Signatures of gluon saturation from structure-function measurements arXiv:2203.05846

DIS2022 WG6

Nestor Armesto ¹ Tuomas Lappi ^{2 3} Heikki Mäntysaari ^{2 3} Hannu Paukkunen ^{2 3} Mirja Tevio ^{2 3}

¹Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia-Spain

²Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland

³Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

3.5.2022

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - ▶ Bjorken-*x* dependence from Balitsky-Kovchegov (BK) evolution equation

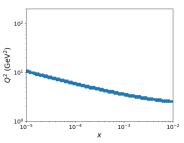
- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - ▶ Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation
- ullet In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - ▶ Bjorken-*x* dependence from Balitsky-Kovchegov (BK) evolution equation
- In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
- To see saturation effects on experimental data we have to distinguish the genuine difference between DGLAP and BK dynamics

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - ▶ Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation
- In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
- To see saturation effects on experimental data we have to distinguish the genuine difference between DGLAP and BK dynamics
- ullet Both frameworks require input which are fitted to the same experimental data \longrightarrow The results do not deviate dramatically and the distinguishing DGLAP/BK evolution is difficult

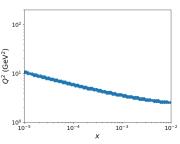
 We want to be as independent as possible of initial condition parametrization

- We want to be as independent as possible of initial condition parametrization
- **②** We "force" collinear factorization and CGC $F_{2,L}$ to agree in a line in (x, Q^2) plane



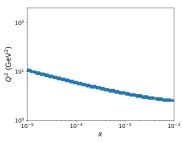
Matching line in (x, Q^2) plane

- We want to be as independent as possible of initial condition parametrization
- **②** We "force" collinear factorization and CGC $F_{2,L}$ to agree in a line in (x, Q^2) plane
- Differences between the two frameworks outside the chosen line quantify signatures of gluon saturation



Matching line in (x, Q^2) plane

- We want to be as independent as possible of initial condition parametrization
- We "force" collinear factorization and CGC F_{2L} to agree in a line in (x, Q^2) plane
- Differences between the two frameworks outside the chosen line quantify signatures of gluon saturation
- With differences we can approximate the accuracy of $F_{2,L}$ saturation measurements in EIC and LHeC/FCC-he



Matching line in (x, Q^2) plane

$F_{2,L}$ with collinear factorization vs. CGC

Collinear factorization:

- Collinear factorization F_{2,L} using APFEL [1] and LHAPDF [2] libraries
- NNPDF31_nlo_as_0118_1000 as proton PDF set
- nNNPDF20_nlo_as_0118_Au197 as nuclear PDF set
- Both PDF sets have 1000 Monte Carlo replicas

Color Glass Condensate (CGC):

- Dipole picture $F_{2,L}$ fitted to HERA data
- Leading order total photon-nucleus cross sections
- Running coupling BK evolution ¹

• We match collinear factorization $F_{2,L}$ to corresponding CGC structure functions in a line in (x, Q^2) plane

¹T. Lappi and H. Mäntysaari. "Single inclusive particle production at high energy from HERA data to proton-nucleus collisions". In: *Phys. Rev. D* 88 (2013), p. 114020. arXiv: 1309.6963 [heb-ph]

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}}\mathcal{O}_i)^2}$$

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}}\mathcal{O}_i)^2}$$

and so called **Giele-Keller** weights [6]

$$\omega_{\textit{k}} = \frac{e^{-\frac{1}{2}\chi_{\textit{k}}^2}}{\frac{1}{N_{\rm rep}}\sum_{\textit{k}=1}^{N_{\rm rep}}e^{-\frac{1}{2}\chi_{\textit{k}}^2}},$$

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}}\mathcal{O}_i)^2}$$

and so called **Giele-Keller** weights [6]

$$\omega_k = rac{e^{-rac{1}{2}\chi_k^2}}{rac{1}{N_{
m rep}}\sum_{k=1}^{N_{
m rep}}e^{-rac{1}{2}\chi_k^2}},$$

which always sum up to unity,

$$rac{1}{N_{
m rep}}\sum_{k=1}^{N_{
m rep}}\omega_k=1\,.$$

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}}\mathcal{O}_i)^2}$$

and so called **Giele-Keller** weights [6]

$$\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}}\sum_{k=1}^{N_{\text{rep}}}e^{-\frac{1}{2}\chi_k^2}},$$

which always sum up to unity,

$$\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k = 1.$$

Giele-Keller weights favor replicas with $\chi^2 \approx 0$.

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(\mathcal{O}_i - \mathcal{O}_i[f_k])^2}{(\delta_{\text{BK}}\mathcal{O}_i)^2}$$

and so called **Giele-Keller** weights [6]

$$\omega_k = rac{e^{-rac{1}{2}\chi_k^2}}{rac{1}{N_{
m rep}}\sum_{k=1}^{N_{
m rep}}e^{-rac{1}{2}\chi_k^2}},$$

which always sum up to unity,

$$\frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} \omega_k = 1.$$

Giele-Keller weights favor replicas with $\chi^2 \approx 0$.

Then we define reweighted observables as

$$\mathcal{O}^{\mathrm{Rew}} = \frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} \omega_k \mathcal{O}[f_k]$$

We also construct a PDF set matched to BK in (x, Q^2) line (Back up)

Fixing matching parameters

- We want to match the reweighted values to BK values as closely as possible
 - Finite number of replicas (1000) prevent the absolute match
- Effective number of replicas [4, 7]

$$\mathit{N}_{\mathrm{eff}} = \exp rac{1}{\mathit{N}_{\mathrm{rep}}} \sum_{k=1}^{\mathit{N}_{\mathrm{rep}}} \omega_k \ln \left(rac{\mathit{N}_{\mathrm{rep}}}{\omega_k}
ight)$$

gives an approximation on how many PDF replicas have significant weight

• We adjust $\delta_{\rm BK}$ in χ^2_{ν} in order to fix $N_{\rm eff} \approx 10$

$$\chi_k^2 = \sum_{i=1}^{N_{\rm data}} \frac{(y_i - y_i[f_k])^2}{(\delta_{
m BK} y_i)^2}$$

$$\omega_k = rac{e^{-rac{1}{2}\chi_k^2}}{rac{1}{N_{
m rep}}\sum_{k=1}^{N_{
m rep}}e^{-rac{1}{2}\chi_k^2}}$$

$$\mathcal{O}^{ ext{Rew}} = rac{1}{N_{ ext{rep}}} \sum_{k=1}^{N_{ ext{rep}}} \omega_k \mathcal{O}[f_k]$$

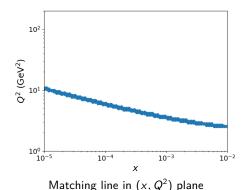
3.5.2022

 We want to do the matching in a common region of validity for both frameworks:

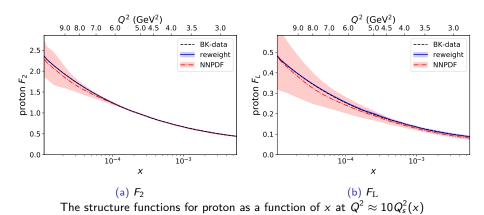
- We want to do the matching in a common region of validity for both frameworks:
 - ▶ In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate

- We want to do the matching in a common region of validity for both frameworks:
 - ▶ In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate
 - With enough small $\alpha_s \log(Q^2)$ so that DGLAP evolution dynamics is reliable

- We want to do the matching in a common region of validity for both frameworks:
 - ▶ In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate
 - With enough small $\alpha_s \log(Q^2)$ so that DGLAP evolution dynamics is reliable
 - \longrightarrow We choose to do the matching on points $Q^2(x) \approx 10 \times Q_s^2(x)$

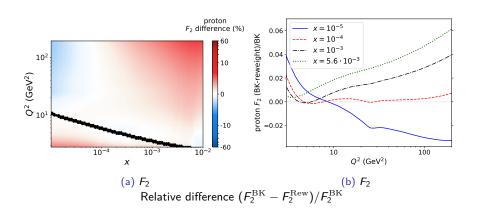


Proton matching



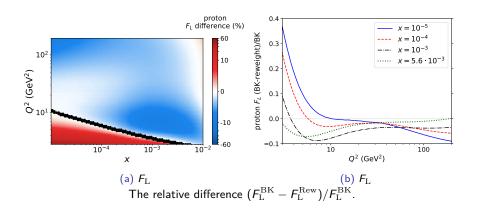
ullet Separate matching for proton F_2 and $F_{
m L}$ are both almost perfect

Relative difference of proton F_2^{Rew} to F_2^{BK}



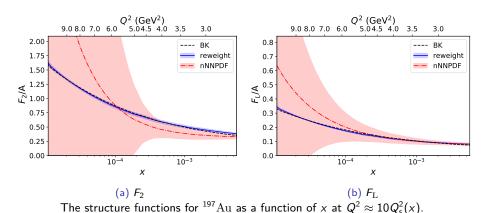
- For proton F_2 the relative difference is only a few percent
- Generically slower x dependence in BK evolution

Relative difference of proton $F_{ m L}^{ m Rew}$ to $F_{ m L}^{ m BK}$



- For proton $F_{\rm L}$ the relative difference is:
 - > 10% for $x = 10^{-3}...5.6 \times 10^{-3}$ (EIC)
 - $\le 40\%$ for $x = 10^{-5}...10^{-4}$ (LHeC/FCC-he)
- ullet $F_{
 m L}$ is much more sensitive to saturation than F_2

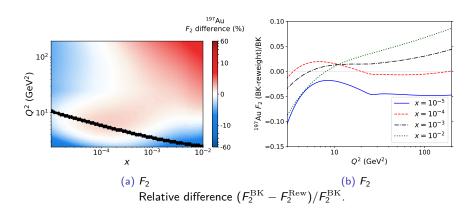
Nuclear matching



Nuclear reweight is not as successful as for proton since there are not enough

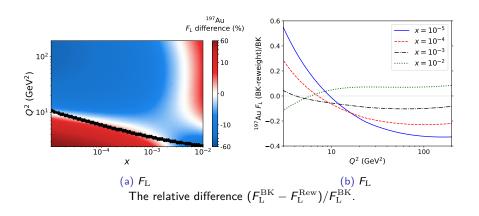
Monte Carlo replicas to get a precise match

Relative difference of nuclear F_2 to $F_2^{ m BK}$



- For nuclear F_2 the relative difference is $\lesssim 10\%$
- The relative difference is much larger than in the proton case
 - ▶ It is expected since saturation effects are stronger in nuclei

Relative difference of nuclear $F_{ m L}^{ m Rew}$ to $F_{ m L}^{ m BK}$



For nuclear $F_{\rm L}$ the relative difference is:

- $\lesssim 15\%$ for $x = 10^{-3}...10^{-2}$ (EIC)
- $\leq 60\%$ for $x = 10^{-5}...10^{-4}$ (LHeC/FCC-he)

• With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$

- With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$
- The deviation outside the matching line describes signatures of saturation

- With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
 - $F_{\rm L}$ the measurements have to be $\mathcal{O}(10\%)$
 - F_2 the measurements have to be $\mathcal{O}(1\%)$

- With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
 - $F_{\rm L}$ the measurements have to be $\mathcal{O}(10\%)$
 - F_2 the measurements have to be $\mathcal{O}(1\%)$
- In LHeC/FCC-he the differences are a few times larger

- With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
 - $F_{\rm L}$ the measurements have to be $\mathcal{O}(10\%)$
 - F_2 the measurements have to be $\mathcal{O}(1\%)$
- In LHeC/FCC-he the differences are a few times larger
- Saturation is stronger in heavy nuclei than in proton

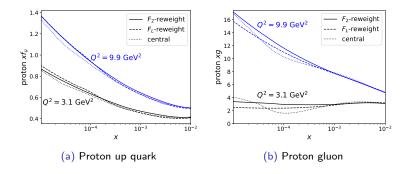
- With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$
- The deviation outside the matching line describes signatures of saturation
- In order to see saturation in protons in EIC
 - $F_{\rm L}$ the measurements have to be $\mathcal{O}(10\%)$
 - F_2 the measurements have to be $\mathcal{O}(1\%)$
- In LHeC/FCC-he the differences are a few times larger
- Saturation is stronger in heavy nuclei than in proton
- $F_{\rm L}$ is more sensitive to saturation than F_2

References

- Valerio Bertone, Stefano Carrazza, and Juan Rojo. "APFEL: A PDF Evolution Library with QED corrections". In: Comput. Phys. Commun. 185 (2014), pp. 1647–1668. DOI: 10.1016/j.cpc.2014.03.007. arXiv: 1310.1394 [hep-ph].
- [2] Andy Buckley et al. "LHAPDF6: parton density access in the LHC precision era". In: Eur. Phys. J. C 75 (2015), p. 132. DOI: 10.1140/epjc/s10052-015-3318-8. arXiv: 1412.7420 [hep-ph].
- [3] T. Lappi and H. Mäntysaari. "Single inclusive particle production at high energy from HERA data to proton-nucleus collisions". In: *Phys. Rev. D* 88 (2013), p. 114020. arXiv: 1309.6963 [hep-ph].
- [4] Richard D. Ball et al. "Reweighting NNPDFs: the W lepton asymmetry". In: Nucl. Phys. B 849 (2011). [Erratum: Nucl.Phys.B 854, 926–927 (2012), Erratum: Nucl.Phys.B 855, 927–928 (2012)], pp. 112–143. DOI: 10.1016/j.nuclphysb.2011.03.017. arXiv: 1012.0836 [hep-ph].
- [5] Richard D. Ball et al. "Reweighting and Unweighting of Parton Distributions and the LHC W lepton asymmetry data". In: Nucl. Phys. B 855 (2012), pp. 608–638. DOI: 10.1016/j.nuclphysb.2011.10.018. arXiv: 1108.1758 [hep-ph].
- [6] Walter T. Giele and Stephane Keller. "Implications of hadron collider observables on parton distribution function uncertainties". In: *Phys. Rev. D* 58 (1998), p. 094023. DOI: 10.1103/PhysRevD.58.094023. arXiv: hep-ph/9803393.
- [7] Hannu Paukkunen and Pia Zurita. "PDF reweighting in the Hessian matrix approach". In: *JHEP* 12 (2014), p. 100. DOI: 10.1007/JHEP12(2014)100. arXiv: 1402.6623 [hep-ph].

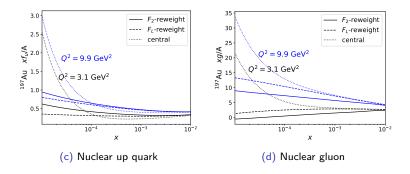
15 / 14

Back up: Weighted proton PDFs



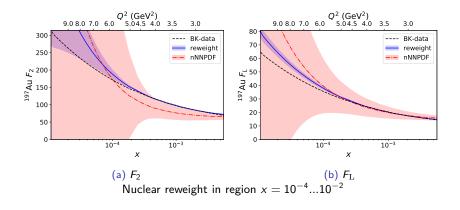
- Reweighting has slightly stronger effect on gluon distribution than on up quark
- Moderate effects expected since NNPDF3.1 PDFs are fitted to same HERA data as BK boundary conditions

Back up: Weighted nuclear PDFs

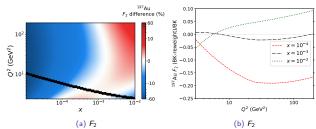


- Nuclear PDFs are affecter more than proton PDFs
- Reweighting has stronger effect on gluon distribution than on up quark

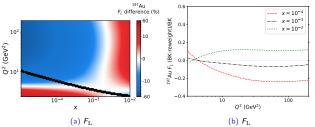
Back up: Reweight with smaller x region



Back up: Reweight with smaller x region

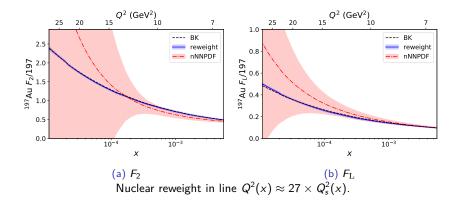


The relative difference $(F_2^{\rm BK}-F_2^{\rm Rew})/F_2^{\rm BK}$ with nuclear reweight in region $x=10^{-4}...10^{-2}$.

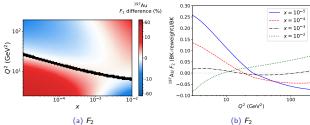


The relative difference $(F_{\rm L}^{\rm BK}-F_{\rm L}^{\rm Rew})/F_{\rm L}^{\rm BK}$ with nuclear reweight in region $x=10^{-4}...10^{-2}$.

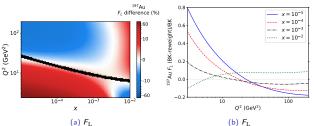
Back up: Reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$



Back up: Reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$



The relative difference $(F_2^{
m BK}-F_2^{
m Rew})/F_2^{
m BK}$ with nuclear reweight in line $Q^2(x)\approx 27\times Q_s^2(x)$.



The relative difference $(F_{\rm L}^{\rm BK} - F_{\rm L}^{\rm Rew})/F_{\rm L}^{\rm BK}$ with nuclear reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$.

Back up: Weights

Giele-Keller weights which favor replicas with $\chi^2/\textit{N}_{\rm data} \approx 0$

$$\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2}\chi_k^2}}$$

Weights used with experimental data favor replicas with $\chi^2/\textit{N}_{\rm data}\approx 1$

$$\omega_k = \frac{(\chi_k^2)^{(N_{\rm data}-1)/2} {\rm e}^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\rm rep}} \sum_{k=1}^{N_{\rm rep}} (\chi_k^2)^{(N_{\rm data}-1)/2} {\rm e}^{-\frac{1}{2}\chi_k^2}}$$