New insights on α_{s} extractions from Soft Collinear Effective Theory

Jim Talbert
DAMTP, Cambridge
with G. Bell, C. Lee, Y. Makris, H. Prager, B. Yan

03 May 2022 || DIS (virtual) || Santiago de Compostela

Outline

Event shape distributions: thrust

- The classic example is Thrust: $\quad \tau \equiv 1-T=1-\frac{1}{Q} \max _{\hat{\mathbf{t}}} \sum_{i \in X}\left|\hat{\mathbf{t}} \cdot \mathbf{p}_{\mathbf{i}}\right| \quad$ [Farhi, PRL 39 (1977)]

$$
T=1
$$

$T=\frac{2}{3}$
$T \geq \frac{2}{\pi}$
$T \geq \frac{1}{2}$

- The fixed order distribution can readily be computed in QCD, though state of the art is a N3LL' $+O\left(\boldsymbol{\alpha}_{s}{ }^{3}\right)$ resummation - readily achieved with Soft Collinear Effective Theory.

Dissecting dijets - constructing the curve

'Peak' Region: non-perturbative, soft region. NON-PERTURBATIVE MODELING

SCETching thrust: perturbative regime $\underset{\substack{\text { apan } 1.559 \\ \text { cosicisel }}}{ }$

- SCET permits all-orders derivations of factorization theorems, with individual components resummed via RG evolution:

$$
\begin{gathered}
d \sigma \sim H \cdot \mathcal{J} \otimes \mathcal{J} \otimes \mathcal{S} \quad \ln \frac{\mu^{2}}{Q^{2}}, \quad \ln \frac{\mu^{2}}{\tau Q^{2}}, \quad \ln \frac{\mu^{2}}{\tau^{2} Q^{2}} \\
\frac{d H\left(Q^{2}, \mu\right)}{d \ln \mu}=\left[2 \Gamma_{\text {cusp }} \ln \left(\frac{Q^{2}}{\mu^{2}}\right)+4 \gamma_{H}\left(\alpha_{s}\right)\right] H\left(Q^{2} \cdot \mu\right) \\
H\left(Q^{2}, \mu\right)=H\left(Q^{2}, \mu_{h}\right) U_{h}\left(\mu_{h}, \mu\right)
\end{gathered}
$$

This cookbook changes at 'primed' accuracies, and of course when considering matching to QCD!

Accuracy	$\boldsymbol{\Gamma}_{\text {cusp }}$	$\gamma_{\boldsymbol{F}}, \gamma_{\Delta}^{\mu}, \gamma_{\boldsymbol{R}}$	$\boldsymbol{\beta}$	$H, \tilde{J}, \tilde{S}, \delta_{a}$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}
$\mathrm{~N}^{3} \mathrm{LL}$	α_{s}^{4}	α_{s}^{3}	α_{s}^{4}	α_{s}^{2}

Note that there also is freedom in scalesetting choices -> 'profiles'

- Results for $O\left(a_{\mathrm{s}}{ }^{(2,3)}\right)$ matching obtained from EVENT2 / EERAD3:

SCETching thrust: non-perturbative regime

- A treatment of non-perturbative effects is critical in $e^{+} e^{-}->$hadrons...
- When dominant power corrections come from the soft function, NP effects can be parameterized into a shape function $f_{\text {mod }}$:

$$
\begin{equation*}
S(k, \mu)=\int d k^{\prime} S_{\mathrm{PT}}\left(k-k^{\prime}, \mu\right) f_{\bmod }\left(k^{\prime}-2 \bar{\Delta}_{a}\right) \quad f_{\bmod }(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{\infty} b_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2} \tag{0709.3519}
\end{equation*}
$$

[0807.1926]

- The leading impact of this shape function correction is to shift the overall perturbative distribution:

$$
\mathrm{a}=0 \text { (Thrust) } \quad \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\bar{\Omega}_{1}}{Q}\right) \quad \frac{2 \bar{\Omega}_{1}}{1-a}=2 \bar{\Delta}_{a}+\int d k k f_{\bmod }(k)
$$

- However, both the gap parameter $\Delta_{\text {bar }}$ and the soft function S_PT have a renormalon ambiguity!

$$
w O m=w+m \mathrm{Om}+\cdots \mathrm{m}+m+\ldots
$$

- Solution: subtract a series with a compensating/cancelling ambiguity:

$$
\bar{\Delta}_{a}=\Delta_{a}(\mu)+\delta_{a}(\mu) \longrightarrow \widetilde{S}(\nu, \mu)=\left[e^{-2 \nu \Delta_{a}(\mu)} \widetilde{f}_{\bmod }(\nu)\right]\left[e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]
$$

- The highest precision SCET extractions have done so with a very particular scheme.

SCET extractions @ N3LL + O($\left.\boldsymbol{\alpha}^{3}\right)$ accuracy

Baikov 2008 Davier 2014 Boito 2015 Pich 2016 Boito 2018 PDG 2018		$\begin{gathered} \tau \text { decays } \\ \& \\ \text { low } Q^{2} \end{gathered}$
Mateu 2018 Peset 2018		bound states
BBG06 JR14 MMHT14 ABMP16 NNPDF31 CT14		DIS \& PDF fits
ALEPH ($j * s$) OPAL (j σ_{s}) JADE (j\&s) Dissertori (3j) JADE (3j) Verbytskyi (2j) Kardes (5cc)		
Abbate (T) Gehrmann (T) Hoang (C)		
Klijnsma (ttí) CMS ($t \bar{t}$) H1 (jets)		hadron collider
PDG 2018 Gfitter 2018	1	electroweak
FLAG2019		lattice
$\begin{array}{lll}0.110 & 0.115 & 0.120\end{array}$		$0.125 \quad 0.130$
		$\alpha_{s}\left(\mathrm{M}_{\mathrm{Z}}^{2}\right)$

C-parameter versus Thrust Tail Global Fit

(Q1) Why are SCET results so discrepant with PDG?
(O2) What can break the $\alpha_{\mathrm{s}}-\Omega$ degeneracy? (not today, unfortunately)

Revisiting NP Phenomenology

R-Gap scheme

- After redefining gap, one can choose the R-Gap scheme to cancel the leading renormalon,

$$
\begin{gathered}
R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widehat{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\gamma} E\right)}=0 \longrightarrow \delta_{a}(\mu, R)=\frac{1}{2} R e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln \widetilde{S}_{\mathrm{PT}}(\nu, \mu)\right]_{\nu=1 /\left(R e^{\left.\gamma_{E}\right)}\right.} \\
\widehat{S}_{\mathrm{PT}}(\nu, \mu)=e^{-2 \nu \delta_{a}(\mu)} \widetilde{S}_{\mathrm{PT}}(\nu, \mu)
\end{gathered}
$$

- and accounting for R and μ evolution,

$$
\frac{d}{d R} \Delta_{a}(R, R)=-\frac{d}{d R} \delta_{a}(R, R) \equiv-\gamma_{R}\left[\alpha_{s}(R)\right], \quad \mu \frac{d}{d \mu} \Delta_{a}(\mu, R)=-\mu \frac{d}{d \mu} \delta_{a}(\mu, R) \equiv \gamma_{\Delta}^{\mu}\left[\alpha_{s}(\mu)\right]
$$

- one obtains the final soft function -> cross section:
$\begin{gathered}\text { Final cross section is expanded order-by-order in } \\ \text { bracketed term }\end{gathered} \frac{1}{\sigma_{0}} \sigma\left(\tau_{a}\right)=\int d k \sigma_{\mathrm{PT}}\left(\tau_{a}-\frac{k}{Q}\right)\left[e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]$

Also results in better convergence than shape function alone!

However, fits with this scheme implemented amongst LOWEST in global PDG table...

Effective non-perturbative shifts

- Before considering gapped renormalons, the leading-order NP effect is a constant shift:

$$
\frac{d \sigma}{d \tau_{a}}\left(\tau_{a}\right) \underset{\mathrm{NP}}{\longrightarrow} \frac{d \sigma}{d \tau_{a}}\left(\tau_{a}-c_{\tau_{a}} \frac{\bar{\Omega}_{1}}{Q}\right) \quad \frac{2 \bar{\Omega}_{1}}{1-a}=2 \bar{\Delta}_{a}+\int d k k f_{\bmod }(k)
$$

- But what is the 'effective shift' of the distribution in the R-Gap scheme?
$\int d k k e^{-2 \delta_{a}\left(\mu_{S}, R\right) \frac{d}{d k}} f_{\bmod }\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=\int d k k\left[\sum_{i} f_{\bmod }^{(i)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]$
$f_{\text {mod }}^{(0)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=f_{\text {mod }}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)$,
$f_{\text {mod }}^{(1)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=-\frac{\alpha_{s}\left(\mu_{S}\right)}{4 \pi} 2 \delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)$ $f_{\bmod }^{(2)}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)=\left(\frac{\alpha_{s}\left(\mu_{S}\right)}{4 \pi}\right)^{2}\left[-2 \delta_{a}^{2}\left(\mu_{S}, R\right) R e^{\gamma_{E}} f_{\bmod }^{\prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right.$ $\left.+2\left(\delta_{a}^{1}\left(\mu_{S}, R\right) R e^{\gamma_{E}}\right)^{2} f_{\bmod }^{\prime \prime}\left(k-2 \Delta_{a}\left(\mu_{S}, R\right)\right)\right]$

Why does this effect grow as one moves toward the fixed-order regime?

R*: a new scheme

- Generalized renormalon cancellation schemes can be defined: [2012.12304]

$$
\begin{gathered}
\delta_{a}(\mu)=\left.\frac{R}{2 \xi} \frac{d^{n}}{d(\ln v)^{n}} \ln \tilde{S}(v, \mu)\right|_{v=\xi / R} \longrightarrow \delta_{a}^{*}(R)=\frac{1}{2} R^{*} e^{\gamma_{E}} \frac{d}{d \ln \nu}\left[\ln S_{\mathrm{PT}}\left(\nu, \mu=R^{*}\right)\right]_{\nu=1 /\left(R^{*} e^{\gamma_{E}}\right)} \\
\begin{array}{c}
\mathbf{R}^{*} \text { Scheme: } \\
(\mathbf{n}, \xi, \mu)=\left(1, \exp \left(-\gamma_{\mathrm{E}}\right), \mathbf{R}^{*}\right)
\end{array} \quad R^{*} \equiv\left\{\begin{array}{ll}
R & R<R_{\max } \\
R_{\max } & R \geq R_{\max }
\end{array} \quad \begin{array}{l}
\text { we are not forced to set } \mu=\mu_{S} \text { in the } \\
\text { subtraction series, we can pick } \mu=R
\end{array}\right.
\end{gathered}
$$

- Anomalous dimensions, subtractions, turn on at one higher order:

$$
\begin{aligned}
\delta_{a}^{\star}\left(R^{\star}\right) & =\frac{R^{\star} e^{\gamma_{E}}}{2}\left[\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi} \cdot 0+\left(\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi}\right)^{2}\left(\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right] \\
\gamma_{R}^{\star} & =e^{\gamma_{E}}\left[\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi} \cdot 0+\left(\frac{\alpha_{s}\left(R^{\star}\right)}{4 \pi}\right)^{2}\left(\gamma_{S}^{1}+2 c_{\tilde{S}}^{1} \beta_{0}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right]
\end{aligned}
$$

R

R* (Rmax
$=R(t 1))$

soft

Effective non-perturbative shift flattened, as desired.

Preliminary Results

$R^{(*)}$-Gap: impact on fits

- Fits at NNLL' $+\mathbf{O}\left(\alpha_{s}{ }^{2}\right)$ accuracy:

$[6 / Q, 0.33]_{516}$: Our fit (R scheme)
$[6 / Q, 0.33]_{516}$: Our fit (R^{*} scheme)
$[6 / Q, 0.33]_{487}:$ AFHMS (R scheme)
- Green -> Red: multiple other systematics, including profile parameter choices (dominant effect), bmass and QED corrections (not included in Red/Blue), global data set, and even binning choices.
- For example, the treatment of non-singular scale entering fixed-order matching differs:

$$
\mu_{\mathrm{ns}}=\left\{\begin{array}{lll}
\mu_{J} & \text { default } \\
\left(\mu_{J}+\mu_{S}\right) / 2 & \text { lo } \\
\mu_{H} & \text { hi }
\end{array} \quad \mu_{\mathrm{nS}}= \begin{cases}\mu_{H} & \text { default } \\
\left(\mu_{H}+\mu_{J}\right) / 2 & \text { lo } \\
\left(3 \mu_{H}-\mu_{J}\right) / 2 & \text { hi }\end{cases}\right.
$$

- However, note the difference in fit quality between Blue (R^{*}) and Red/Green (R)...

Summary and outlook

- We have presented preliminary results demonstrating the impact of non-perturbative physics on a global SCET extraction of the strong coupling from the Thrust e+e- event shape.
- Our results are valid at NNLL' $+\mathbf{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ accuracy. WIP: N3LL' $+\mathbf{O}\left(\alpha_{\mathrm{s}}{ }^{3}\right)$ - very close to results.
- We have also shown how Thrust fit values are sensitive to the profile parameters associated to scale setting.
- When the effective shift of the distribution, due to non-perturbative physics, grows less in the multi-jet window, the value of the strong coupling from Thrust approaches the PDG world average...
- Other WIP: analyzing a more varied and generic set of renormalon cancellation schemes. Also looking at results from angularities.
- Analytic control over multi-jet power corrections would clearly be valuable (also see Luisoni et al. 2012.00622).

Thanks!

Backup Slides

R vs. R^{\star} convergence

$R_{\text {gap }}$ scheme:

SCET \& the PDG table on α_{s}

To be included in the PDG average, a fit must:

- be published in a peer-reviewed journal...
- include $O\left(\alpha_{s}{ }^{3}\right)$ fixed-order perturbative results...
- include `reliable' error estimates, including NP effects...

> 2020 PDG world average:
> $.1179+-.0010$

Thrust at $\mathrm{N}^{3} \mathrm{LL}$ with Power Corrections and a Precision Global Fit for $\alpha_{s}\left(m_{Z}\right)$
Riccardo Abbate, ${ }^{1}$ Michael Fickinger, ${ }^{2}$ André H. Hoang, ${ }^{3}$ Vicent Mateu, ${ }^{3}$ and Iain W. Stewart ${ }^{1}$
hep-ph/1006.3080

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1135 \pm(0.0002)_{\exp } \\
& \pm(0.0005)_{\mathrm{hadr}} \pm(0.0009)_{\mathrm{pert}}
\end{aligned}
$$

A Precise Determination of α_{s} from the C-parameter Distribution André H. Hoang, ${ }^{1,2}$ Daniel W. Kolodrubetz, ${ }^{3}$ Vicent Mateu, ${ }^{1}$ and Iain W. Stewart ${ }^{3}$

hep-ph/1501.04111

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right) & =0.1123 \pm 0.0002_{\mathrm{exp}} \\
& \pm 0.0007_{\mathrm{hadr}} \pm 0.0014_{\mathrm{pert}}
\end{aligned}
$$

- 2015 C-parameter result $\sim 4 \sigma$ away from lattice QCD / world average...

Data sets

-For thrust:

ALEPH-2004: 133. GeV (7) ALEPH-2004: 161. GeV (7) ALEPH-2004: 172. GeV (7) ALEPH-2004: 183. GeV (7) ALEPH-2004: 189. GeV (7) ALEPH-2004: 200. GeV (6) ALEPH-2004: 206. GeV (8) ALEPH-2004: 91.2 GeV (26) AMY-1990: 55.2 GeV (5) DELPHI-1999: 133. GeV (7) DELPHI-1999: 161. GeV (7) DELPHI-1999: 172. GeV (7) DELPHI-1999: 89.5 GeV (11) DELPHI-1999: 93. GeV (12) DELPHI-2000: 91.2 GeV (12) DELPHI-2003: 183. GeV (14) OP DELPHI-2003: 189. GeV (15) OP DELPHI-2003: 192. GeV (15) DELPHI-2003: 196. GeV (14) DELPHI-2003: 200. GeV (15) DELPHI-2003: 202. GeV (15) DELPHI-2003: 205. GeV (15) DELPHI-2003: 207. GeV (15) DELPHI-2003: 45. GeV (5) DELPHI-2003: 66. GeV (8) DELPHI-2003: 76. GeV (9) JADE-1998: 35. GeV (5) JADE-1998: 44. GeV (7) L3-2004: 130.1 GeV (11) L3-2004: 136.1 GeV (10) L3-2004: 161.3 GeV (12)

L3-2004: 172.3 GeV (12) L3-2004: 182.8 GeV (12) L3-2004: 188.6 GeV (12) L3-2004: 194.4 GeV (12) L3-2004: 200. GeV (11) L3-2004: 206.2 GeV (12) L3-2004: 41.4 GeV (5) L3-2004: 55.3 GeV (6) L3-2004: 65.4 GeV (7) L3-2004: 75.7 GeV (7) L3-2004: 82.3 GeV (8) L3-2004: 85.1 GeV (8) L3-2004: 91.2 GeV (10) OPAL-1997: 161. GeV (7) OPAL-2000: 172. GeV (8) OPAL-2000: 183. GeV (8) OPAL-2000: 189. GeV (8) OPAL-2005: 133. GeV (6) OPAL-2005: 177. GeV (8) OPAL-2005: 197. GeV (8) OPAL-2005: 91. GeV (5) SLD-1995: 91.2 GeV (6) TASSO-1998: 35. GeV (4) TASSO-1998: 44. GeV (5)
------ Summary ------

```
Totlal: 516
```

Q > 95 : 345
$\mathrm{Q}<88: 89$
Q ~ MZ : 82

-For angularities:

Generalized event shape and energy flow studies in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$

L3 Collaboration

JHEP 10 (2011) 143

Also see thesis by Pratima Jindal,
Panjab University, Chandigarh

- Data for $\mathrm{a}=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of a) $=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- e.g. $\mathrm{a}=-1$ and $0.5, \mathrm{Q}=91.2 \mathrm{GeV}$, compared to our NNLL' prediction:

Profiling a fit window

- How can we identify a region sensitive to $\boldsymbol{\mathcal { A }}$ and α_{s}, and for which our best theory curves are reliable? Look to the profiles!

- Profiles trace scale hierarchies through different regimes of a given distribution:

$$
\begin{array}{cl}
\text { Peak } & \mu_{H} \gg \mu_{J} \gg \mu_{S} \sim \Lambda_{Q C D} \\
\text { Tail } & \mu_{H} \gg \mu_{J} \gg \mu_{S} \gg \Lambda_{Q C D} \\
\text { Far Tail } & \mu_{H}=\mu_{J}=\mu_{S} \gg \Lambda_{Q C D}
\end{array}
$$

Tracks the peak
Turns off resummation
$G t_{0}=\frac{n_{0}}{Q} 3^{a} \quad t_{2}=n_{2} \times 0.295^{1-0.637 a}$
$\oint t_{1}=\frac{n_{1}}{Q} 3^{a} \quad t_{3}=n_{3} \tau_{a}^{\mathrm{sph}}$
Transitions between NP and
PT physics

Reverts to fixed-order perturbation theory

- A default fit window will be between \mathbf{t}_{1} r and \mathbf{t}_{2}, which roughly tracks the tail (former) and far-tail (latter) of the distribution.**

R-Gap phenomenology

- R-Gap scheme removes unphysical effects in cross-section predictions and gives good qualitative agreement with data:

- How non-perturbative effects are implemented (clearly) affects the extraction of the strong coupling!

A naive way to limit the shift...

- Obvious solution is to simply limit the growth of the renormalon scale:

$$
\begin{array}{ll}
& \gamma_{R} \rightarrow \theta\left(R_{\max }-R\right) \gamma_{R} \\
\text { need: } & \frac{d}{d R} \delta_{a}(R, R)=\gamma_{R}\left[\alpha_{s}(R)\right] \theta\left(R_{\max }-R\right) \\
\text { recall: } & \delta_{a}(R, R)=R e^{\gamma_{E}}\left[\frac{\alpha_{s}(R)}{4 \pi} \delta_{a}^{1}(R, R)+\left(\frac{\alpha_{s}(R)}{4 \pi}\right)^{2} \delta_{a}^{2}(R, R)+\cdots\right]
\end{array}
$$

- Simple solution is to simply set a max value for the R scale:

$$
\begin{aligned}
& R^{*} \equiv\left\{\begin{array}{ll}
R & R<R_{\max } \\
R_{\max } & R \geq R_{\max }
\end{array} \left\lvert\, \begin{array}{l}
\delta_{a}^{1}(\mu, R)=\Gamma_{S}^{0} \ln \frac{\mu}{R} \\
\delta_{a}^{2}(\mu, R)=\Gamma_{S}^{0} \beta_{0} \ln ^{2} \frac{\mu}{R}+\Gamma_{S}^{1} \ln \frac{\mu}{R}+\frac{\gamma_{S}^{1}(a)}{2}+c_{\tilde{S}}^{1}(a) \beta_{0}
\end{array}\right.\right. \\
& \text { Turns off the } \mathrm{R} \text {-scale at a given (fixed) } \mathrm{Rmax} \text { (good) } \quad \text { Potentially large logs of } \mu / \mathrm{R}!\text { (bad) }
\end{aligned}
$$

Angularities: from τ to b

- Consider Angularities, which can be defined in terms of the of the rapidity and $\mathrm{P}_{\boldsymbol{T}}$ of a final state particle ' i ', with respect to the thrust axis:

a $=0$ <-> 'Thrust'
a = 1 <-> 'Jet Broadening'
- Leading NP effect is also an (a-dependent (!)) shift of the perturbative distribution:

- Varying \mathbf{Q} between 35 and 207 GeV generates same difference as varying a $\in\{-2.0,0.5\}$ ($\sim 6)!!25$

2018 progress: NLL' to NNLL'

softserve.hepforge.org
Bell, Rahn \& Talbert

- Two-loop soft anomalous dimensions and singular constants provided by SoftSERVE
- Two-loop jet anomalous dimension obtained from consistency relations
- Two-loop singular jet constants extracted from EVENT2
- Matching to QCD at $O\left(\alpha_{s}{ }^{2}\right)$ extracted from EVENT2 *
- Includes set of H,J,S, \& non-sing. profile scales, tuned for a-dependence, and varied with a random scan over parameters
- Non-perturbative effects accounted for by convolution with RGap—subtracted shape function

The (only) dataset

Generalized event shape and energy flow studies in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation at $\sqrt{s}=91.2-208.0 \mathrm{GeV}$

JHEP 10 (2011) 143

Received: May 12, 2009
Revised: May 3, 2011
Accepted: August 24, 2011
Published: October 31, 2011
Also see thesis by Pratima Jindal, Panjab
University, Chandigarh

- Data for $a=\{-1.0,-0.75 .-0.5,-0.25,0.0,0.25,0.5,0.75\}$ at 91.2 and 197 GeV
- Total number of bins $=($ bins per a) $\times($ number of $a)=25 \times 7=175$ bins $@ \mathrm{Q}=91.2 \mathrm{GeV}$
- Compare to 404 bins included in 2015 C-Parameter fit (across all Q considered)...
- Early theory predictions look good against the data, but what does this translate to for $\boldsymbol{\Omega}$ and

BLUE: NNLL' $+\mathbf{O}\left(\alpha_{s}{ }^{2}\right)$
RED: $\mathbf{N N L L}+\mathbf{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)+\mathbf{N P}$

