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Motivation

Color Glass Condensate (CGC) framework describes non-linear effects (gluon
saturation)

I Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation

In collinear factorization framework the Q2 evolution comes from
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

To see saturation effects on experimental data we have to distinguish the
genuine difference between DGLAP and BK dynamics

Both frameworks require input which are fitted to the same experimental data
−→ The results do not deviate dramatically and the distinguishing
DGLAP/BK evolution is difficult
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Our method to see difference in DGLAP/BK

1 We want to be as independent as possible of
initial condition parametrization

2 We ”force” collinear factorization and CGC
F2,L to agree in a line in (x ,Q2) plane

3 Differences between the two frameworks
outside the chosen line quantify signatures
of gluon saturation

4 With differences we can approximate the
accuracy of F2,L saturation measurements in
EIC and LHeC/FCC-he

Matching line in (x ,Q2) plane
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F2,L with collinear factorization vs. CGC

Collinear factorization:
Collinear factorization F2,L using
APFEL [1] and LHAPDF [2]
libraries
NNPDF31_nlo_as_0118_1000 as
proton PDF set
nNNPDF20_nlo_as_0118_Au197
as nuclear PDF set
Both PDF sets have 1000 Monte
Carlo replicas

Color Glass Condensate (CGC):
Dipole picture F2,L fitted to
HERA data
Leading order total
photon-nucleus cross sections
Running coupling BK evolution 1

We match collinear factorization F2,L to corresponding CGC structure
functions in a line in (x ,Q2) plane

1T. Lappi and H. Mäntysaari. “Single inclusive particle production at high energy from HERA
data to proton-nucleus collisions”. In: Phys. Rev. D 88 (2013), p. 114020. arXiv: 1309.6963
[hep-ph]
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PDF matching
Bayesian reweighting method [4, 5]:

For each PDF replica fk we define

χ2
k =

Ndata∑
i=1

(Oi −Oi [fk ])2

(δBKOi)2

and so called Giele-Keller weights
[6]

ωk =
e− 1

2χ
2
k

1
Nrep

∑Nrep
k=1 e− 1

2χ
2
k
,

which always sum up to unity,

1
Nrep

Nrep∑
k=1

ωk = 1 .

Giele-Keller weights favor replicas
with χ2 ≈ 0.

Then we define reweighted
observables as

ORew =
1

Nrep

Nrep∑
k=1

ωkO[fk ]

We also construct a PDF set
matched to BK in (x ,Q2) line (Back
up)
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Fixing matching parameters

We want to match the reweighted values to
BK values as closely as possible

I Finite number of replicas (1000) prevent
the absolute match

Effective number of replicas [4, 7]

Neff = exp
1

Nrep

Nrep∑
k=1

ωk ln

(
Nrep

ωk

)
gives an approximation on how many PDF
replicas have significant weight

We adjust δBK in χ2
k in order to fix

Neff ≈ 10

χ2
k =

Ndata∑
i=1

(yi − yi [fk ])2

(δBKyi)2

ωk =
e− 1

2χ
2
k

1
Nrep

∑Nrep
k=1 e− 1

2χ
2
k

ORew =
1

Nrep

Nrep∑
k=1

ωkO[fk ]
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Choosing the matching line
We want to do the matching in a common region of validity for both
frameworks:

I In a region Q2 � Q2
s where saturation effects are moderate

I With enough small αs log(Q2) so that DGLAP evolution dynamics is reliable

−→ We choose to do the matching on points Q2(x) ≈ 10 × Q2
s (x)

Matching line in (x ,Q2) plane
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Proton matching
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(b) FL
The structure functions for proton as a function of x at Q2 ≈ 10Q2

s (x)

Separate matching for proton F2 and FL are both almost perfect
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Relative difference of proton F Rew
2 to F BK

2
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For proton F2 the relative difference is only a few percent
Generically slower x dependence in BK evolution
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Relative difference of proton F Rew
L to F BK

L
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(b) FL

The relative difference (F BK
L − F Rew

L )/F BK
L .

For proton FL the relative difference is:
I . 10% for x = 10−3...5.6 × 10−3 (EIC)
I . 40% for x = 10−5...10−4 (LHeC/FCC-he)

FL is much more sensitive to saturation than F2
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Nuclear matching
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(b) FL
The structure functions for 197Au as a function of x at Q2 ≈ 10Q2

s (x).

Nuclear reweight is not as successful as for proton since there are not enough
Monte Carlo replicas to get a precise match
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Relative difference of nuclear F2 to F BK
2
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For nuclear F2 the relative difference is . 10%
The relative difference is much larger than in the proton case

I It is expected since saturation effects are stronger in nuclei
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Relative difference of nuclear F Rew
L to F BK
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For nuclear FL the relative difference is:
. 15% for x = 10−3...10−2 (EIC)
. 60% for x = 10−5...10−4 (LHeC/FCC-he)
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Summary

With Bayesian reweighting we match proton/nuclear structure functions to
corresponding BK values in a line Q2 ≈ 10 × Q2

s (x)

The deviation outside the matching line describes signatures of saturation

In order to see saturation in protons in EIC

I FL the measurements have to be O(10%)

I F2 the measurements have to be O(1%)

In LHeC/FCC-he the differences are a few times larger

Saturation is stronger in heavy nuclei than in proton

FL is more sensitive to saturation than F2
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Back up: Weighted proton PDFs
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(a) Proton up quark
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(b) Proton gluon

Reweighting has slightly stronger effect on gluon distribution than on up
quark

Moderate effects expected since NNPDF3.1 PDFs are fitted to same HERA
data as BK boundary conditions
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Back up: Weighted nuclear PDFs
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(c) Nuclear up quark
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(d) Nuclear gluon

Nuclear PDFs are affecter more than proton PDFs

Reweighting has stronger effect on gluon distribution than on up quark
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Back up: Reweight with smaller x region
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(b) FL
Nuclear reweight in region x = 10−4...10−2
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Back up: Reweight with smaller x region
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Back up: Reweight in line Q2(x) ≈ 27 × Q2
s (x)

10 4 10 3

x

0.0

0.5

1.0

1.5

2.0

2.5

19
7 A

u 
F 2

/1
97

BK
reweight
nNNPDF

710152025
Q2 (GeV2)

(a) F2

10 4 10 3

x

0.0

0.2

0.4

0.6

0.8

1.0

19
7 A

u 
F L

/1
97

BK
reweight
nNNPDF

710152025
Q2 (GeV2)

(b) FL
Nuclear reweight in line Q2(x) ≈ 27 × Q2

s (x).
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Back up: Reweight in line Q2(x) ≈ 27 × Q2
s (x)
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Back up: Weights

Giele-Keller weights which favor replicas with χ2/Ndata ≈ 0
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