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Event shape distributions:  thrust

• The fixed order distribution can readily be computed in QCD, though state of the art is 
a N3LL’ + O("s3) resummation — readily achieved with Soft Collinear Effective Theory.

• The classic example is Thrust:

2. Event shapes 8

Note that while sphericity is dimensionless, and nontrivially so, since
q

i |p̨i|
2 depends

non-trivially on the event geometry, thrust looks like an observable that’s artificially

made dimensionless, by dividing out the event independent physical scale Q, set by

the experiment parameters.

Let’s take a quick look at what we’re measuring here: A particle contributes signi-

ficantly to T if the projection of its momentum onto the thrust axis is close to its total

momentum, so we identify high-thrust events as those for which this is true for all particles

in the final state. The thrust axis is the same for all particles, therefore pencil-like events as

shown on the left in figure 2.1 have T ¥ 1, ’messier’ events are assigned lower thrust values.

Sphericity is almost complementary, since for ideally pencil-like events the trans-

verse momentum vanishes completely (i.e. S = 0), whereas an ideally isotropic event

corresponds to S = 1.
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Figure 2.1: Thrust and sphericity values for various event geometries.

2.3 Fixed order calculations

So far the definition of our two event shapes only allows us to classify final state geometries,

which obviously does not yet promote our understanding.

But as we have a precise definition in terms of momenta, we can easily start perturbative

calculations of expected distributions for event shape observables, given a theory that

allows us to compute S-matrix elements.

Starting with a matrix element, the di�erential cross section is proportional to the

matrix element’s square: d‡ ≥ |M|
2 d�n, which can be integrated to an event
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Figure 3.1: Interesting kinematic final state configurations and their corresponding thrust value,
courtesy of Guido Bell.

Section 3.6 and presenting (preliminary) results for di�erential cross-sections in Section

3.7. Concluding thoughts are given in Section 3.8, and Section 3.9 serves as an appendix

collecting some of the required formulae we encounter in the chapter.

3.2 Event Shapes in Soft-Collinear E�ective Theory

Event shapes are geometric, dimensionless observables that characterize hadronic final

states in hard-scattering processes [129]. Unlike, say, a jet algorithm, event shapes are

generally global observables that do not reject any events coming from soft or collinear

radiation. They are normally IR safe and can be studied at hadron or e+e≠ colliders,

though as already noted we focus on the latter because they provide a clean environment

for performing precision extractions of the strong-coupling constant [134–138] and/or

analyzing QCD in the non-perturbative (NP) regime — see e.g. [130,137,139–142].

The most famous event shape is undoubtedly thrust [156]:

· © 1 ≠ T = 1 ≠
1
Q

max
t̂

ÿ

iœX

|t̂ · pi| (3.1)

where Q is the collider COM energy, X is the final hadronic state, pi is the three-

momentum of the i’th final state particle, and the thrust axis is defined by the unit

vector t̂ maximizing the sum in the right-hand-side of (3.1). It is easy to see why thrust

characterizes the ‘shape’ of a given event, as it takes particular finite values for interesting

kinematic distributions. For example, in the spherical case T ƒ
1
2 whereas in the dijet

case T ƒ 1, a situation illustrated in Figure 3.1. Thrust can readily be computed in

QCD. Up to O(–s), its di�erential cross-section ‡Õ is given in the dijet limit by:
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.

In Fig. 9a we show the O(αs) (light/yellow), O(α2
s)

(medium/purple) and O(α3
s) (dark/red) fixed-order

thrust distributions without summation of large loga-
rithms. The common renormalization scale is chosen
to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
summing large logarithms.

In Fig. 9b the fully resummed thrust distributions at
NLL′ (yellow), NNLL (green), NNLL′ (purple), N3LL
(blue) and N3LL′ (red) order are shown, but without
implementing the soft nonperturbative function Smod

τ or
the renormalon subtractions related to the R-gap scheme.
The yellow NLL′ error band is mostly covered by the
green NNLL order band, and similarly the purple NNLL′
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

caption of Tab. II. Furthermore, we always consider five
active flavors in the running and do not implement bot-
tom threshold corrections, since our lowest scale in the
profile functions (the soft scale µS) is never smaller than
6 GeV in the tail where we perform our fit.

In Fig. 9 we display the normalized thrust distribution
in the tail thrust range 0.15 < τ < 0.30 at the differ-
ent orders taking αs(mZ) = 0.114 and Ω1(R∆, µ∆) =
0.35 GeV as reference values, and neglectingmb and QED
corrections. We display the case Q = mZ where the
experimental measurements from LEP-I have the small-
est statistical uncertainties. The qualitative behavior of
the results agrees with other c.m. energies. The colored
bands represent the theoretical errors of the predictions
at the respective orders, which have been determined by
the scan method described in Sec. VI.
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s) (dark/red) fixed-order

thrust distributions without summation of large loga-
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to be the hard scale µH . In the fixed-order results the
higher order corrections are quite large and our error es-
timation obviously underestimates the theoretical uncer-
tainty of the fixed-order predictions. This panel including
the error bands is very similar to the analogous figures
in Refs. [4] and [6]. This emphasizes the importance of
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Dissecting dijets — constructing the curve

‘Peak’ Region: non-perturbative, soft region. NON-PERTURBATIVE MODELING 

‘Tail’ Region: resummation region.  PERTURBATIVE SCET PREDICTIONS

‘Far Tail’ Region: fixed-order, multi-jet region. QCD MATCHING 
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Figure 8: Angularity distributions at Q = 100 GeV. The full, NLL/NLO resummed, renormalon-
subtracted distributions in Fig. 7 are here shown all on the same scale. The parameters are chosen
the same as in Fig. 7. From highest to lowest peak value, the curves are for a = �2,�1,� 1
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Figure 9: Hard scale variation (dark green band) and correlated jet and soft scale variation
(light blue band) of the NLL/NLO resummed, renormalon-subtracted angularity distributions at
Q = 100 GeV for a = �1, a = 0, a = 1/4, and a = 1/2. For the hard scale variation, µH varied
between Q/2 and 2Q and for the correlated scale variation, µJ and µS are varied between half the
values given in Eq. (6.1) and twice these values.
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SCETching thrust:  perturbative regime

GeV GeV
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Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}

and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.
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• Note that there also 
is freedom in scale-
setting choices -> 

‘profiles’

Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”a
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2
s 1
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2
s
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s

Table 6. Ingredients we include at various orders of unprimed NkLL (Left), primed NkLLÕ (Middle),
and matched (Right) accuracies, up to a given fixed order O(–n

s
). The tables apply to the inte-

grated distribution in Eq. (4.38) and the Laplace-transformed distribution, but not, for unprimed
accuracies, directly to the di�erential form in Eq. (2.1)—see [35] for details. We have included
a counting for the renormalon subtractions terms ”a in Eq. (4.12) and the µ- and R-evolution
anomalous dimensions “

µ

�, “R in Eqs. (4.15) and (4.18) as described in the text.

In practice we expand out the shape function terms to the order we work in –s,

e
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d

dk fmod(k ≠ 2�a(µS , R)) = f
(0)

mod
(k ≠ 2�a(µS , R)) + f

(1)

mod
(k ≠ 2�a(µS , R))

+ f
(2)

mod
(k ≠ 2�a(µS , R)) , (4.35)

where

f
(0)

mod
(k ≠ 2�a(µS , R)) = fmod(k ≠ 2�a(µS , R)) , (4.36a)

f
(1)

mod
(k ≠ 2�a(µS , R)) = ≠

–s(µS)
4fi

2”
1

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) , (4.36b)

f
(2)

mod
(k ≠ 2�a(µS , R)) =

1
–s(µS)

4fi

22Ë
≠2”

2

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) (4.36c)

+ 2(”1

a(µS , R)Re
“E )2

f
ÕÕ
mod(k ≠ 2�a(µS , R))

È
,

with ”
1,2
a (µS , R) from Eq. (4.13). The order to which these terms are kept at each accuracy

are included in Table 6.

4.3 Final resummed, matched, and renormalon-subtracted cross section

We now collect all pieces described above, giving our final expressions for the resummed
cross section, matched to fixed-order and convolved with a renormalon-free shape function.

In evaluating the convolution in Eq. (4.34), we must truncate the product of the
fixed-order perturbative pieces contained in Eqs. (2.11) and (3.13) along with the non-
perturbative pieces in Eq. (4.35) to the appropriate order in –s for NkLL(

Õ
) accuracy.

Namely, starting with Eq. (2.11) for the integrated distribution, we expand the fixed-order
coe�cients in powers of –s:
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= ‡
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c (·a) , (4.37)
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is given in terms of the Laplace-space constants by
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This formula immediately gives us c
2

J̃
as soon as we determine c

(2) (which, we recall from
Eq. (3.6), is in momentum space), whose extraction from EVENT2 will be described in the
next subsection.

3.2 Two-loop jet function constant

The program EVENT2 [74, 75] gives numerical results for partonic QCD observables in e
+

e
≠

collisions to O(–2
s). Using the method described by Hoang and Kluth [76], we can extract

the singular constant c
(2) in Eq. (3.6), and thus the unknown jet function constant c

2

J̃
via

Eq. (3.7). For pedagogical purposes, we will give our own description of this method in the
language of continuous distributions, which we find more intuitive to understand, rather
than the language of discrete bins, which we encourage the reader to study in [76], as in
practice one implements the discrete method.

The integrated (cumulative) angularity distribution in full QCD has a fixed-order ex-
pansion of the form:
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,

to O(–2
s). The cnm coe�cients should agree with the SCET prediction in Eq. (3.4) for the

singular terms. The r
n
c functions are the nonsingular remainders that vanish as ·a æ 0 and

which are not predicted by the leading power expansion in SCET. Since SCET predicts
the singular coe�cients correctly, the di�erence of the QCD and SCET results is simply
given by these remainders:
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, (3.9)

which we will use in the next subsection to obtain the nonsingular remainder functions r
n
c

from the di�erence of the EVENT2 output and the SCET prediction. To do this, however,
we must know all the cnm coe�cients in Eq. (3.8), including the constants in c20 © c

(2) in
Eq. (3.7). But we do not yet know c

2

J̃
.

In the limit of zero bin size, EVENT2 is generating an approximation to the di�erential
distribution, which takes the form:

1
‡0

d‡

d·a

= A ”(·a) + [B(·a)]+ + r(·a) , (3.10)

where A is the constant coe�cient of the delta function, B is a singular function, turned into
an integrable plus-distribution, and r = drc/d·a is nonsingular, that is, directly integrable
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Remainder 

• Results for O($s(2,3)) matching obtained from EVENT2 / EERAD3:

• SCET permits all-orders derivations of factorization theorems, with individual components 
resummed via RG evolution:
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Figure 4.2. Diagrammatic representation of the Sudakov form factor in QCD; the diagram illustrates
the separation of the different scales present in the problem. The soft scale is Λ2

s = L2P 2/Q2.

4.7 Factorization and Collinear Anomaly

In the case analyzed in Section 2.3, in which the virtual propagator carrying momentum k

in the vertex correction has a small but non vanishing mass m, the integral over the soft

region vanishes. One could naively think that this implies a factorization in d = 4 of the

kind illustrated in Fig. 3.3. However, for m2 ∼ λ2 the hard function is the same as in the

massless case and is given by Eq. (2.39). This function has an infrared divergence which

depends on Q. Such a divergence cannot be canceled if the jet functions do not depend

on Q as well. In Section 2.3 we have shown that this dependence is indeed present, and

originates from the need to use an additional regulator to define in a proper way the collinear

region integrals. Here we want to study how the factorization is modified in this case. At all

orders in perturbation theory, the product of the two jet functions must be independent of

the analytic regulator, and therefore also independent of the corresponding ’t Hooft scale ν.

Consequently, the quantity

P = Jc

(
p2,m2, ln

ν2

m2
, µ

)
Jc̄

(
l2,m2, ln

ν2

Q2
, µ

)
, (4.66)

should satisfy the differential equation

d

d ln ν
lnP =

d

d ln ν

[
lnJc

(
p2,m2, ln

ν2

m2
, µ

)
+ lnJc̄

(
l2,m2, ln

ν2

Q2
, µ

)]
= 0 . (4.67)

This implies that the two terms in the square brackets in the equation above should be linear

in ln(ν2/m2) and ln(ν2/Q2), respectively, and that the coefficients multiplying the logarithms

should be independent from p2 and l2 [23]. One can then extract the terms depending on ν

by defining two new jet functions J as follows:
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Thus one can re-factorize [11, 23] the product of the two jet functions as follows
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SCETching thrust: non-perturbative regime
A treatment of non-perturbative effects is critical in e+e- -> hadrons…

When dominant power corrections come from the soft function, NP effects can be parameterized 
into a shape function fmod:

the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dk
Õ
SPT(k ≠ k

Õ
, µ) fmod(kÕ

≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [56]:

fmod(k) = 1
⁄

C Œÿ

n=0

bn fn

3
k

⁄

4D2

, (4.2)

where

fn(x) = 8

Û
2x3 (2n + 1)

3 e
≠2x

Pn

!
g(x)

"
, (4.3)

g(x) = 2
3

1
3 ≠ e

≠4x
1
3 + 12x + 24x

2 + 32x
3
22

≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b

2
n = 1. In practice, we only keep one term in the sum (4.2),

setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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The leading impact of this shape function correction is to shift the overall perturbative 
distribution:
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4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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a = 0 (Thrust)

However, both the gap parameter Δbar and the soft function S_PT have a renormalon ambiguity!

 Non-perturbative effects and gapped soft function
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However, both the perturbative soft function and gap parameter suffer renormalon ambiguities. 
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 Non-perturbative effects and gapped soft function
the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 50]:

S(k, µ) =
⁄

dk
Õ
SPT(k ≠ k

Õ
, µ) fmod(kÕ

≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
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3
k
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4D2
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Û
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!
g(x)

"
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3

1
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≠4x
1
3 + 12x + 24x

2 + 32x
3
22

≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b

2
n = 1. In practice, we only keep one term in the sum (4.2),

setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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However, both the perturbative soft function and gap parameter suffer renormalon ambiguities. 

4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with
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= 2�a +
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dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.
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mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)
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opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.
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where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
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As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
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where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as
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the scheme and the scale of the subtraction term ”a. We adopt here the prescription
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in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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with an initial condition at some scale µ�, and where ŸS = 4/(1≠a) was given in Eq. (2.8)
and the kernel ÷� was defined in Eq. (2.7).

The evolution of the gap parameter �a(µ, R) in R is a bit more involved, and was
solved in [85] for quark masses and applied to the soft gap parameter in [76]. We follow
this derivation here (in our own notation). Since from Eq. (4.16) we know how to evolve
�a(µ, R) in µ, we just need to derive the evolution of �a(R, R) in R. Since �a in Eq. (4.7)
is also R-independent, we can derive from the perturbative expansion of ”a in Eq. (4.13)
the “R-evolution” equation:

d

dR
�a(R, R) = ≠

d

dR
”a(R, R) © ≠“R[–s(R)] , (4.17)

where “R has a perturbative expansion,

“R[–s(R)] =
Œÿ

n=0

1
–s(R)

4fi

2n+1

“
n

R , (4.18)

whose first two coe�cients we read o� from Eqs. (4.12) and (4.13),

“
0

R = 0 , “
1

R = e
“E

2
#
“

1

S(a) + 2c
1

ÂS—0

$
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Even though “
0

R
= 0 for the soft gap parameter (since “

0

S
(a) = 0), we will keep it symboli-

cally in the solution below for generality (and for direct comparison with the quark mass
case in [85]).

To solve Eq. (4.17), we integrate:

�a(R1, R1) ≠ �a(R�, R�) = ≠

⁄
R1

R�

dR

R
R “R[–s(R)] , (4.20)

multiplying and dividing by R in the integrand, anticipating using Eq. (2.21) to change
integration variables to –s. But first we need to invert –s(R) to express R. To this end,
we write Eq. (2.21) in the form

ln R

R�

=
⁄

–s(R)

–s(R�)

d–

—[–] = G[–s(R)] ≠ G[–s(R�)] , (4.21)

where G[–] is the antiderivative of 1/—[–],
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4fi

"2 —2
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+ · · ·

. (4.22)

This determines G up to a constant of integration (we e�ectively choose it such that
G[–] æ 0 as – æ Œ). If R, R� are scales for which –s is perturbative, we can determine
G explicitly order by order,

G[–] = 2fi

—0

5 1
–

+ —1

4fi—0

ln – ≠
B2

(4fi)2
– + · · ·

6
, (4.23)
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and accounting for R and μ evolution, 

After redefining gap, one can choose the R-Gap scheme to cancel the leading renormalon,

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain

µ
d

dµ
�a(µ, R) = ≠µ

d

dµ
”a(µ, R) © “

µ

�
[–s(µ)] , (4.14)

where from the perturbative expansion of ”a in Eq. (4.13), we can determine

“
µ

�
[–s(µ)] = ≠Re

“E �S [–s(µ)] , (4.15)

explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
�a(µ, R) = �a(µ�, R) + Re

“E
ŸS

2 ÷�(µ, µ�) , (4.16)
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
k

Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
k

Õ
≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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Final cross section is expanded order-by-order in 
bracketed term

one obtains the final soft function -> cross section:

All of these objects can be defined 
perturbatively!
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Why does this effect grow as one moves toward the fixed-order regime?
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Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}

and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.
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4.2 Gap parameter and renormalon subtraction

As advocated in [51], we use a soft function with a non-perturbative gap parameter �a,
as already displayed in Eq. (4.1). The gap parameter accounts for the minimum value of
·a for a hadronic spectrum (the distribution can go down to zero for massless partons, but
not for massive hadrons). In the tail region of the distributions, Eq. (4.1) then leads to a
shift of the perturbative cross section, Eq. (4.4), with

2�1

1 ≠ a
= 2�a +

⁄
dk k fmod(k) . (4.5)

Since the first moment is shifted linearly by �a, this parameter was rescaled in [34] from
its default definition in [51] via

�a = �
1 ≠ a

, (4.6)

where � ≥ �QCD is an a-independent parameter. Note that this determines that, with
Eq. (4.2) truncated at n = 0, the model function parameter ⁄ = 2(�1 ≠ �)/(1 ≠ a). Up to
this point, the barred quantities �1, �(a) are taken to be defined in a perturbative scheme
like MS in which SPT has been calculated. In [51] it was pointed out that such a definition
of the gap parameter �a has a renormalon ambiguity, shared by the perturbative soft
function SPT in Eq. (4.1). This is similar but not identical to the renormalon in the pole
mass for heavy quarks (see, e.g. [83]). To obtain stable predictions, it is necessary to cancel
the ambiguity from both SPT and �a in Eq. (4.1). This can be done by redefining the gap
parameter as

�a = �a(µ) + ”a(µ) , (4.7)

where ”a has a perturbative expansion with the same renormalon ambiguity as SPT (but
opposite sign). The remainder �a is then renormalon free, but its definition depends on
the scheme and the scale of the subtraction term ”a. We adopt here the prescription
chosen in [76] and also later implemented by [16, 18, 34], which is based on the position-
space subtraction for the heavy-quark pole-mass renormalon introduced in [84, 85]. We
will translate this notation to the Laplace-space soft function we have been using in this
paper—see Eq. (2.28). The two formulations are completely equivalent with ‹ ¡ ix.

The subtraction and its evolution equations are easier to formulate in Laplace space
than in momentum space. For the Laplace-space soft function6

ÂS(‹, µ) =
⁄ Œ

0

dk e
≠‹k

S(k, µ) , (4.8)

the convolution in Eq. (4.1) becomes

ÂS(‹, µ) =
Ë
e

≠2‹�a(µ) Âfmod(‹)
ÈË

e
≠2‹”a(µ) ÂSPT(‹, µ)

È
, (4.9)

where we have grouped the renormalon-free gap parameter �a with the shape function
Âfmod, and the perturbative subtraction term ”a with ÂSPT, rendering each group of terms

6We prefer to use a dimensionful Laplace variable in this section, which is related to the one introduced
in Sec. 2.3 by ‹ = ‹a/Q.

– 27 –

the domain of ·a considered. For angularities with a < 1, power corrections from the
collinear sector are suppressed with respect to those from the soft sector [23, 24]. The
non-perturbative e�ects can then be parameterized into a soft shape function fmod(k) that
is convolved with the perturbative distribution [38, 39, 51]:

S(k, µ) =
⁄

dk
Õ
SPT(k ≠ k

Õ
, µ) fmod(kÕ

≠ 2�a) , (4.1)

which ultimately leads to Eq. (1.4) for the cross section. Here SPT is the soft function
computed in perturbation theory, and �a is a gap parameter, which we will address in the
next subsection. The shape function fmod(k) is positive definite and normalized. We follow
previous approaches and expand the shape function in a complete set of orthonormal basis
functions [57]:

fmod(k) = 1
⁄

C Œÿ

n=0

bn fn

3
k

⁄

4D2

, (4.2)

where

fn(x) = 8

Û
2x3 (2n + 1)

3 e
≠2x

Pn

!
g(x)

"
, (4.3)

g(x) = 2
3

1
3 ≠ e

≠4x
1
3 + 12x + 24x

2 + 32x
3
22

≠ 1 ,

and Pn are Legendre polynomials. The normalization of the shape function implies that
the coe�cients bn satisfy

qŒ
n=0 b

2
n = 1. In practice, we only keep one term in the sum (4.2),

setting bn = 0 for n > 0 (cf. [16, 18, 81]). The parameter ⁄ is then constrained by the
first moment of the shape function as explained in the next subsection. More terms can in
principle be included in Eq. (4.2) if one wishes to study higher non-perturbative moments
beyond the first one.

This function, when convolved with the perturbative distribution from the previous
sections, reproduces the known shift in the tail region [43, 44, 82], which can be shown rig-
orously via an operator product expansion (OPE) [23] to be the dominant non-perturbative
e�ect,4

d‡

d·a

(·a) ≠æ
NP

d‡

d·a

1
·a ≠ c·a

�1

Q

2
. (4.4)

Here �1 is a universal non-perturbative parameter that is defined as a vacuum matrix
element of soft Wilson lines and a transverse energy-flow operator (for details, see [23]).
On the other hand, c·a

is an exactly calculable observable-dependent coe�cient which, for
the angularities, is given by c·a

= 2/(1 ≠ a) [23, 40, 41].5

4 In the peak region, the OPE does not apply and the full shape function fmod(k) is required to capture
the non-perturbative e�ects. Furthermore, the result in (4.4) is not only leading order in the OPE, it is
also subject to other corrections like finite hadron masses and perturbative renormalization e�ects on the
quantity �1, as described in [26].

5The expression for c·a diverges in the broadening limit a æ 1, where the SCETI factorization theo-
rem we use breaks down. A careful analysis revealed that the non-perturbative e�ects to the broadening
distributions are enhanced by a rapidity logarithm, cBT = ln Q/BT [24].
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Accuracy �cusp “F , “µ
�, “R — H, J̃, S̃, ”a

LL –s 1 –s 1

NLL –
2
s –s –

2
s 1

NNLL –
3
s –

2
s –

3
s –s

N3LL –
4
s –

3
s –

4
s –

2
s

Accuracy H, J̃, S̃, ”a

NLLÕ
–s

NNLLÕ
–

2
s

N3LLÕ
–

3
s

Matching r
n(·a)

+O(–s) –s

+O(–2
s) –

2
s

+O(–3
s) –

3
s

Table 6. Ingredients we include at various orders of unprimed NkLL (Left), primed NkLLÕ (Middle),
and matched (Right) accuracies, up to a given fixed order O(–n

s
). The tables apply to the inte-

grated distribution in Eq. (4.38) and the Laplace-transformed distribution, but not, for unprimed
accuracies, directly to the di�erential form in Eq. (2.1)—see [35] for details. We have included
a counting for the renormalon subtractions terms ”a in Eq. (4.12) and the µ- and R-evolution
anomalous dimensions “

µ

�, “R in Eqs. (4.15) and (4.18) as described in the text.

In practice we expand out the shape function terms to the order we work in –s,

e
≠2”a(µS ,R)

d

dk fmod(k ≠ 2�a(µS , R)) = f
(0)

mod
(k ≠ 2�a(µS , R)) + f

(1)

mod
(k ≠ 2�a(µS , R))

+ f
(2)

mod
(k ≠ 2�a(µS , R)) , (4.35)

where

f
(0)

mod
(k ≠ 2�a(µS , R)) = fmod(k ≠ 2�a(µS , R)) , (4.36a)

f
(1)

mod
(k ≠ 2�a(µS , R)) = ≠

–s(µS)
4fi

2”
1

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) , (4.36b)

f
(2)

mod
(k ≠ 2�a(µS , R)) =

1
–s(µS)

4fi

22Ë
≠2”

2

a(µS , R)Re
“E f

Õ
mod(k ≠ 2�a(µS , R)) (4.36c)

+ 2(”1

a(µS , R)Re
“E )2

f
ÕÕ
mod(k ≠ 2�a(µS , R))

È
,

with ”
1,2
a (µS , R) from Eq. (4.13). The order to which these terms are kept at each accuracy

are included in Table 6.

4.3 Final resummed, matched, and renormalon-subtracted cross section

We now collect all pieces described above, giving our final expressions for the resummed
cross section, matched to fixed-order and convolved with a renormalon-free shape function.

In evaluating the convolution in Eq. (4.34), we must truncate the product of the
fixed-order perturbative pieces contained in Eqs. (2.11) and (3.13) along with the non-
perturbative pieces in Eq. (4.35) to the appropriate order in –s for NkLL(

Õ
) accuracy.

Namely, starting with Eq. (2.11) for the integrated distribution, we expand the fixed-order
coe�cients in powers of –s:

‡c,PT(·a)
‡0

= ‡
LO

c (·a) + ‡
NLO

c (·a) + ‡
NNLO

c (·a) , (4.37)

– 32 –
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 R*:  a new scheme
Generalized renormalon cancellation schemes can be defined: [2012.12304]

�3a and �2
R with generic ⇠ and µSUB

JT

Draft Created: October 12, 2021

Last Updated: October 13, 2021

We want to have the three-loop expressions for the renormalon-subtraction ingredients for generic ⇠
and µSUB, the scale of the subtraction, for both n = 0 and n = 1 schemes. In Chris’ ‘General R Schemes’

pdf, we have the desired expressions up to O(↵2
s), and in his old ‘Theoryuncertainties’ note on nuisance

parameters, we have the O(↵3
s), n = 1 expressions for �3a and �2R, but not for generic schemes. This note

aims to fill that gap, and also provide a check on a number of those expressions.TO DO: double check

new formulae

1 Soft Function

The subtraction terms are defined by

�a(µ) =
R

2⇠

dn

d(ln v)n
ln S̃(v, µ)

��
v=⇠/R

(1)

where S̃ is given by

S̃ = 1 +
⇣↵s

4⇡

⌘
S̃1 +

⇣↵s

4⇡

⌘2
S̃2 +

⇣↵s

4⇡

⌘3
S̃3 + ... (2)

with

S̃1 = �0
s L

2 + c1s (3)

S̃2 =
1

2
(�0

s)
2 L4 +

2

3
�0
s�0 L

3 +
�
�1
s + c1s�

0
s

�
L2 +

�
�1s + 2c1s�0

�
L+ c2s

S̃3 =
1

6
(�0

s)
3 L6 +

2

3
(�0

s)
2�0 L

5 +

✓
�0
s�

1
s +

2

3
�0
s�

2
0 +

1

2
(�0

s)
2c1s

◆
L4 +

✓
2

3
�0
s�1 +

4

3
�1
s�0 + �0

s�
1
s +

8

3
�0
s�0c

1
s

◆
L3

+
�
�2
s + 2�1s�0 + c1s

�
�1
s + 4�2

0

�
+ �0

sc
2
s

�
L2 +

�
�2s + �1s c

1
s + 2c1s�1 + 4c2s�0

�
L+ c3s .

recalling that �0s = 0. This yields

ln S̃ '

⇣↵s

4⇡

⌘
S̄1 +

⇣↵s

4⇡

⌘2
S̄2 +

⇣↵s

4⇡

⌘3
S̄3 + ˙...

1

Another scheme
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δ*a (R) = 1
2 R*eγE

d
d ln ν [ln SPT(ν, μ = R*)]ν=1/(R*eγE)“R* scheme”

γ*R = eγE[ αs(R)
4π

⋅ 0 + (αS(R)
4π )

2
(γ1

S + 2c1
S̃β0) + "(α3

s )]
γΔ[αs(μ)] = 0

To the order we work:

R-evolution:

-evolution:μ

Nothing special about this scheme, just a way to test the impact of changing the effective shift in event shapes.

we are not forced to set  in the 
subtraction series, we can pick  

μ = μS
μ = R

Bachu, Hoang, 
Mateu, Pathak, 
Stewart 
[2012.12304]

δ*a (R) = ReγE

2 [ αs(R)
4π

⋅ 0 + (αS(R)
4π )

2
(γ1

S + 2c1
S̃β0) + "(α3

s )]

R* Scheme:   
(n, ξ, μ) = (1, exp(-%E), R*)

Anomalous dimensions, subtractions, turn on at one higher order:

Brief Article

The Author

November 19, 2021

�?a(R
?) =

R?e�E

2

"
↵s(R?)

4⇡
· 0 +

✓
↵s(R?)

4⇡

◆2 �
�1
S + 2c1

S̃
�0
�
+O(↵3

s)

#

�?
R = e�E

"
↵s(R?)

4⇡
· 0 +

✓
↵s(R?)

4⇡

◆2 �
�1
S + 2c1

S̃
�0
�
+O(↵3

s)

#

A

(�slope)
= ↵PT

s (mZ)� ↵s(mZ) (1)

�slope (2)

V corr.
ij ⌘

✓
�2
↵s

�↵s �A ⇢↵A

�↵s �A ⇢↵A �2
A

◆
(3)

V total
ij ⌘ V exp.

ij + V theory
ij (4)

↵s(mZ)
��
NNLL’

= 0.109 ± 0.007exp ± 0.007th

A
��
NNLL’

= 0.36 ± 0.37exp ± 0.19th (GeV)

↵s(mZ)
��
NLL’

= 0.108 ± 0.007exp ± 0.02th

A
��
NLL’

= 0.45 ± 0.34exp ± 0.60th (GeV)

1

���� ���� ���� ���� ���� ���� ���� ����
���

���

���

���

��	

���

���

�-��

��
��
��
���

Flattened shifts in tails
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Rmax = ∞ (Rgap)
Rmax = R(t1), μsub = R

constant shift

��� ��� ��� ��� ��� ���
���

���

��	

��


���

���

���

���

���
��
��
��
���

R vs R* profiles
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hard jet muNS R R*(Rmax
= R(t1))
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In our results, we let R* grow until we hit , where we finish transitioning from “shape 
function” region to “resummation region” in profile functions:

τa = t1(a)

Different Rmax values are probed in tandem with variation of the t1 profile parameter

Effective non-perturbative 
shift flattened, as desired.

Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax
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Preliminary Results
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 R(*)-Gap: impact on fits
Effect on thrust fits

27

green -> red : several other systematics, e.g. perturbative scale profiles, no b-mass or QED corrections (for 
us), slightly different data sets/bins, scale setting in bins…

[NNLL’+ ]!(α2
s )
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Fits at NNLL’ + O(!s2) accuracy:

Green -> Red:  multiple other systematics, including profile parameter choices (dominant effect), b-
mass and QED corrections (not included in Red/Blue), global data set, and even binning choices.

For example, the treatment of non-singular scale entering fixed-order matching differs:

Perturbative scale profiles

28

��� ��� ��� ��� ��� ���
�

��

��

��

	�

���

��

��

��

��

a = 0

μns =
μH default
(μH + μJ)/2 lo
(3μH − μJ)/2 hi

μns =
μJ default
(μJ + μS)/2 lo
μH hi

non-singular scale choices for green fit [AFHMS] and  red/blue fit [us]:

[i.e. effectively higher ]αs(μns)Green Red/Blue

However, note the difference in fit quality between Blue (R*) and Red/Green (R)…
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Summary and outlook

Our results are valid at NNLL’ + O(!s2) accuracy.  WIP:  N3LL’ + O(!s3) — very close to results.

We have also shown how Thrust fit values are sensitive to the profile parameters associated to 
scale setting.

We have presented preliminary results demonstrating the impact of non-perturbative physics 
on a global SCET extraction of the strong coupling from the Thrust e+e- event shape.

When the effective shift of the distribution, due to non-perturbative physics, grows less in the 
multi-jet window, the value of the strong coupling from Thrust approaches the PDG world 
average…

Analytic control over multi-jet power corrections would clearly be valuable (also see Luisoni et 
al. 2012.00622).

Thanks!

Other WIP:  analyzing a more varied and generic set of renormalon cancellation schemes.  Also 
looking at results from angularities.
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Convergence in R vs R* schemes
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Q = MZ, a = 0.25

Rgap scheme:
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Thrust at N3LL with Power Corrections and a Precision Global Fit for αs(mZ)

Riccardo Abbate,1 Michael Fickinger,2 André H. Hoang,3 Vicent Mateu,3 and Iain W. Stewart1
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2Department of Physics, University of Arizona, Tucson, AZ 85721

3Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6, 80805 München, Germany

We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = max
t̂

∑
i |t̂ · "pi|∑
i |"pi|

, (1)

where the sum i is over all final-state hadrons with mo-
menta "pi. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH # Q is set by the e+e− c.m. energy Q. The jet
scale, µJ # Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS # Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q & τ ! 1/3 , (2)

far-tail region: 1/3 ! τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ & 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS # ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ( ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition

hep-ph/1006.3080
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ations of the second soft function moment parameter
Ω2. Our default choice for the parametrization of the
soft function Smod

τ uses c0 = 1 and cn>0 = 0 with
∆̄(R∆, µ∆) = 0.05 GeV. In this case λ is the only vari-
able parameter of the soft model function Smod

τ , and Ω2

is predetermined by Eq. (57) with c2 = 0. As explained
in Sec. IV we modify Ω2 by setting c2 to nonzero val-
ues. It is instructive to discuss the Ω2 values one should
consider. From the Cauchy-Schwarz inequality one can
show that Ω2/Ω2

1 ≥ 1, giving a strict lower bound on
Ω2. This bound can only be reached if Smod

τ is a delta-
function. Moreover, if Smod

τ is positive definite, vanishing
at k = 0, has a width of order ΛQCD, has its maximum at
a k value of order ΛQCD, and has an exponential fall-off
for large k, then one finds Ω2/Ω2

1 < 1.5. We therefore
adopt the range 1 ≤ Ω2/Ω2

1 ≤ 1.5 as a conservative Ω2

variation to carry out an error estimate. For our default
parametrization we have Ω2/Ω2

1 = 1.18 and changing c2
between ±0.5 gives a variation of Ω2/Ω2

1 between 1.05
and 1.35. We find that the best fit values for αs and Ω1

are smooth linear functions of Ω2/Ω2
1 which allows for a

straightforward extrapolation to the conservative range
between 1.0 and 1.5. The results for the variations of the
best fit values for αs(mZ) and Ω1 for Ω2/Ω2

1 = 1.18+0.32
−0.18

read (δαs(mZ))Ω2 =+0.00017
−0.00013 and (δΩ1)Ω2 =+0.011

−0.015 and
are also shown in Fig. 16. The symmetrized version of
these errors are included in our final results. For our final
results for αs(mZ) we add the uncertainties from Ω1 and
the one from Ω2 quadratically giving the total hadroniza-
tion error. For Ω1(R∆, µ∆) we quote the error due to Ω2

separately.

Final Results

As our final result for αs(mZ) and Ω1(R∆, µ∆), obtained
at N3LL′ order in the R-gap scheme for Ω1, including
bottom quark mass and QED corrections we obtain

αs(mZ) = 0.1135 ± (0.0002)exp

± (0.0005)hadr ± (0.0009)pert,

Ω1(R∆, µ∆) = 0.323 ± (0.009)exp ± (0.013)Ω2

± (0.020)αs(mZ) ± (0.045)pert GeV, (68)

where R∆ = µ∆ = 2 GeV and we quote individual 1-
sigma errors for each parameter. Eq. (68) is the main
result of this work. In Fig. 15 (blue dashed line) and
Fig. 11a (thick dark red line) we have displayed the cor-
responding combined total (experimental+theoretical)
standard error ellipse. To obtain the combined ellipse we
take the theory uncertainties given in Tabs. IV and V to-
gether with the Ω2 uncertainties, adding them in quadra-
ture. The central values in Eq. (68) are determined by
the average of the respective maximal and minimal val-
ues of the theory scan, and are very close to the central
values obtained when running with our default theory
parameters. The fit has χ2/dof = 0.91 with a variation
of ±0.03 for the displayed scan points. Having added the

theory scan and Ω2 uncertainties reduces the correlation
coefficient in Eq. (65) to ρtotalαΩ = −0.212. As a compar-
ison we have also shown in Fig. 11b the combined total
(experimental+theoretical) error ellipse at N3LL′ in the
MS scheme for Ω̄1 where the O(ΛQCD) renormalon is not
subtracted.
Since our treatment of the correlation of the system-

atic experimental errors is based on the minimal over-
lap model, it is instructive to also examine the results
treating all the systematic experimental errors as uncor-
related. At N3LL′ order in the R-gap scheme the re-
sults that are analogous to Eqs. (68) read αs(mZ) =
0.1141 ± (0.0002)exp ± (0.0005)hadr ± (0.0010)pert and
Ω1(R∆, µ∆) = 0.303±(0.006)exp±(0.013)Ω2±(0.022)αs±
(0.055)pert GeV with a combined correlation coefficient of
ρtotalαΩ = −0.180. The results are compatible with the re-
sults of Eqs. (68) and indicate that the ignorance of the
exact correlation of the systematic experimental errors
does not crucially affect the outcome of the fit.

Data Set Choice

We now address the question to which extent the results
of Eqs. (68) depend on the thrust ranges contained in the
global data set used for the fits. Our default global data
set accounts for all experimental thrust bins for Q ≥ 35
in the intervals [τmin, τmax] = [6/Q, 0.33]. (See Sec. VI
for more details.) This default global data set is the
outcome of a compromise that (i) keeps the τ interval
large to increase statistics, (ii) sets τmin sufficiently large
such that the impact of the soft function moments Ωi

with i ≥ 2 is small and (iii) takes τmax sufficiently low
to exclude the far-tail region where the missing order
αsΛQCD/Q corrections potentially become important.
In Fig. 17 the best fits and the respective experimen-

tal 39% and 68% CL error ellipses for the default values
of the theory parameters given in Tab. III are shown for
global data sets based on different τ intervals. The re-
sults for the various τ intervals are each given in different
colors. The results for our default global data set is given
in red color, and the subscript “strict” for some intervals
means that bins are included in the data set if more than
half their range is contained within the interval. For in-
tervals without a subscript the criterion for selecting bins
close to the boundaries of the τ interval is less strict and
generically, if the τmin and τmax values fall in such bins,
these bins are included. The numbers in superscript for
each of the τ intervals given in the figure refers to the to-
tal number of bins contained in the global data set. We
observe that the main effect on the outcome of the fit
is related to the choice of τmin and to the total number
of bins. Interestingly all error ellipses have very similar
correlation and are lined up approximately along the line

Ω1

50.2GeV
= 0.1200− αs(mZ) . (69)

Lowering τmin increases the dependence on Ω2 and leads
to smaller αs and larger Ω1 values. On the other hand,
increasing τmin leads to a smaller data set and to larger
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André H. Hoang,1, 2 Daniel W. Kolodrubetz,3 Vicent Mateu,1 and Iain W. Stewart3

1University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Wien, Austria
2Erwin Schrödinger International Institute for Mathematical Physics,
University of Vienna, Boltzmanngasse 9, A-1090 Vienna, Austria

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

We present a global fit for ↵s(mZ), analyzing the available C-parameter data measured at
center-of-mass energies between Q = 35 and 207GeV. The experimental data is compared to a
N3LL0 + O(↵3

s) + ⌦1 theoretical prediction (up to the missing four-loop cusp anomalous dimen-
sion), which includes power corrections coming from a field theoretical nonperturbative soft func-
tion. The dominant hadronic parameter is its first moment ⌦1, which is defined in a scheme which
eliminates the O(⇤QCD) renormalon ambiguity. The resummation region plays a dominant role
in the C-parameter spectrum, and in this region a fit for ↵s(mZ) and ⌦1 is su�cient. We find
↵s(mZ) = 0.1123 ± 0.0015 and ⌦1 = 0.421 ± 0.063GeV with �2/dof = 0.988 for 404 bins of data.
These results agree with the prediction of universality for ⌦1 between thrust and C-parameter within
1-�.

I. INTRODUCTION

In order to study Quantum Chromodynamics (QCD)
accurately in the high-energy regime, it is useful to ex-
ploit the wealth of data from previous e

+
e
� colliders

such as LEP. Here the final states coming from the under-
lying partons created in the collisions appear as boosted
and collimated groups of hadrons known as jets. Event
shapes have proven to be very successful to study these
collisions quantitatively. They combine the energy and
momenta of all of the measured hadrons into an infrared-
and collinear-safe parameter which describes the geomet-
ric properties of the whole event by a single variable dis-
tribution. Due to their global nature event shapes have
nice theoretical properties, making it possible to obtain
very accurate theoretical predictions using QCD. Most
e
+
e
� event shape variables quantify how well the event

resembles the situation of two narrow back-to-back jets,
called dijets, by vanishing in this limit. Because the dijet
limit involves restrictions that only allow collinear and
soft degrees of freedom for the final-state radiation, such
QCD predictions involve a number of theoretical aspects
that go beyond the calculation of higher-order pertur-
bative loop corrections. These include factorization, to
systematically account for perturbative and nonpertur-
bative contributions, and the resummation of large log-
arithmic corrections by renormalization group evolution.
Comparisons of predictions for event shapes with experi-
mental data thus provide non-trivial tests of the dynam-
ics of QCD.

Due to the high sensitivity of event shapes to jets
induced by gluon radiation they are an excellent tool
to measure the strong coupling ↵s. For more inclusive
hadronic cross sections (like e

+
e
�

! hadrons) the ↵s

dependence is subleading because it only occurs in cor-
rections to a leading order term, while for event shapes
the ↵s dependence is a leading-order e↵ect. For this rea-
son, the study of event shapes for determining ↵s has
a long history in the literature (see the review [1] and
the workshop proceedings [2]), including recent analyses

which include higher-order resummation and corrections
up to O(↵3

s
) [3–12].

Several previous high-precision studies which deter-
mine ↵s(mZ) [4, 5, 9–11] focus on the event shape called
thrust [13],

⌧ = 1� T = min
~n

 
1�

P
i
|~n · ~pi|P
j
|~pj |

!
, (1)

where ~n is called the thrust axis and it follows from the
above equation that 0  ⌧  1/2. Another event shape,
known as C-parameter [14, 15], can be written as:

C =
3

2

P
i,j

|~pi||~pj | sin
2
✓ij

(
P

i
|~pi|)

2 , (2)

where ✓ij gives the angle between particles i and j. It
is straightforward to show that 0  C  1. In a pre-
vious paper [12] we computed the C-parameter distribu-
tion with a resummation of large logarithms at N3LL0

accuracy, including fixed-order terms up to O(↵3
s
) and

hadronization e↵ects using a field-theoretic nonperturba-
tive soft function. These results were achieved by using
the Soft Collinear E↵ective Theory (SCET) [16–20]. Our
results for C are valid in all three of the peak, tail, and
far-tail regions of the distribution, and are the most ac-
curate predictions available in the literature, having a
perturbative uncertainty of ' 3% at Q = mZ for the re-
gion relevant for ↵s(mZ) and ⌦1 fits. The same accuracy
was previously achieved for thrust, where the remaining
perturbative uncertainty in the ⌧ distribution is ' 2% in
this region [9]. In this paper we make use of these new
C-parameter theoretical results [12] to carry out a global
fit to all available data, comparing the results with the
analogous global fit for thrust [9] where appropriate.
Since both ⌧ and C vanish in the dijet limit, it is worth-

while to contrast them in order to anticipate di↵erences
that will appear in the analysis. Di↵erences between C

and ⌧ include the following:
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FIG. 9. Global fit results for di↵erent choices of
dataset, using our best theory setup at N3LL0 with
power corrections in the Rgap scheme. Consider-
ing the central values from left to right, the datasets
read [Cmin, Cmax ]# of bins: [ 29/Q, 0.7 ]371, [ 22/Q, 0.75 ]453,
[ 23/Q, 0.7 ]417, [ 0.24, 0.75 ]403, [ 24/Q, 0.7 ]409, [ 25/Q, 0.7 ]404
(default), [ 25/Q, 0.6 ]322, [ 25/Q, 0.75 ]430, [ 27/Q, 0.7 ]386,
[ 25/Q, 0.65 ]349, [ 22/Q, 0.7 ]427. We accept bins which are
at least 50% inside these fit regions. The ellipses correspond
to total 1-� uncertainties (experimental + theory) for two
variables (↵s and ⌦1), which are suitable for a direct compar-
ison of the outcome of two-parameter fits. The center of the
ellipses are also shown.

correlation and are lined up approximately along the line

⌦1

41.26GeV
= 0.1221� ↵s(mZ) . (33)

As expected, the results of our fits depend only weakly on
the C range and the size of the global datasets, as shown
in Fig. 9. The size and tilt of the total uncertainty el-
lipses is very similar for all datasets (with the exception of
[ 22/Q, 0.7 ], which clearly includes too much peak data).
Since the centers and the sizes of the uncertainty ellipses
are fully statistically compatible at the 1-� level, this
indicates that our theory uncertainty estimate at N3LL0

really reflects the accuracy at which we are capable of de-
scribing the di↵erent regions of the spectrum. Therefore
a possible additional uncertainty that one could consider
due to the arbitrariness of the dataset choice is actually
already represented in our final uncertainty estimates.

G. Final Results

As our final result for ↵s(mZ) and ⌦1, obtained at
N3LL0 order in the Rgap scheme for ⌦1(R�, µ�), we get

↵s(mZ) = 0.1123 ± 0.0002exp (34)

FIG. 10. C-parameter distribution at N3LL0 order for Q =
mZ showing the fit result for the values for ↵s(mZ) and ⌦1.
The blue band corresponds to the theory uncertainty as de-
scribed in Sec. VB. Experimental data is also shown.

± 0.0007hadr ± 0.0014pert,

⌦1(R�, µ�) = 0.421 ± 0.007exp

± 0.019↵s(mZ) ± 0.060pert GeV,

where R� = µ� = 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �

2
/dof = 0.99.

Equation (34) is the main result of this work.

Equation (34) accounts for the e↵ect of hadron mass
running through an additional (essentially negligible) un-
certainty. Also, it neglects QED and finite bottom-mass
corrections, which were found to be small e↵ects in the
corresponding thrust analysis in Ref. [9].

Given that we treat the correlation of the system-
atic experimental uncertainties in the minimal overlap
model, it is useful to examine the results obtained when
assuming that all systematic experimental uncertain-
ties are uncorrelated. At N3LL0 order in the Rgap
scheme the results that are analogous to Eq. (34) read
↵s(mZ) = 0.1123±0.0002exp±0.0007hadr±0.0012pert and
⌦1(R�, µ�) = 0.412 ± 0.007exp±0.022↵s

±0.061pert GeV
with a combined correlation coe�cient of ⇢

total
↵⌦ =

� 0.091. The results are compatible with Eq. (34), in-
dicating that the ignorance of the precise correlation of
the systematic experimental uncertainties barely a↵ects
the outcome of the fit.

In Fig. 10 we show the theoretical fit for the
C-parameter distribution in the tail region, at a center-
of-mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.
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lipses is very similar for all datasets (with the exception of
[ 22/Q, 0.7 ], which clearly includes too much peak data).
Since the centers and the sizes of the uncertainty ellipses
are fully statistically compatible at the 1-� level, this
indicates that our theory uncertainty estimate at N3LL0

really reflects the accuracy at which we are capable of de-
scribing the di↵erent regions of the spectrum. Therefore
a possible additional uncertainty that one could consider
due to the arbitrariness of the dataset choice is actually
already represented in our final uncertainty estimates.

G. Final Results

As our final result for ↵s(mZ) and ⌦1, obtained at
N3LL0 order in the Rgap scheme for ⌦1(R�, µ�), we get

↵s(mZ) = 0.1123 ± 0.0002exp (34)

FIG. 10. C-parameter distribution at N3LL0 order for Q =
mZ showing the fit result for the values for ↵s(mZ) and ⌦1.
The blue band corresponds to the theory uncertainty as de-
scribed in Sec. VB. Experimental data is also shown.

± 0.0007hadr ± 0.0014pert,

⌦1(R�, µ�) = 0.421 ± 0.007exp

± 0.019↵s(mZ) ± 0.060pert GeV,

where R� = µ� = 2 GeV and we quote individual 1-�
uncertainties for each parameter. Here �

2
/dof = 0.99.

Equation (34) is the main result of this work.

Equation (34) accounts for the e↵ect of hadron mass
running through an additional (essentially negligible) un-
certainty. Also, it neglects QED and finite bottom-mass
corrections, which were found to be small e↵ects in the
corresponding thrust analysis in Ref. [9].

Given that we treat the correlation of the system-
atic experimental uncertainties in the minimal overlap
model, it is useful to examine the results obtained when
assuming that all systematic experimental uncertain-
ties are uncorrelated. At N3LL0 order in the Rgap
scheme the results that are analogous to Eq. (34) read
↵s(mZ) = 0.1123±0.0002exp±0.0007hadr±0.0012pert and
⌦1(R�, µ�) = 0.412 ± 0.007exp±0.022↵s

±0.061pert GeV
with a combined correlation coe�cient of ⇢

total
↵⌦ =

� 0.091. The results are compatible with Eq. (34), in-
dicating that the ignorance of the precise correlation of
the systematic experimental uncertainties barely a↵ects
the outcome of the fit.

In Fig. 10 we show the theoretical fit for the
C-parameter distribution in the tail region, at a center-
of-mass energy corresponding to the Z-pole. We use the
best-fit values given in Eq. (34). The band corresponds to
the perturbative uncertainty as determined by the scan.
The fit result is shown in comparison with experimental
data from DELPHI, ALEPH, OPAL, L3 and SLD. Good
agreement is observed for this spectrum, as well as for
spectra at other center of mass values.
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Data sets

24

------ Summary ------
Totlal: 516
Q > 95 : 345
Q < 88 : 89
Q ~ MZ : 82

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV (7)
ALEPH-2004: 172. GeV (7)
ALEPH-2004: 183. GeV (7)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
ALEPH-2004: 206. GeV (8)
ALEPH-2004: 91.2 GeV (26)
AMY-1990: 55.2 GeV (5)
DELPHI-1999: 133. GeV (7)
DELPHI-1999: 161. GeV (7)
DELPHI-1999: 172. GeV (7)
DELPHI-1999: 89.5 GeV (11)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
DELPHI-2003: 183. GeV (14)
DELPHI-2003: 189. GeV (15)
DELPHI-2003: 192. GeV (15)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV (15)
DELPHI-2003: 202. GeV (15)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
DELPHI-2003: 45. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
JADE-1998: 35. GeV (5)
JADE-1998: 44. GeV (7)
L3-2004: 130.1 GeV (11)
L3-2004: 136.1 GeV (10)
L3-2004: 161.3 GeV (12)
L3-2004: 172.3 GeV (12)
L3-2004: 182.8 GeV (12)
L3-2004: 188.6 GeV (12)
L3-2004: 194.4 GeV (12)
L3-2004: 200. GeV (11)
L3-2004: 206.2 GeV (12)
L3-2004: 41.4 GeV (5)
L3-2004: 55.3 GeV (6)
L3-2004: 65.4 GeV (7)
L3-2004: 75.7 GeV (7)
L3-2004: 82.3 GeV (8)
L3-2004: 85.1 GeV (8)
L3-2004: 91.2 GeV (10)
OPAL-1997: 161. GeV (7)
OPAL-2000: 172. GeV (8)
OPAL-2000: 183. GeV (8)
OPAL-2000: 189. GeV (8)
OPAL-2005: 133. GeV (6)
OPAL-2005: 177. GeV (8)
OPAL-2005: 197. GeV (8)
OPAL-2005: 91. GeV (5)
SLD-1995: 91.2 GeV (6)
TASSO-1998: 35. GeV (4)
TASSO-1998: 44. GeV (5)

For thrust: For angularities:

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

e.g. a = -1 and 0.5, Q = 91.2 GeV, compared to our NNLL’ prediction:
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Profiling a fit window
How can we identify a region sensitive to A and !s, and for which our best theory curves are 
reliable?  Look to the profiles!

A default fit window will be between t1’ and t2, which roughly tracks the tail (former) and far-tail 
(latter) of the distribution.**

hep-ph/1808.07867

Tracks the peak

Reverts to fixed-order 
perturbation theory

Turns off resummation

Transitions between NP and 
PT physics

ensures that the scales µH,J,S meet at ·a = ·
sph
a . We actually want the scales to merge a

bit before ·
sph
a , so that there is a non-vanishing region where the predicted distributions

are purely fixed order.
We have designed a set of profile functions (see, e.g. [18, 56, 87, 88]) that fulfill all of

the criteria discussed above while smoothly interpolating between the various regions. The
precise form of our profiles depends on a running scale defined by

µrun(·a) =

Y
__________]

__________[

µ0 ·a Æ t0

’

1
·a; {t0, µ0, 0}, {t1, 0,

r

·
sph
a

µH}

2
t0 Æ ·a Æ t1

r

·
sph
a

µH·a t1 Æ ·a Æ t2

’

1
·a; {t2, 0,

r

·
sph
a

µH}, {t3, µH , 0}

2
t2 Æ ·a Æ t3

µH ·a Ø t3

. (5.4)

The function ’ ensures that µrun and its first derivative are smooth. Specifically, we adopt
the functional form from [16], which connects a straight line in the region ·a < t0 with
slope r0 and intercept y0 with another straight line in the region ·a > t1 with slope r1 and
intercept y1 via

’ (·a; {t0, y0, r0}, {t1, y1, r1}) =

Y
]

[
a + r0(·a ≠ t0) + c(·a ≠ t0)2

·a Æ
t0+t1

2

A + r1(·a ≠ t1) + C(·a ≠ t1)2
·a Ø

t0+t1
2

, (5.5)

where the coe�cients of the polynomials are determined by continuity of the function and
its first derivative:

a = y0 + r0t0 , A = y1 + r1t1 , (5.6)

c = 2 A ≠ a

(t0 ≠ t1)2
+ 3r0 + r1

2(t0 ≠ t1) , C = 2 a ≠ A

(t0 ≠ t1)2
+ 3r1 + r0

2(t1 ≠ t0) .

The parameters ti control the transitions between the non-perturbative, resummation, and
fixed-order regions of the distributions, and can be varied as well as part of the estimation
of the theoretical uncertainties. We will set these parameters to

t0 = n0

Q
3a

, t2 = n2 ◊ 0.2951≠0.637 a
, (5.7)

t1 = n1

Q
3a

, t3 = n3 ·
sph

a ,

with coe�cients ni that we can adjust. The design of profile functions is somewhat of an art.
The chosen a-dependence of t0,1,2 in Eq. (5.7) is based on some empirical observations about
the theory distributions ultimately predicted. The first two, t0,1, control the transition
between the non-perturbative and resummation regions, and we have chosen them to track
the location of the peak of the di�erential ·a distributions. Very roughly, this location
scales like 3a. The parameter t2 was determined as a numerical approximation to the
point where singular and nonsingular contributions become equal in magnitude, since the
resummation should be turned o� once the latter become as sizable as the former. The
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ensures that the scales µH,J,S meet at ·a = ·
sph
a . We actually want the scales to merge a

bit before ·
sph
a , so that there is a non-vanishing region where the predicted distributions

are purely fixed order.
We have designed a set of profile functions (see, e.g. [18, 56, 87, 88]) that fulfill all of

the criteria discussed above while smoothly interpolating between the various regions. The
precise form of our profiles depends on a running scale defined by
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The function ’ ensures that µrun and its first derivative are smooth. Specifically, we adopt
the functional form from [16], which connects a straight line in the region ·a < t0 with
slope r0 and intercept y0 with another straight line in the region ·a > t1 with slope r1 and
intercept y1 via
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where the coe�cients of the polynomials are determined by continuity of the function and
its first derivative:

a = y0 + r0t0 , A = y1 + r1t1 , (5.6)
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The parameters ti control the transitions between the non-perturbative, resummation, and
fixed-order regions of the distributions, and can be varied as well as part of the estimation
of the theoretical uncertainties. We will set these parameters to
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Q
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, t2 = n2 ◊ 0.2951≠0.637 a
, (5.7)
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with coe�cients ni that we can adjust. The design of profile functions is somewhat of an art.
The chosen a-dependence of t0,1,2 in Eq. (5.7) is based on some empirical observations about
the theory distributions ultimately predicted. The first two, t0,1, control the transition
between the non-perturbative and resummation regions, and we have chosen them to track
the location of the peak of the di�erential ·a distributions. Very roughly, this location
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point where singular and nonsingular contributions become equal in magnitude, since the
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In the tail region, where the resummation is critical, we want to evaluate the distributions
near these scales. However, we ultimately predict the distributions over a domain of ·a

that can be roughly broken into three regions where the comparative scalings di�er (see,
e.g. [18]):

• Peak Region: µH ∫ µJ ∫ µS ≥ �QCD ,

• Tail Region: µH ∫ µJ ∫ µS ∫ �QCD ,

• Far-tail Region: µH = µJ = µS ∫ �QCD .

In the peak region the soft scale is non-perturbative, and it is here that the full model
shape function described in Sec. 4 becomes necessary for making reliable predictions. In
this region we will adjust the scales to plateau at a constant value just above �QCD. On
the other hand, the scales are well separated in the tail region where the resummation
is most important. We want to minimize the logarithms in the resummed distributions,
and hence the scalings are close to the natural values in Eq. (5.1). Finally, our predictions
should match onto fixed-order perturbation theory in the far-tail region. The resummations
should therefore be switched o�, and the scales should merge at µH,J,S ≥ Q.

Getting the scales to merge near µH,J,S ≥ Q in the far-tail region will require µJ,S to
rise faster with ·a than the natural scales in Eq. (5.1), since the physical maximum value
of ·a is less than 1. We will achieve this below by defining a smooth function to transition
between the resummation and fixed-order regions. But the transition can be made less
sudden by increasing the rate of change of µJ,S even in the resummation region. Such an
increased slope was used for the C-parameter and thrust distributions in [16]. For thrust,
i.e. a = 0, the authors used the central values

µS = rsµH·0 , µJ = (µHµS)1/2
, (5.2)

with rs = 2 in the resummation region. We will follow this strategy here and give a physical
interpretation to the slope parameter rs. The maximal value for thrust is ·0 = 1/2, which
is achieved for a perfectly spherically symmetric distribution of particles in the final state.
The slope rs = 2 thus ensures that µJ,S merge with µH at this maximum value ·

sph

0
,

instead of at ·a = 1 as the natural scales Eq. (5.1) do. For arbitrary a, the angularity of
the spherically symmetric configuration is
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which ranges from ·
sph

≠1
¥ 0.356 to ·

sph

1/2
¥ 0.616 for the values of a we consider in this work.

These may be compared to the maximum values of a three- and four-particle configuration
in Fig. 20 in App. D. We will then choose a default slope rs = 1/·

sph
a in Eq. (5.2) that
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Profiles trace scale hierarchies through different 
regimes of a given distribution:
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Figure 10. Profile functions implemented in our resummation, shown for a = {≠1.0, ≠0.5, 0.0, 0.5}

and Q = mZ . Left: Band method. Right: Scan method. Each set of profiles µH,J,S actually has a
di�erent absolute vertical scale set by µH = eHQ, which has been rescaled for this illustration to
eH = 1. Also, for each individual set of scales, it is the case that µS < µJ , although the overall
bands from the scan overlap.
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R-Gap scheme removes unphysical effects in cross-section predictions and gives good qualitative 
agreement with data:
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).
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How non-perturbative effects are implemented (clearly) affects the extraction of the strong 
coupling!

 R-Gap phenomenologyRgap scheme

Choosing the Rgap scheme to cancel the leading renormalon,

in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:

Re
“E

d

d ln ‹

Ë
ln ‚SPT(‹, µ)

È

‹=1/(Re
“E )

= 0 , (4.10)

where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as

”a(µ, R) = 1
2Re

“E
d

d ln ‹

Ë
ln ÂSPT(‹, µ)

È

‹=1/(Re
“E )

, (4.11)

and we see that ”a (and thus �a) depends on two perturbative scales, µ and R. Expanding
the subtraction terms as

”a(µ, R) = Re
“E

5
–s(µ)

4fi
”

1

a(µ, R) +
1

–s(µ)
4fi

22

”
2

a(µ, R) + · · ·

6
, (4.12)

we obtain, for the MS Laplace-space soft function ÂSPT, using its expansion in Eq. (2.28),

”
1

a(µ, R) = �0

S ln µ

R
, (4.13a)

”
2

a(µ, R) = �0

S—0 ln2
µ

R
+ �1

S ln µ

R
+ “

1

S
(a)
2 + c

1

S̃
(a)—0 , (4.13b)

where from Eq. (2.29), �n

S
= ≠2�n/(1 ≠ a), and “

1

S
and c

1

S̃
are given by Eq. (2.32) and

Eq. (2.36).
Eq. (4.13) exhibits logarithms of µ/R that appear in the subtraction term ”a and thus

the renormalon-free gap parameter �a. Since µ = µS will be chosen in the next section to
be a function of ·a, which varies over a large range between µ0 ≥ 1 GeV and Q, a fixed
value of R can only minimize these logarithms in one region of ·a, but not everywhere.
We therefore need to allow R to vary as well to track µS , and so we need to know the
evolution of �a in both µ and R. The µ-RGE is simple to derive. Since �a in Eq. (4.7) is
µ-independent, we obtain
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where from the perturbative expansion of ”a in Eq. (4.13), we can determine
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explicitly to O(–2
s), and which can be shown to hold to all orders [76]. The solution of this

RGE is given by
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in brackets renormalon free. There are a number of schemes one can choose to define ”a

that achieve cancellation of the leading renormalon. A particularly convenient one found
in [76, 84, 85] is a condition that fixes the derivative of the soft function at some value of
‹ to have an unambiguous value:
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where ‚SPT(‹, µ) = e
≠2‹”a(µ) ÂSPT(‹, µ), which is su�cient to render ‚SPT, and thus �a, to be

renormalon-free. This is known as the “Rgap” scheme, and its condition determines ”a as a
function of a new, arbitrary subtraction scale R, which should be taken to be perturbative,
but small enough to describe the characteristic fluctuations in the soft function. Explicitly,
Eq. (4.10) defines the subtraction term as
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the second line of Eq. (4.29)), and at NNLL(Õ) we keep “
µ

�
, “R to O(–2

s) (i.e up to the last
line). These rules are summarized with all other truncation rules in Table 6 below. Note
that this means that ÷� is actually kept to one order of accuracy lower than indicated by
Eq. (2.18). This is because the µ-evolution of �a in Eq. (4.16) is not multiplied by an
extra logarithm as for the hard, jet, and soft functions in the full factorized cross section.7

Transforming the renormalon-free soft function in Eq. (4.9) back to momentum space,
we obtain the shifted version of Eq. (4.1),

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
≠ 2”a(µ, R), µ

"
fmod

!
k

Õ
≠ 2�a(µ, R)

"
. (4.30)

Then the parameter �1 in Eq. (4.5), describing the non-perturbative shift of the perturba-
tive cross section induced by the shape function, turns into a renormalon-free shift:

2�1(µ, R)
1 ≠ a

= 2�a(µ, R) +
⁄

dk k fmod(k) , (4.31)

We will take the input gap parameter at a reference scale R� = 1.5 GeV to be �(R�, R�) =
0.1 GeV in our phenomenological analysis below. The exact value of this parameter is not
particularly relevant to the tail region in which we focus our comparisons to data [18].

The shift in the perturbative part of Eq. (4.30) can also be expressed in terms of a
di�erential translation operator that acts on the perturbative soft function SPT:

S(k, µ) =
⁄

dk
Õ
Ë
e

≠2”a(µ,R)
d

dk SPT

!
k ≠ k

Õ
, µ

"È
fmod

!
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Õ
≠ 2�a(µ, R)

"
, (4.32)

which, after integrating by parts, gives

S(k, µ) =
⁄

dk
Õ
SPT

!
k ≠ k

Õ
, µ

" Ë
e

≠2”a(µ,R)
d

dkÕ fmod

!
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≠ 2�a(µ, R)

"È
. (4.33)

In the final cross section, the renormalon-subtracted shape function then enters as a con-
volution against the perturbative distribution,

1
‡0

‡(·a) =
⁄

dk ‡PT

1
·a ≠

k

Q

2Ë
e

≠2”a(µS ,R)
d

dk fmod

!
k ≠ 2�a(µS , R)

"È
, (4.34)

which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
order at NkLL accuracy than in that paper. But the counting for the logarithms is di�erent in the two
cases, since the logarithms appear as single logarithms for quark masses, but as double logarithms for event
shapes; so the terms we call NkLL correspond to terms that are called Nk≠1LL in [85]. Also, our truncation
scheme seems to di�er from the one applied for the gap parameter in [16, 18], as described in Eq. (A31) of
[18] or Eq. (56) of [16]. However, it is consistent with the corresponding tables in these papers and with
the actual numerical implementations used by these authors in their results [86].
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which is the expression we anticipated in Eq. (1.4). This implies we convolve both the
singular and nonsingular parts of the cross section Eq. (1.6) with the same, renormalon-
subtracted shape function. In doing this we follow [18] and ensure a smooth transition from
the resummation to fixed-order regime even after non-perturbative e�ects are included.

7In comparing to the R-evolution for quark masses in [85], it may also appear that we keep one fewer
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Gapped and renormalon free soft function

Final cross section is expanded order-
by-order in bracketed term

Figure 9. Predictions for the central values of the integrated cross sections at NNLLÕ accuracy in
the low ·a domain, shown here for seven values of the angularity parameter a. Left: Predictions
from the purely perturbative cross section. Right: Predictions after renormalon subtraction as
implemented in Eq. (4.41).

kernels contained in each expression are to be evaluated to the appropriate resummed
logarithmic accuracy as described in Sec. 2.

Eqs. (4.40) and (4.41) represent our final expression for the renormalon-free resummed
and matched cross section that is convolved with a non-perturbative shape function. We
should point out that we will perform the convolution in k prior to choosing particular
values for the scales µH,J,S,ns and R. We have clearly exhibited the dependence on these
scales versus the explicit dependence on ·a appearing in Eqs. (4.38) and (4.39). In the
next section we will describe how we choose these scales, but for now it su�ces to say
that they are functions of the measured ·a in the cross section, and not functions of the
convolution variable ·a ≠ k/Q. Thus the ·a dependence inside the scales µH,J,S,ns and R

are not convolved over in Eq. (4.41). In our numerical code, the convolution between the
explicit ·a ≠ k/Q dependence from Eqs. (4.38) and (4.39) and the k dependence in fmod is
then computed for a given set of scales µi(·a), R(·a).

Fig. 9 illustrates the practical e�ect of implementing the renormalon subtraction and
the convolution with the non-perturbative shape function as described above. We present
the central theory curves at NNLLÕ accuracy for the cumulant cross sections at seven values
of the parameter a, all in the low-·a domain. The curves in the left panel reflect the purely
perturbative calculation, which exhibit unphysical (negative) values for the cross section.
The curves in the right panel, on the other hand, represent the calculation performed with
Eq. (4.41). It is clear that the renormalon cancellation is successful and no unphysical
behavior is observed.

5 Scale choices

5.1 Profile functions

From the arguments of the logarithms in the fixed-order hard, jet, and soft functions
appearing in Eq. (2.11), one can identify the natural scales at which these logarithms are
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Improves small  behavior and perturbative convergence:τa
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Strong coupling extractions
• Many groups have utilized high-precision event-shape results to extract a value for !s.  

Recently, N3LL resummations for multiple observables have been achieved.  

What can break the !s - ��degeneracy?  

!s

• However, the value of !s is highly correlated to non-perturbative physics.

A. Hoang, 2015 workshop 
on precision !s extractions

Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Strong Coupling Determination 

C-parameter versus Thrust Tail Global Fit  

Very good agreement at N3LL + O(αs
3) with renormalon subtraction. 

2016 world 
average: 

.1181 +- .0013 

Workshop on High Precision Alpha_s Measurements, Oct 12 - 13, 2015 

Size of Non-Perturbartive Effects 

Monte-Carlo estimate vs. fits of non-perturbative powercorrection: 

• Simultaneous fit of power corrections and 
the strong coupling. 

• Sizeable power correction and strong 
coupling smaller than world average. 

• Power corrections taken from difference 
MCparton level - MChadron level 

•   Small power correction and strong 
generically larger than world average. 

• Problem: MCparton level  is only LO/LL 
description:                                     
MCparton level - MChadron level is LO/LL ! 

• Should not be used in event shape 
averages. 

�

Although we cannot compute these nonperturbative matrix elements at the scale µc ∼ Qλ4,
we can estimate their dependence on λ from dimensional analysis. Matrix elements of powers
of the operator ET (η) in collinear states in SCETII should vary as corresponding powers of
Qλ2. Similarly, each rapidity integral should behave as λ2(1−a). Combined with the factor
1/Q in front of the rapidity integral, power corrections to the collinear jet function occur
as powers of λ4−2a/τa = (1/τa)(ΛQCD/Q)2−a. Correspondingly, in Laplace moment space,
this becomes a power series in ν(ΛQCD/Q)2−a. The latter is also the only argument for the
jet function that serves as a boundary condition in the perturbative QCD resummation of
Ref. [15].5 As long as a < 1, we may consider these to be subleading compared to the power
corrections of the soft function, which are powers of ΛQCD/Q. For a ! 1, we must take them
into account, along with the recoil corrections mentioned above [16, 17, 41].

From now on, we consider only observables that pick out jets with typical transverse
momenta well above the nonperturbative scale. In the language of SCET, this allows us to
work in the theory SCETI and consider power corrections only from the soft function.

VI. MOMENTUM FLOW OPERATORS, UNIVERSALITY AND SCALING

A. Nonperturbative Universality from Perturbative QCD

A striking prediction from the analysis of event shapes in perturbation theory, including
those given in Eq. (3), is the universality of power corrections to their mean values [5, 6, 7,
9, 15, 16, 17, 21, 42, 43, 44],

〈e〉 = 〈e〉PT + ce

A

Q
. (51)

In this expression, A a universal parameter and ce is a calculable coefficient that depends on
the observable, as we shall see below. The same reasoning that leads to (51), when applied to
the event shape distributions, produces a shift in the resummed perturbative cross section,

dσ

de
(e)

∣

∣

∣

∣

PT

−→
NP

dσ

de

(

e − ce

A

Q

)
∣

∣

∣

∣

PT

. (52)

These relations were derived in Refs. [6, 7, 42] from the assumption of a “dispersive” repre-
sentation for αs(µ2) considered as an analytic function of the scale µ, and in Refs. [5] they
were abstracted directly from the form of resummed perturbation theory.

A more general approach [9, 16, 17] replaces the shift of Eq. (52) by a convolution with
a shape function defined as above, which reduces to a product in Laplace moment space,
Eq. (10). As we have noted, these shape functions are all different, but for the angularities
a generalization of the universality of Eq. (51) has been suggested, in the form of a scaling
relation. The Laplace-transformed shape function for angularity distributions arising from
resummed perturbation theory at next-to-leading logarithm (NLL) [16, 17] displays a simple
scaling with the parameter a:

ln Sa(ν) =
1

1 − a

∞
∑

n=1

λn

(

−
ν

Q

)n

, (53)

5 See, for example, Eqs. (67) and (74) of [15].
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A naive way to limit the shift…Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
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Limiting the growth of the shift

18

Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some :τ = τmax

γR → θ(Rmax − R)γR R = R(τ)

d
dR

δa(R, R) = γR[αs(R)]θ(Rmax − R)need:

δa(R, R) = ReγE[ αs(R)
4π

δ1
a(R, R) + (αs(R)

4π )
2
δ2

a(R, R) + ⋯]recall:

to the order we need,  
just change R to:

R* ≡ {R R < Rmax
Rmax R ≥ Rmax

however this can reintroduce large logs of  …μS /Rmax

Potentially large logs of μ/R ! (bad)Turns off the R-scale at a given (fixed) Rmax (good)

Obvious solution is to simply limit the growth of the renormalon scale:

Simple solution is to simply set a max value for the R scale:
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 Angularities: from # to b
Consider Angularities, which can be defined in terms of the of the rapidity and pT of a final state 
particle ‘i’, with respect to the thrust axis:

a = 1 <-> `Jet Broadening’
a = 0 <-> `Thrust’

IR safe for a ∈ {-∞, 2}!

Figure 1. Angularity distributions at NNLLÕ + O(–2
s
) accuracy, convolved with a renormalon-free

non-perturbative shape function, whose calculation is the subject of this paper. We display the
predictions for three values of a (for now without uncertainties), illustrating roughly where two-jet
and three-or-more-jet events lie in each ·a spectrum. For this illustration, the boundary is drawn
at the value of ·a for a four-particle state that is grouped into pairs of jets with opening angle 30¶.
As a becomes larger (smaller), the peak region is more (less) dominated by purely two-jet events.

In the present work we analyze a class of event shapes known as angularities, which
are defined as [29]

·a = 1
Q

ÿ

i

|p
i

‹| e
≠|÷i|(1≠a)

, (1.1)

where Q is the center-of-mass energy of the collision and the sum runs over all final-state
particles i with rapidity ÷i and transverse momentum p

i

‹ with respect to the thrust axis.
The angularities depend on a continuous parameter a, and they include thrust (a = 0)
and total jet broadening (a = 1) as special cases. Whereas infrared safety requires that
a < 2, we restrict our attention to values of a Æ 0.5 in this work, since soft recoil e�ects
which complicate the resummation are known to become increasingly more important as
a æ 1 [30]. It is also possible to define ·a in Eq. (1.1) with respect to an axis other than
the thrust axis, such as the broadening axis or another soft-recoil-insensitive axis [31]. We
stick to the standard thrust-axis-based definition here, to coincide with the available data.
See [32] for a recent calculation with an alternative axis.

The phenomenological e�ect of varying a is to change the proportions of two-jet-like
events and three-or-more-jet-like events that populate the peak region of the ·a distribu-
tions (see Fig. 1). The relevant collinear scale that enters the factorization of angularity
distributions in the two-jet limit then varies accordingly with a, to properly reflect the
transverse size of the jets that are dominating each region of the distributions.

The resummation of Sudakov logarithms for the angularity distributions is based on
the factorization theorem [29, 33–35]

1
‡0

d‡

d·a

(·a) = H(Q2
, µ)

⁄
dt

a

n dt
a

n̄ dks J
a

n(ta

n, µ) J
a

n̄(ta

n̄, µ) S
a(ks, µ) ”

1
·a ≠

t
a
n + t

a
n̄

Q2≠a
≠

ks

Q

2
,

(1.2)
which arises in the two-jet limit ·a æ 0. Here H is a hard function that contains the
virtual corrections to e

+
e

≠
æ qq̄ scattering at center-of-mass energy Q (normalised to the

Born cross section ‡0); J
a
n,n̄ are quark jet functions that describe the collinear emissions

into the jet directions, and are functions of a variable t
a
n,n̄ of mass dimension (2 ≠ a); and

S
a is a soft function that encodes the low-energetic cross talk between the two jets and

– 3 –

Varying Q between 35 and 207 GeV generates same difference as varying a ∈ {-2.0, 0.5} (~6)!!

where α = e−η′

, as n → αn and n̄ → α−1n̄. (This is also known in SCET as type-III
reparametrization invariance [46].) The only change is in the operator ET (η):

U(Λ(η′))ET (η)U(Λ(η′))† = ET (η + η′) , (57)

which follows from the defining relation for the ET operators, Eq. (46). Thus, the argument of
the operator ET (η) in the shape function in Eq. (55) may be shifted to any value of rapidity,
ET (η) → ET (η + η′). At this stage, this does not yet allow us to perform the rapidity
integral of fe(η) inside the delta function. Thus we do not find that the leading power
correction simply shifts the argument of the perturbative event shape distributions, as the
delta function is a highly nonlinear function of the energy flow operator and sits sandwiched
between Wilson lines in the matrix element. If we do neglect correlations between these
operators, we derive a delta function for the shape function, and reproduce the shift in the
distribution, Eq. (52) [9, 44].

The boost property (57) of a single operator, however, gives a strong result when applied
to the first moment of an event shape distribution [14]. Taylor expanding the delta function
in Eq. (55) (which is valid if we integrate the distribution over a sufficiently large region
near the endpoint), we find

Se(e) = δ(e) − δ′(e)
1

Q

∫

dη fe(η)
1

NC

Tr 〈0|Y
†
n̄Y

†
nET (η + η′)YnY n̄ |0〉 + · · · . (58)

Recalling the boost properties of the Wilson lines and the energy flow operators ET (η), we
are free to choose any value for η′ in this expression. Then, choosing η′ = −η, we find that,
remarkably, we may take the matrix element of the ET operator out of the integral over η,
leaving the result

Se(e) = δ(e) − δ′(e)ce

A

Q
+ · · · , (59)

where the coefficient ce is given by the integral,

ce =

∫ ∞

−∞

dη fe(η), (60)

and the universal quantity A is

A =
1

NC

Tr 〈0|Y
†
n̄Y †

nET (0)YnY n̄ |0〉 . (61)

For the C-parameter and angularities τa, the integrals of the corresponding weight functions,

fC(η) =
3

cosh η
, fτa = e−|η|(1−a), (62)

over all rapidities give the coefficients,

cC = 3π, cτa =
2

1 − a
. (63)

When convoluted with the perturbative distribution, Se(e) reproduces the universality re-
lations of Eq. (51) for the first moments of the distributions. We have thus established
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(1)

d�

d⌧a
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d�
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✓
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Q

◆
(2)

1

Leading NP effect is also an (a-dependent (!)) shift of the perturbative distribution:
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a
=

Z 1

�1
d⌘ f⌧a

(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12,23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10 in
[12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed, we
find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a
=

Z 1

�1
d⌘ f⌧a

(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12,23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10 in
[12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed, we
find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 1: Di↵erence distributions between central curves and curves evaluated with single variations

of either A (dashed, blue) or ↵s(mZ) (solid, red) at three values of a 2 {�1, �0.25, 0.5}. Q = 91.2

GeV in all three plots.

observable-dependent coe�cient. For the angularities, it is given by§

c⌧a
=

Z 1

�1
d⌘ f⌧a

(⌘) =
2

1 � a
. (4)

Hence, in any attempt to extract a value of the strong coupling by comparing data to theoretical
predictions, one is simultaneously sensitive to ↵s(mZ) and A. Indeed, the most precise extractions
employing analytic treatments of NP e↵ects [12, 23] report values in an ↵s(mZ) � A plane (cf.
contribution from V.Mateu). Furthermore, the extracted values of ↵s(mZ) from these analyses are
consistently (and often dramatically) lower than the world average, which is currently dominated
by lattice-QCD calculations (cf. 0.1123 ± 0.0015 [23] to the world average 0.1181 ± 0.0011 [24]).
It can be shown that the event-shape extractions are driven to small values precisely due to NP
e↵ects, and so any elucidation of these discrepancies requires a disentangling of perturbative and
non-perturbative contributions.

Our proposal is to perform a future extraction of both ↵s(mZ) and A along the lines of previous
SCET treatments, but at multiple values of the angularities a. The critical point is that the
leading NP shift in (3) is a-dependent. Therefore, an extraction at a single centre-of-mass energy
Q, but di↵erent values of a, will have a discriminating sensitivity to A and ↵s(mZ) in a similar
way as varying Q. For example, angularities for �2  a . 0.5 exhibit a factor of six variance
in the overall NP shift. This sensitivity is essentially equivalent to measurements made between
Q = 35 GeV and Q = 207 GeV, as analyzed for thrust e.g. in [12]. In Figure 1 we show the
di↵erence (d�/d⌧a)central �d�/d⌧a over the range 0.085  ⌧a  0.35 for a 2 {�1, �0.25, 0.5}, where
(d�/d⌧a)central is an (unmatched) NNLL0 resummed distribution evaluated at ↵s(mZ) = 0.1161
and A = 0.283 GeV. For (d�/d⌧a) we have varied 2A by ± 0.1 GeV and ↵s(mZ) by ± 0.001,
corresponding to the blue and red curves, respectively. These plots are analogous to Figure 10
in [12], where the same variations were made but at di↵erent values of Q, rather than a. Indeed,
we find that varying a (Q) down (up) from high (low) values leads to an enhanced sensitivity of the
distributions to the relative e↵ects of A and ↵s(mZ) variation. We are therefore optimistic that
the a-dependence of the angularities can help to lift the degeneracies between ↵s(mZ) and A in
the two-parameter fits.

§
The expression for c⌧a diverges in the limit a ! 1, where the SCETI factorization theorem we use breaks down.

A careful analysis revealed that the NP e↵ects to the broadening distributions are enhanced by a rapidity logarithm,

cBT = lnQ/BT [20].
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Figure 11. Integrated angularity distributions for four values of a = {≠1.0, ≠0.5, 0.0, 0.5} and
Q = mZ at NLL (green), NLLÕ+O(–s) (orange), NNLL+O(–s) (blue), and NNLLÕ+O(–2

s
) (purple)

accuracy, with renormalon subtractions to the corresponding orders. The theoretical uncertainties
have been estimated with the band method (left) and the scan method (right) as discussed in
Sec. 5.2.
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accuracy, with renormalon subtractions to the corresponding orders. The theoretical uncertainties
have been estimated with the band method (left) and the scan method (right) as discussed in
Sec. 5.2.
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Figure 12. Di�erential angularity distributions for four values of a = {≠0.5, ≠0.25, 0.25, 0.5} and
Q = mZ in the central ·a region, resummed and matched to NLL (green), NLLÕ + O(–s) (orange),
NNLL+O(–s) (blue), and NNLLÕ + O(–2

s
) (purple) accuracy, with renormalon subtractions to the

corresponding orders, and uncertainties estimated with the scan method.

use the MS coupling constant –s(mZ) = 0.11 and the non-perturbative shift parameter,
defined through Eq. (4.31), �1(R�, R�) = 0.4 GeV at R� = 1.5 GeV. These values are
chosen to be consistent with the central fit values from [21] for –s(mZ) (to two signficant
digits) and �1(R�, R�) (to one signficant digit) at NNLLÕ accuracy. Some discussion on
the phenomenological impact of choosing di�erent values for these input parameters will
be given in Sec. 7.

We first show in Fig. 11 our predictions for the integrated distributions ‡c(·a) given
by Eqs. (4.40) and (4.41) for four values of a at Q = mZ up to NNLLÕ + O(–2

s) accuracy,
including renormalon subtractions. At the same time we compare the two methods dis-
cussed in Sec. 5.2 to estimate the overall uncertainties of our analysis. The band method
has been applied in the left panel and the scan method in the right panel. One clearly
observes that moving to primed accuracies not only dramatically reduces the scale uncer-
tainties, but that also the variations converge across the entire spectra as we move to higher
accuracies. One also sees that the two methods that have been applied to estimate the
theory uncertainties are consistent with one another, given the parameter ranges and vari-
ations chosen. However, when computing di�erential distributions by taking the derivative
of Eq. (4.40), we notice a slight improvement in numerical stability when using the scan
method. This is partially due to the envelope of the many (64) variations smoothing out
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Q = mZ in the central ·a region, resummed and matched to NLL (green), NLLÕ + O(–s) (orange),
NNLL+O(–s) (blue), and NNLLÕ + O(–2

s
) (purple) accuracy, with renormalon subtractions to the

corresponding orders, and uncertainties estimated with the scan method.

use the MS coupling constant –s(mZ) = 0.11 and the non-perturbative shift parameter,
defined through Eq. (4.31), �1(R�, R�) = 0.4 GeV at R� = 1.5 GeV. These values are
chosen to be consistent with the central fit values from [21] for –s(mZ) (to two signficant
digits) and �1(R�, R�) (to one signficant digit) at NNLLÕ accuracy. Some discussion on
the phenomenological impact of choosing di�erent values for these input parameters will
be given in Sec. 7.

We first show in Fig. 11 our predictions for the integrated distributions ‡c(·a) given
by Eqs. (4.40) and (4.41) for four values of a at Q = mZ up to NNLLÕ + O(–2

s) accuracy,
including renormalon subtractions. At the same time we compare the two methods dis-
cussed in Sec. 5.2 to estimate the overall uncertainties of our analysis. The band method
has been applied in the left panel and the scan method in the right panel. One clearly
observes that moving to primed accuracies not only dramatically reduces the scale uncer-
tainties, but that also the variations converge across the entire spectra as we move to higher
accuracies. One also sees that the two methods that have been applied to estimate the
theory uncertainties are consistent with one another, given the parameter ranges and vari-
ations chosen. However, when computing di�erential distributions by taking the derivative
of Eq. (4.40), we notice a slight improvement in numerical stability when using the scan
method. This is partially due to the envelope of the many (64) variations smoothing out
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Figure 13. Di�erential angularity distributions for a = ≠0.5 and a = 0.25 at Q = mZ over the
entire ·a domain. The distributions correspond to NLLÕ + O(–s) (orange) and NNLLÕ + O(–2

s
)

(purple) accuracy with renormalon subtractions, and they are either obtained as the derivative
of the integrated distributions (left) or directly resummed as di�erential distributions (right). As
expected from the analysis in [35], the former show a bit better convergence than the latter.

wiggles coming from derivatives of profile functions µi(·a), especially in transition regions.
Fig. 12 illustrates this convergence of the di�erential distribution (multiplied by ·a) in the
central ·a domain for four values of the angularity parameter a. For this reason, and to
allow for a more direct comparison of our results to those of [16, 18, 21], we implement
theory uncertainties as obtained with the scan method in the following.

In order to demonstrate the improvement in precision that we achieve for the di�er-
ential distributions in moving from NLLÕ + O(–s) [34] to NNLLÕ + O(–2

s) accuracy, we
present our (renormalon-subtracted) predictions for a = {≠0.5, 0.25} and Q = mZ across
the entire ·a domain in Fig. 13. This figure also illustrates the di�erences between tak-
ing the derivative of the integrated distributions (which we call d‡c/d·a here) in the left
panel, and directly evaluating the resummed (“naïve”) di�erential distributions (which we
call d‡n/d·a here) in the right panel. We see that the former give better convergence and
that they better preserve the total integral under the distributions. These issues with the
naïve distributions were extensively discussed in [35]. In fact, as shown there, at unprimed
orders the naïve formulas do not even preserve the correct order of accuracy, and even the
primed orders su�er from the illustrated mismatch with the total integral under the curve.
These issues can be remedied by supplementing the naïve formula with additional terms
that both preserve accuracy (at unprimed orders) and maintain agreement with the total
integral under the curve (at any order). See [32, 35] for such strategies, and [91] for a beau-
tiful mathematical solution to this problem. Here, for simplicity, we have not implemented
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 The (only) dataset 

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV

Early theory predictions look good against the data, but what does this translate to for Ω and 
!s?

Compare to 404 bins included in 2015 C-Parameter fit (across all Q considered)…
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Figure 15. NNLLÕ resummed and O(–2
s
) matched angularity distributions for all values of a con-

sidered in this study, a œ {≠1.0, ≠0.75, ≠0.5, ≠0.25, 0.0, 0.25, 0.5}, at Q = mZ , with –s(mZ) = 0.11.
The blue bins represent the purely perturbative prediction and the red bins include a convo-
lution with a gapped and renormalon-subtracted shape function, with a first moment set to
�1(R�, R�) = 0.4 GeV. Overlaid is the experimental data from [51].
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The blue bins represent the purely perturbative prediction and the red bins include a convo-
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