New insights on α_s extractions from Soft Collinear Effective Theory

Jim Talbert

DAMTP, Cambridge

with G. Bell, C. Lee, Y. Makris, H. Prager, B. Yan

Outline

Event shape distributions: thrust

• The classic example is *Thrust*:

$$\tau \equiv 1 - T = 1 - \frac{1}{Q} \max_{\hat{\mathbf{t}}} \sum_{i \in X} |\hat{\mathbf{t}} \cdot \mathbf{p_i}|$$

[Farhi, PRL 39 (1977)]

The fixed order distribution can readily be computed in QCD, though state of the art is a N³LL' + $O(\alpha_s^3)$ resummation — readily achieved with **Soft Collinear Effective Theory**.

Dissecting dijets — constructing the curve

'<u>Tail' Region</u>: resummation region. PERTURBATIVE SCET PREDICTIONS

'Peak' Region: non-perturbative, soft region. NON-PERTURBATIVE MODELING

SCETching thrust: perturbative regime

[0801.4569] [0901.3780]

• SCET permits all-orders derivations of factorization theorems, with individual components

$$d\sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S}$$
 $\ln \frac{\mu^2}{Q^2}$, $\ln \frac{\mu^2}{\tau Q^2}$, $\ln \frac{\mu^2}{\tau^2 Q^2}$

$$\frac{dH(Q^2, \mu)}{d \ln \mu} = \left[2\Gamma_{cusp} \ln(\frac{Q^2}{\mu^2}) + 4\gamma_H(\alpha_s) \right] H(Q^2, \mu)$$

$$H(Q^2, \mu) = H(Q^2, \mu_h) \ U_h(\mu_h, \mu)$$

This cookbook
changes at 'primed'
accuracies, and of
course when
considering
matching to QCD!

Accuracy	$\Gamma_{ m cusp}$	$\gamma_F, \gamma^\mu_{oldsymbol{\Delta}}, \gamma_R$	β	$H, \tilde{J}, \tilde{S}, \delta_a$
LL	α_s	1	α_s	1
NLL	α_s^2	α_s	α_s^2	1
NNLL	α_s^3	α_s^2	α_s^3	α_s
$ m N^3LL$	α_s^4	α_s^3	α_s^4	α_s^2

Note that there also is freedom in scalesetting choices -> 'profiles'

• Results for $O(a_s^{(2,3)})$ matching obtained from **EVENT2 / EERAD3**:

$$\frac{\sigma_c(\tau_a)}{\sigma_0} - \frac{\sigma_{c,sing}(\tau_a)}{\sigma_0} = r_c(\tau_a) = \theta(\tau_a) \left\{ \frac{\alpha_s(Q)}{2\pi} r_c^1(\tau_a) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 r_c^2(\tau_a) \right\} + \frac{\sigma_c(\tau_a)}{\sigma_0} - \frac{\sigma_{c,sing}(\tau_a)}{\sigma_0} = r_c(\tau_a) = \theta(\tau_a) \left\{ \frac{\alpha_s(Q)}{2\pi} r_c^1(\tau_a) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 r_c^2(\tau_a) \right\} + \frac{\sigma_c(\tau_a)}{\sigma_0} = r_c(\tau_a) = \theta(\tau_a) \left\{ \frac{\alpha_s(Q)}{2\pi} r_c^1(\tau_a) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 r_c^2(\tau_a) \right\} + \frac{\sigma_c(\tau_a)}{\sigma_0} = r_c(\tau_a) = \theta(\tau_a) \left\{ \frac{\alpha_s(Q)}{2\pi} r_c^1(\tau_a) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 r_c^2(\tau_a) \right\} + \frac{\sigma_c(\tau_a)}{\sigma_0} = r_c(\tau_a) = \theta(\tau_a) \left\{ \frac{\alpha_s(Q)}{2\pi} r_c^1(\tau_a) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 r_c^2(\tau_a) \right\} + \frac{\sigma_c(\tau_a)}{\sigma_0} = r_c(\tau_a) = \theta(\tau_a) \left\{ \frac{\alpha_s(Q)}{2\pi} r_c^1(\tau_a) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2 r_c^2(\tau_a) \right\} + \frac{\sigma_c(\tau_a)}{\sigma_0} = r_c(\tau_a) = \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_0} = \frac{\sigma_c(\tau_a)}{\sigma_0} + \frac{\sigma_c(\tau_a)}{\sigma_$$

QCD distribution

SCET distribution

Remainder

SCETching thrust: non-perturbative regime

- A treatment of **non-perturbative effects** is critical in $e^+e^- \rightarrow hadrons...$
- When dominant power corrections come from the soft function, NP effects can be parameterized into a shape function f_{mod} :

$$S(k,\mu) = \int dk' \, S_{\text{PT}}(k-k',\mu) \, f_{\text{mod}}(k'-2\overline{\Delta}_a) \qquad f_{\text{mod}}(k) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} b_n \, f_n\left(\frac{k}{\lambda}\right) \right]^2 \qquad [0709.3519]$$

■ The leading impact of this shape function correction is to shift the overall perturbative distribution:

$$\mathbf{a} = \mathbf{0} \text{ (Thrust)} \quad \frac{d\sigma}{d\tau_a}(\tau_a) \xrightarrow{\mathrm{NP}} \frac{d\sigma}{d\tau_a} \left(\tau_a - c_{\tau_a} \frac{\overline{\Omega}_1}{Q}\right) \qquad \frac{2\overline{\Omega}_1}{1-a} = 2\overline{\Delta}_a + \int dk \, k \, f_{\mathrm{mod}}(k)$$
 [9504219] [9806537] [9902341] [0611061]

■ However, both the gap parameter Δ_{bar} and the soft function S_PT have a renormalon ambiguity!

Solution: subtract a series with a compensating/cancelling ambiguity:

$$\overline{\Delta}_a = \Delta_a(\mu) + \delta_a(\mu) \longrightarrow \widetilde{S}(\nu, \mu) = \left[e^{-2\nu\Delta_a(\mu)} \widetilde{f}_{\text{mod}}(\nu) \right] \left[e^{-2\nu\delta_a(\mu)} \widetilde{S}_{\text{PT}}(\nu, \mu) \right]$$

■ The highest precision SCET extractions have done so with a very particular scheme.

[0806.3852] [0801.4743]

[0908.3189]

[0003179]

[0709.3519] [0803.4214]

[9408222]

6

SCET extractions @ N³LL + O(α ³) accuracy

C-parameter versus Thrust Tail Global Fit

2020 PDG world average: .1179 +- .0010

hep-ph/0803.0342 (BS) hep-ph/1006.3080 (AFHMS) hep-ph/1501.04111 (HKMS)

(Q1) Why are SCET results so discrepant with PDG?

(Q2) What can break the α_s - Ω degeneracy? (not today, unfortunately)

Revisiting NP Phenomenology

$$\widetilde{S}(\nu,\mu) = \left[e^{-2\nu\Delta_a(\mu)} \widetilde{f}_{\text{mod}}(\nu) \right] \left[e^{-2\nu\delta_a(\mu)} \widetilde{S}_{\text{PT}}(\nu,\mu) \right]$$

[0803.4214] [0806.3852] [0801.4743] [0908.3189] [1006.3080]

After redefining gap, one can choose the R-Gap scheme to cancel the leading renormalon,

$$Re^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \widehat{S}_{PT}(\nu, \mu) \Big]_{\nu = 1/(Re^{\gamma_E})} = 0 \quad \longrightarrow \quad \delta_a(\mu, R) = \frac{1}{2} Re^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \widetilde{S}_{PT}(\nu, \mu) \Big]_{\nu = 1/(Re^{\gamma_E})},$$

$$\widehat{S}_{\mathrm{PT}}(\nu,\mu) = e^{-2\nu\delta_a(\mu)}\widetilde{S}_{\mathrm{PT}}(\nu,\mu)$$

All of these objects can be defined perturbatively!

 \blacksquare and accounting for R and μ evolution,

$$\frac{d}{dR}\Delta_a(R,R) = -\frac{d}{dR}\delta_a(R,R) \equiv -\gamma_R[\alpha_s(R)]$$

$$\frac{d}{dR}\Delta_a(R,R) = -\frac{d}{dR}\delta_a(R,R) \equiv -\gamma_R[\alpha_s(R)], \qquad \mu \frac{d}{d\mu}\Delta_a(\mu,R) = -\mu \frac{d}{d\mu}\delta_a(\mu,R) \equiv \gamma_\Delta^\mu[\alpha_s(\mu)]$$

■ one obtains the final soft function -> cross section:

Final cross section is expanded order-by-order in bracketed term

$$\frac{1}{\sigma_0} \sigma(\tau_a) = \int dk \, \sigma_{\text{PT}} \left(\tau_a - \frac{k}{Q} \right) \left[e^{-2\delta_a(\mu_S, R) \frac{d}{dk}} f_{\text{mod}} \left(k - 2\Delta_a(\mu_S, R) \right) \right]$$

Also results in better convergence than shape function alone!

However, fits with this scheme implemented amongst LOWEST in global PDG table...

Effective non-perturbative shifts

■ Before considering gapped renormalons, the leading-order NP effect is a constant shift:

$$\frac{d\sigma}{d\tau_a}(\tau_a) \xrightarrow{\text{NP}} \frac{d\sigma}{d\tau_a} \left(\tau_a - c_{\tau_a} \frac{\overline{\Omega}_1}{Q}\right) \qquad \frac{2\overline{\Omega}_1}{1 - a} = 2\overline{\Delta}_a + \int dk \, k \, f_{\text{mod}}(k)$$

But what is the 'effective shift' of the distribution in the R-Gap scheme?

$$\int dk \, k \, e^{-2\delta_a(\mu_S,R)\frac{d}{dk}} f_{\mathrm{mod}}\left(k-2\Delta_a\left(\mu_S,R\right)\right) = \int dk \, k \left[\sum_i f_{\mathrm{mod}}^{(i)}\left(k-2\Delta_a\left(\mu_S,R\right)\right)\right] \\ = \int dk \, k \left[\sum_i f_{\mathrm{mod}}^{(i)}\left(k-2\Delta_$$

$$\begin{split} f_{\rm mod}^{(0)}(k-2\Delta_a(\mu_S,R)) &= f_{\rm mod}(k-2\Delta_a(\mu_S,R))\,, \\ f_{\rm mod}^{(1)}(k-2\Delta_a(\mu_S,R)) &= -\frac{\alpha_s(\mu_S)}{4\pi}\,2\delta_a^1(\mu_S,R)Re^{\gamma_E}f_{\rm mod}'(k-2\Delta_a(\mu_S,R))\,, \\ f_{\rm mod}^{(2)}(k-2\Delta_a(\mu_S,R)) &= \left(\frac{\alpha_s(\mu_S)}{4\pi}\right)^2 \Big[-2\delta_a^2(\mu_S,R)Re^{\gamma_E}f_{\rm mod}'(k-2\Delta_a(\mu_S,R)) \\ &\quad + 2(\delta_a^1(\mu_S,R)Re^{\gamma_E})^2f_{\rm mod}''(k-2\Delta_a(\mu_S,R))\Big]\,, \end{split}$$

R*: a new scheme

Generalized renormalon cancellation schemes can be defined: [2012.12304]

$$\delta_a(\mu) = \frac{R}{2\xi} \frac{d^n}{d(\ln v)^n} \ln \tilde{S}(v,\mu) \big|_{v=\xi/R} \qquad \longrightarrow \qquad \delta_a^*(R) = \frac{1}{2} R^* e^{\gamma_E} \frac{d}{d \ln \nu} \left[\ln S_{\text{PT}}(\nu,\mu=R^*) \right]_{\nu=1/(R^* e^{\gamma_E})}$$

R* Scheme: (n, ξ , μ) = (1, exp(- γ E), R*) $R^* \equiv \begin{cases} R & R < R_{\text{max}} \\ R_{\text{max}} & R > R_{\text{max}} \end{cases}$

$$R^* \equiv \begin{cases} R & R < R_{\text{max}} \\ R_{\text{max}} & R \ge R_{\text{max}} \end{cases}$$

we are not forced to set $\mu = \mu_S$ in the subtraction series, we can pick $\mu = R$

Anomalous dimensions, subtractions, turn on at one higher order:

Effective non-perturbative shift flattened, as desired.

Preliminary Results

R^(*)-Gap: impact on fits

■ Fits at **NNLL'** + $O(\alpha_s^2)$ accuracy:

- Green -> Red: multiple other systematics, including profile parameter choices (dominant effect), b-mass and QED corrections (not included in Red/Blue), global data set, and even binning choices.
- For example, the treatment of **non-singular scale** entering fixed-order matching differs:

$$\mu_{\rm ns} = \begin{cases} \mu_J & \text{default} \\ (\mu_J + \mu_S)/2 & \text{lo} \\ \mu_H & \text{hi} \end{cases} \qquad \mu_{\rm ns} = \begin{cases} \mu_H & \text{default} \\ (\mu_H + \mu_J)/2 & \text{lo} \\ (3\mu_H - \mu_J)/2 & \text{hi} \end{cases}$$
 Green
$$\frac{1}{2} \frac{1}{2} \frac{1$$

■ However, note the difference in fit quality between Blue (R*) and Red/Green (R)...

Summary and outlook

- We have presented <u>preliminary</u> results demonstrating the impact of non-perturbative physics on a global SCET extraction of the strong coupling from the Thrust e+e- event shape.
- Our results are valid at NNLL' + $O(\alpha_s^2)$ accuracy. WIP: N3LL' + $O(\alpha_s^3)$ very close to results.
- We have also shown how Thrust fit values are sensitive to the profile parameters associated to scale setting.
- When the effective shift of the distribution, due to non-perturbative physics, grows less in the multi-jet window, the value of the strong coupling from Thrust approaches the PDG world average...
- Other WIP: analyzing a more varied and generic set of renormalon cancellation schemes. Also looking at results from angularities.
- Analytic control over multi-jet power corrections would clearly be valuable (also see Luisoni et al. 2012.00622).

Thanks!

R vs. R* convergence

R_{gap} scheme:

hep-ph/0803.0342 (BS)

hep-ph/1006.3080 (AFHMS) hep-ph/1501.04111 (HKMS)

To be included in the PDG average, a fit must:

- be published in a peer-reviewed journal...
- include $O(\alpha_s^3)$ fixed-order perturbative results...
- include `reliable' error estimates, including NP effects...

2020 PDG world average: .1179 +- .0010

Thrust at N³LL with Power Corrections and a Precision Global Fit for $\alpha_s(m_Z)$

Riccardo Abbate, Michael Fickinger, André H. Hoang, Vicent Mateu, and Iain W. Stewart 1

hep-ph/1006.3080

$$\alpha_s(m_Z) = 0.1135 \pm (0.0002)_{\text{exp}}$$

$$\pm (0.0005)_{\text{hadr}} \pm (0.0009)_{\text{pert}}$$

A Precise Determination of α_s from the C-parameter Distribution

André H. Hoang, 1,2 Daniel W. Kolodrubetz, Vicent Mateu, 1 and Iain W. Stewart 3

hep-ph/1501.04111

$$\alpha_s(m_Z) = 0.1123 \pm 0.0002_{\text{exp}}$$

$$\pm 0.0007_{\text{hadr}} \pm 0.0014_{\text{pert}}$$

■ 2015 C-parameter result ~ 4σ away from lattice QCD / world average...

Data sets

■For thrust:

```
L3-2004: 172.3 GeV
ALEPH-2004: 133. GeV (7)
ALEPH-2004: 161. GeV
                           L3-2004: 182.8 GeV
                                               (12)
ALEPH-2004: 172. GeV (7)
                            L3-2004: 188.6 GeV (12)
                           L3-2004: 194.4 GeV (12)
ALEPH-2004: 183. GeV (7)
                           L3-2004: 200. GeV (11)
ALEPH-2004: 189. GeV (7)
ALEPH-2004: 200. GeV (6)
                           L3-2004: 206.2 GeV (12)
ALEPH-2004: 206. GeV (8)
                           L3-2004: 41.4 GeV (5)
ALEPH-2004: 91.2 GeV (26)
                           L3-2004: 55.3 GeV (6)
                            L3-2004: 65.4 GeV
AMY-1990: 55.2 GeV (5)
                           L3-2004: 75.7 GeV
DELPHI-1999: 133. GeV (7)
                           L3-2004: 82.3 GeV (8)
DELPHI-1999: 161. GeV (7)
                           L3-2004: 85.1 GeV
DELPHI-1999: 172. GeV
                           L3-2004: 91.2 GeV
DELPHI-1999: 89.5 GeV (11)
                            OPAL-1997: 161. GeV (7)
DELPHI-1999: 93. GeV (12)
DELPHI-2000: 91.2 GeV (12)
                           OPAL-2000: 172. GeV (8)
                           OPAL-2000: 183. GeV (8)
DELPHI-2003: 183. GeV
                           OPAL-2000: 189. GeV (8)
DELPHI-2003: 189. GeV
                           OPAL-2005: 133. GeV (6)
DELPHI-2003: 192. GeV
                           OPAL-2005: 177. GeV (8)
DELPHI-2003: 196. GeV (14)
DELPHI-2003: 200. GeV
                           OPAL-2005: 197. GeV (8)
DELPHI-2003: 202. GeV
                           OPAL-2005: 91. GeV (5)
                           SLD-1995: 91.2 GeV (6)
DELPHI-2003: 205. GeV (15)
DELPHI-2003: 207. GeV (15)
                           TASS0-1998: 35. GeV (4)
DELPHI-2003: 45. GeV (5)
                            TASS0-1998: 44. GeV (5)
DELPHI-2003: 66. GeV (8)
DELPHI-2003: 76. GeV (9)
                             ---- Summary ----
JADE-1998: 35. GeV (5)
                            Totlal: 516
JADE-1998: 44. GeV (7)
                             0 > 95 : 345
L3-2004: 130.1 GeV (11)
                             Q < 88 : 89
L3-2004: 136.1 GeV (10)
                             Q \sim MZ : 82
L3-2004: 161.3 GeV (12)
```

For angularities:

Generalized event shape and energy flow studies in $\rm e^+e^-$ annihilation at $\sqrt{s}=91.2\text{-}208.0\,\rm{GeV}$ L3 Collaboration

JHEP 10 (2011) 143

Also see thesis by Pratima Jindal, Panjab University, Chandigarh

- Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV
- Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV
- \blacksquare e.g. a = -1 and 0.5, Q = 91.2 GeV, compared to our NNLL' prediction:

perturbation theory

Profiling a fit window

■ How can we identify a region sensitive to \mathcal{A} and α_s , and for which our best theory curves are reliable? Look to the profiles!

 Profiles trace scale hierarchies through different regimes of a given distribution:

Peak
$$\mu_H\gg\mu_J\gg\mu_S\sim\Lambda_{QCD}$$
 Tail $\mu_H\gg\mu_J\gg\mu_S\gg\Lambda_{QCD}$ Far Tail $\mu_H=\mu_J=\mu_S\gg\Lambda_{QCD}$

■ A default fit window will be between $\mathbf{t_{1'}}$ and $\mathbf{t_{2}}$, which roughly tracks the tail (former) and far-tail (latter) of the distribution.**

PT physics

R-Gap phenomenology

■ R-Gap scheme removes unphysical effects in cross-section predictions and gives good qualitative agreement with data:

How non-perturbative effects are implemented (clearly) affects the extraction of the strong coupling!

A naive way to limit the shift...

Obvious solution is to simply limit the growth of the renormalon scale:

$$\gamma_R \to \theta(R_{\text{max}} - R)\gamma_R$$
 $R = R(\tau)$

need:
$$\frac{d}{dR}\delta_a(R,R) = \gamma_R[\alpha_s(R)]\theta(R_{\text{max}} - R)$$

recall:
$$\delta_a(R,R) = Re^{\gamma_E} \left[\frac{\alpha_s(R)}{4\pi} \delta_a^1(R,R) + \left(\frac{\alpha_s(R)}{4\pi} \right)^2 \delta_a^2(R,R) + \cdots \right]$$

■ Simple solution is to simply set a max value for the R scale:

$$R^* \equiv \begin{cases} R & R < R_{\text{max}} \\ R_{\text{max}} & R \ge R_{\text{max}} \end{cases}$$

$$\delta_a^1(\mu, R) = \Gamma_S^0 \ln \frac{\mu}{R},$$

$$\delta_a^2(\mu, R) = \Gamma_S^0 \beta_0 \ln^2 \frac{\mu}{R} + \Gamma_S^1 \ln \frac{\mu}{R} + \frac{\gamma_S^1(a)}{2} + c_{\tilde{S}}^1(a)\beta_0$$

Turns off the R-scale at a given (fixed) Rmax (good)

Potentially large logs of μ/R ! (bad)

Angularities: from τ to b

■ Consider Angularities, which can be defined in terms of the of the rapidity and p_T of a final state particle 'i', with respect to the thrust axis:

IR safe for
$$a \in \{-\infty, 2\}$$
!

IR safe for a
$$\in$$
 {- ∞ , 2}! $au_a = \frac{1}{Q} \sum_i |\mathbf{p}_{\perp}^i| \ e^{-|\eta_i|(1-a)}$ a = 0 <-> `Thrust' a = 1 <-> `Jet Bro

a = 1 <-> `Jet Broadening'

Leading NP effect is also an (a-dependent (!)) shift of the perturbative distribution:

$$\frac{d\sigma}{d\tau_{a}}(\tau_{a}) \xrightarrow{NP} \frac{d\sigma}{d\tau_{a}} \left(\tau_{a} - c_{\tau_{a}} \frac{\Omega_{1}}{Q}\right) \qquad c_{\tau_{a}} = \frac{2}{1-a}$$

$$(d\sigma/d\tau_{a})_{\text{central}} - d\sigma/d\tau_{a}$$

$$a = -1.0$$

$$0.004$$

$$0.002$$

$$0.002$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

$$0.000$$

■ Varying \mathbf{Q} between 35 and 207 GeV generates same difference as varying a \in {-2.0, 0.5} (~6)!! 25

2018 progress: NLL' to NNLL'

- softserve.hepforge.org
 - Bell, Rahn & Talbert
- Two-loop soft anomalous dimensions and singular constants provided by **SoftSERVE**
- Two-loop jet anomalous dimension obtained from consistency relations
- Two-loop singular jet constants extracted from **EVENT2**

Bell, Hornig, Lee & Talbert

- Matching to QCD at $O(\alpha_s^2)$ extracted from **EVENT2** *
- Includes set of H,J,S, & non-sing. profile scales, tuned for a-dependence, and varied with a random scan over parameters
- Non-perturbative effects accounted for by convolution with RGap—subtracted shape function

The (only) dataset

Generalized event shape and energy flow studies in ${
m e^+e^-}$ annihilation at $\sqrt{s}=91.2\text{-}208.0\,{
m GeV}$

L3 Collaboration

JHEP 10 (2011) 143

RECEIVED: *May 12, 2009*

REVISED: May 3, 2011 ACCEPTED: August 24, 2011

Published: October 31, 2011

Also see thesis by Pratima Jindal, Panjab University, Chandigarh

- Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV
- Total number of bins = (bins per a) x (number of a) = $25 \times 7 = 175$ bins @ Q = 91.2 GeV
- Compare to 404 bins **included** in 2015 C-Parameter fit (across all Q considered)...
- lacktriangle Early theory predictions look good against the data, but what does this translate to for Ω and

BLUE: NNLL' + $O(\alpha_s^2)$ RED: NNLL'

RED: NNLL' + $O(\alpha_s^2)$ + NP