1.0 | 1.1 | 1.4 | 0.8 | | Background modelling | 0.5 | 2.0 | 2.0 | 1.9 | 1.7 | | Signal modelling | 0.5 | 1.2 | 1.1 | 1.1 | 1.1 | | Total syst. uncertainty | 3.4 | 4.8 | 4.4 | 5.3 | 4.2 | | Data stat. uncertainty | 0.1 | 2.1 | 2.9 | 2.7 | 1.2 | | Total uncertainty | 3.4 | 5.3 | 5.3 | 5.9 | 4.4 | ## $Z + high-p_T jets$: Comparison with theoretical predictions #### Theoretical predictions: State-of-the-art NLO ME+PS QCD (sh2.2.11 includes also NLO EW) and pQCD in NNLO: | Sherpa v.2.2.11 | 0-2p NLO, 3-5p LO | | |-------------------|-------------------|--| | MG5_aMC+Py8 FxFx | 0-3p NLO | | | Sherpa v.2.2.1 | 0-2p NLO, 3-4p LO | | | MG5_aMC+Py8 CKKWL | 0-4p LO | | | NNLOJET@NNLO | 1p NNLO | | | NNLOJET@NLO | 1p NLO | | ## → Data cross section always more precise than predictions! \rightarrow 7-point scale uncertainties show relevant variations between predictions ## $Z + high-p_T jets$: inclusive and high-p_T results Zp_T , leading jet p_T , N-jets: key variables in pQCD predictions but also crucial for searches/measurements because correct modeling with MC simulation allows to place selection cuts with reduced uncertainties NB: sizable scale uncertainty differences: sh2.2.1 ~ sh2.2.11 > MGaMG FxFx ~ NLO >> NNLO ## $Z + high-p_T jets$: results in collinear & back-to-back phase-space Study of $r_{7,i}$ variable interesting in back-to-back and collinear regions: $$r_{Z,j} = rac{p_{T,\ell\ell}}{p_{T, ext{closest-jet}}}$$ - \rightarrow Collinear: low r_{7i} , as expected. Good agreement in new predictions - \rightarrow back-to-back: $r_{Z,j}$ ~1, confirms Z+1-hard jet, sensitive to EW corrections Historical modeling issues in collinear region solved in new generators! ### **Summary and conclusions** V+jets extreme phase-space became accessible thanks to improved reconstruction techniques and to the large stat. of full LHC Run $2 \Rightarrow$ crucial for benchmarking QCD predictions, test of MC modeling, and relevant for BSM searches or new Higgs measurements Presented two new results comparing extreme phase-space data to state-of-the-art predictions: - Z + large-radius jet, flavour inclusive and with 2 b-tags [arXiv:2204.12355] - $Z + high-p_T$ jets in extreme phase-space with full Run 2 dataset [STDM-2018-49] Good agreement with data within (still large) uncertainties in boosted regime, while agreement is excellent in collinear and back-to-back topologies when comparing to new NLO ME+PS matched/merged status and to NNLO predictions Results have been already partially used to test next generation of ATLAS V+jets MC simulation [arXiv:2112.09588], e.g. Sherpa 2.2.11 (0-2p NLO +3-5 LO) and MGaMC FxFx (0-3p NLO) #### **ATLAS Detector** Identification of heavy-hadrons ($m_b^{\sim}4.2$ GeV) decay at O(100 μ m) w.r.t. primary vertex (PV) improved with new Run 2 pixel detector (IBL) very close to beamline ## b-jet identification: Selection and Efficiency Calibration Tracking & jet information condensed using multivariate (MV) algorithms for separation of b-jets vs different flavour jets - c or light-flavour - b-jet identification performance evaluated on MC but crucial to calibrate it with reference candles in $Data \Rightarrow$ inaccuracy in detector description or QCD simulation of b/c/light-jets - Example of $t\bar{t}$ events used for the extraction of the efficiency correction (<u>EPJC 79(2019)970</u>) Iterative Unfolding with Bayesian method Response matrix accounts for migrations using MC simulation: $$M_{ij}=M(R_i|T_j)$$ Conditional probability that the effect R_i is produced by the cause T_j ## How to extract "prediction-unbiased" probability using iterative Bayesian unfolding: Bayes theorem: $$M(T_i|R_i) = M(R_i|T_i) P_0(T_i) / Sum_i M(R_i|T_i) P_0(T_i)$$ Particle level MC used as initial prior, P₀(T_j), to determine a first estimate of the unfolded data distribution: $$T_{j} = Sum_{i} M(T_{j} | R_{i})R_{i}$$ In each further iteration the estimator of the unfolded distribution from previous iteration is used as a new prior ## Z+≥1 b-jet and Z+≥2 b-jets inclusive cross-section: Results - 4FS largely undershoots $Z+\ge 1$ b-jets cross-section in all configuration - $Z+\geq 2$ b-jets uncertainties still too large to favour any of the more recent predictions ## Differential cross-section measurements in resolved Z+b(b) Z+ \geq 1 b-jet & Z+ \geq 2 b-jets phase space (mostly) well described by 5FS, while 4FS shows deficits in Z+ \geq 1 b-jet Some tensions with data at high m_{bb} (and high jet- p_{T}) but large errors in both theory and measurement: ⇒ challenge for searches and test of other process in such phase space... ## $Z + high-p_T jets$: results vs jet activity and at high S_T Low H_T , dominated by di-lepton p_T , well modelled therefore disagraphent at higher H from iets \Rightarrow therefore disagreement at higher H_T from jets! $S_T > 600 \text{ GeV shapes } \Delta R(Z, \text{closest-jet})$ \rightarrow less back-to-back, dominated by di-jet events Again, excellent modeling from recent NLO ME+PS generators (Sh2.2.11, MGaMC FxFx), and NNLO pQCD ## $Z + high-p_T jets$: jet multiplicities ## Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment [arXiv:2112.09588] \rightarrow Sh. 2.2.11: 0-2p NLO, 3-5LO stat. enhancing function: $log(max H_T, Vp_T)$ \rightarrow MGaMC FxFx: 0-3p NLO FxFx stat. enhancing function: H_T^2 | | $\sigma(pp o \ell\ell)$ [pb] | $\sigma(pp \to \mu \nu)$ [pb] | |-------------------------------|---|---| | SHERPA 2.2.1
SHERPA 2.2.11 | $2160 \pm 86 \text{ (scale)} \pm 53 \text{ (PDF+}\alpha_{\text{S}})$
$2221 \pm 155 \text{ (scale)} \pm 47 \text{ (PDF+}\alpha_{\text{S}})$ | $20697 \pm 828 \text{ (scale)} \pm 507 \text{ (PDF+}\alpha_{\text{S}}\text{)}$
$21781 \pm 1525 \text{ (scale)} \pm 462 \text{ (PDF+}\alpha_{\text{S}}\text{)}$ | | MG5_AMC@NLO+Pythia | 2268 ± 92 (scale) ± 23 (PDF) | 22163 ± 898 (scale) ± 225 (PDF) | | NNLO QCD | 2067 ⁺¹⁰ ₋₁₄ (scale) ⁺⁵² ₋₃₉ (PDF) | 20080 ⁺¹⁰⁰ ₋₁₆₁ (scale) ⁺⁵²² ₋₄₀₁ (PDF) | # Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment [arXiv:2112.09588]