A Forward Calorimeter in ALICE

Ionut-Cristian Arsene University of Oslo

Contents

- Physics program of a forward calorimeter at the LHC
- FoCal detector upgrade in ALICE
 - Design
 - Projected performance
- Prototype tests with beam
- Summary and outlook

Heavy-Ion Collisions and the QGP

P.A.Steinberg, Plenary 1 L.Apolinario, Plenary 3

- Mission: study of the deconfined state of nuclear matter, QGP, using relativistic heavy-ion collisions (HIC)
- Need to disentangle effects originating in all the other stages of the collision: initial state, hadronization

Initial state and parton PDFs

Parton PDFs in free nucleons already part of textbooks, legacy of DESY experiments

Initial state and parton PDFs

- Parton PDFs in free nucleons already part of textbooks, legacy of DESY experiments
- PDFs of nucleons embedded in nuclei (nPDFs) are modified, as shown initially by the EMC Collaboration
- Large uncertainties on the nPDFs, in particular for gluons at low Bjorken-x

Initial state and parton PDFs

 J/ψ nuclear suppression: sensitive to gluon nPDFs

CT14 + EPPS16 Pb-isospin, nPDF

nCTEQ15 Pb-isospin, nPDF

ALI-PUB-146531

dN/dy

Uncertainty on nPDFs directly impacts on the interpretation of observables in heavy-ion collisions

nPDF

Gluon saturation

- Gluon density increases with Q² and 1/x
- At high density, gluon fusion processes become important, possibly leading to a saturation density at an energy scale $Q_s(x)$
 - Fundamentally new regime, also known as Color Glass Condensate (CGC)
 - Higher density in nuclei → CGC effects expected at larger x
- Some hints from p-Pb collisions: long range correlations, azimuthal anisotropy, ...

 I.Arsene | DIS'22 Santiago de Compostela

A Forward Calorimeter in ALICE (FOCAL)

ALICE, LHCC-I-036 (2020)

- Detector of choice: forward calorimeter (3.4<n<5.8)
 - Electromagnetic: FoCal-E
 - Hadronic: FoCal-H
- Main observable: direct photons
- Complementary observables:
 - π⁰
 - Jets
 - Quarkonia
 - Z⁰ and W[±]

Aims:

- Explore the small-x structure of nucleons inside nuclei down to Bjorken-x of $\sim 10^{-6}$
- Study the longitudinal dependence of particle production in HICs using π^{0} , jets and long range correlations

High granularity EM calorimeter: FoCal-E

ALICE, LHCC-I-036 (2020)

- 20 layers, each including
- 3.5 mm tungsten (~ 1 X_0)
- Silicon sensors

Hybrid readout design:

- Silicon pads: ~ 1x1 cm²
 - Energy measurement, timing
- CMOS pixels: ~ 30 x 30 μm²
 - Two-shower separation, position resolution
- Challenge: separate photons from π^0 at large momentum
- Requirements:
 - Small Molière radius
 - High granularity read-out

Sensitivity to gluon PDFs

- PYTHIA pp 8.8 TeV simulations
- Both direct photons and D^o mesons are sensitive to gluon PDFs
- Compare expected performance of LHCb D⁰ and FoCal photons
- Overall better coverage at low-x expected with FoCal

Sensitivity to gluon PDFs

- Kinematic reach of various DIS measurements and future electromagnetic (left) and hadronic (right) measurements
- FoCal uniquely placed to explore low-x physics over a broad range in Q²

Direct photon reconstruction performance

- Rejection of decay photons performed using selections on invariant mass, cluster shape and isolation energy veto
- Very good separation power for direct photons in pp and p-Pb collisions

Direct photon reconstruction performance

- Uncertainty on direct photon measurements < 10% for $p_{\scriptscriptstyle T}$ >5 GeV/c
- Significantly constrains state of the art nPDFs such as EPPS16 and nNNPDF

π^0 measurements in Pb-Pb

- Precise neutral pion measurements in central Pb-Pb collisions
- Explore longitudinal dependence of nuclear suppression, long range correlations, etc.

nPDFs using UPCs (p-Pb and PbPb)

- Ultra-Peripheral Collisions (UPC) allow the study of vector meson photo-production in photo-nuclear processes
- Photo-nuclear production sensitive to nuclear gluon PDFs
- Very good reconstruction performance for J/ψ in the relevant kinematic range

FoCal beam test at the SPS (2021)

- Use H6 beam line, up to ~120 GeV
- FoCal-E:
 - 20 tungsten plates
 - 1 pad layer of a single Hamamatsu sensor
 - 2 pixel layers of 18 ALPIDE chips each, placed after 5 and 10 X₀, respectively

FoCal-E pixel layers (preliminary results)

- Four beam energies tested: 20, 40, 60 and 80 GeV
- Work in progress for detailed understanding of data
 - Mean of electromagnetic component extracted using a gauss fit
 - Reasonable agreement with electrons simulated with GEANT4

FoCal-E pad layer (preliminary results)

- Four beam energies tested: 20, 40, 60 and 80 GeV
- Work in progress for detailed understanding of data
 - Mean of electromagnetic component extracted using a gauss fit
 - Reasonable agreement with electrons simulated with GEANT4

FoCal-H (preliminary results)

- Spaghetti-type calorimeter
- Geometry: 95 x 95 x 550 mm
 - 36x40 copper tubes filled with scintillating fibers
 - 48 SiPMs, readout by two CAEN boards
- Detector response well reproduced in GEANT4 simulations

EPICAL-2 prototype

Fully digital calorimeter:

- 24 layers with 3mm tungsten each
- Readout using 2 ALPIDE sensor chips in each layer
- Transverse size: 30 x 30 mm, 1024 x 1024 pixels
- Two shower separation down to about 1 mm

EPICAL-2 beam test at DESY (2019)

- Very good agreement between data and simulations
- Improvement on energy resolution wrt previous prototype based on MIMOSA sensors
- Ongoing analysis of the SPS test beam (2021)

Summary

- Strong low-x programme enabled by the forward measurements with FoCal
 - Direct photons, π 0, jets, quarkonia in UPC, electro-weak bosons
- Extensive R&D with prototypes
- Outlook
 - Two test beams in 2022:
 - June at CERN PS to test new pad electronics
 - Autumn at the SPS to test the demonstrator prototype
 - Summer 2023: finalization of R&D and Technical Design Report
 - LHC LS3 (2026-2028): FoCal installation and commissioning

Backup

FOCAL performance vs LHCb

A Forward Calorimeter in ALICE (FOCAL)

- Challenge: separate photons from π^0 at large momentum
- Requirements:
 - Small Molière radius
 - High granularity read-out