

Physics Potential of a TeV Muon-Ion Collider

Based on Snowmass '21 whitepaper: arXiv:2203.06258

D. Acosta, W. Li, O. Miguel Colin, X. Zuo (Rice U.)

E. Barberis, N. Hurley, D. Wood (Northeastern U.)

Outline

- Overview of concept
- Potential machines
 - Though not the technical challenges of establishing muon collider technology
- Science program
 - DIS measurements
 - Higgs and other SM particle production processes
 - BSM physics
- Kinematics and resolution
- Experiment considerations

The Electron-Ion Collider (EIC) at BNL

International facility approved by the U.S. nuclear physics program. Science to begin in 2030s

<u>EIC Conceptual Design Report</u> recently released and project approved. Initial detector design (ECCE) also selected.

Salient points:

- Electron beam energy up to 18 GeV
- Hadron beam energy up to 2/5 GeV
- √s = 20 -- 140 GeV
- Luminosity 10³³ -- 10³⁴ Hz/cm²
- Polarized electron, proton and ion beams (any)

Physics goals:

- ep and eN deep inelastic scattering
- Nucleon spin structure
- Gluon saturation scale (Q_S)

But what if we changed leptons?

7

A lot of interest in µµ colliders

→ Replace e by µ beam at EIC

Bending radius of RHIC tunnel: **r = 290m**

Achievable muon beam energy: **0.3Br**

	Parameter	1 (aggressive)	2 (realistic)	3 (conservative)
	Muon energy (TeV)	1.39	0.96	0.73
	Muon bending magnets (T)	16 (FCC)	11 (HL-LHC)	8.4 (LHC)
(Muon bending radius (m)		290	
	Proton (Au) energy (TeV)	0.	275 (0.11/nucleo	n)
	CoM energy (TeV)	1.24 (0.78)	1.03 (0.65)	0.9 (0.57)
		1		

 $\sqrt{s} = 1 \text{ TeV}!$

7-8X increase over EIC energy

See also talk by Ethan Cline in this session

A Muon-Ion Collider – Who Ordered That?

Probe a **new energy scale** and nucleon momentum fraction in Deep Inelastic Scattering using a relatively compact machine

- √s ~ 1 TeV
- Q² up to 10⁶ GeV²
- x as low as 10⁻⁶

Well beyond the EIC, matches that of the proposed LHeC. Further beyond if collided with the LHC

Provides a science case for a TeV muon storage ring demonstrator toward a multi-TeV μ+μ- collider

- Precision PDFs in new regimes (incl. spin at BNL)
- QCD at extreme parton density
- Precision EWK and QCD measurements
- Higgs and other SM particle production
- BSM / LFV sensitivity with an initial muon (e.g. LQ, Z')

Facilitate the **collaboration of the nuclear and particle physics communities** around an innovative and forward-looking machine

Re-use existing facilities at BNL (MulC as an upgrade to the EIC)

Broad science program helps share costs, and re-use helps economize

Energy Configurations and Luminosity

Parameter	BNL o	ptions: Mu	alC	MulC2	LH	muC -	LHC option
$\sqrt{s_{\mu p}}$ (TeV)	0.33	0.74	1.0	→ 2.0	6	6.5	
$L_{\mu\rho}$ (10 ³³ cm ⁻² s ⁻¹)	0.07	2.1	4.7		2	2.8	← Estimate of lumi
Int. Lumi. (fb ⁻¹) per 10 yrs	6	178	400		2	237	
Staging optio	ns	Muon		Proton	Muon	Proton	
Beam energy (TeV)	0.1	0.5	0.96	0.275 → 1.0	1.5	7	← Beam energies
N _b (10 ¹¹)	40	20	20	3	20	2.2	
f ^μ _{rep} (Hz)	15	15	15		12	$\mathcal{L}_{un} =$	$N^{\mu}N^{p}$ $\min[f_{e}^{\mu}, f_{e}^{p}]H_{ba}$
Cycles per μ bunch, N ^μ _{cycle}	1134	1719	3300		3300		$\frac{N^{\mu}N^{p}}{4\pi \max[\sigma_{x}^{\mu}, \sigma_{x}^{p}] \max[\sigma_{y}^{\mu}, \sigma_{y}^{p}]} \min[f_{c}^{\mu}, f_{c}^{p}] H_{hg},$ $\sigma_{x,y}^{\mu,p} = \sqrt{\varepsilon_{x,y}^{\star} \beta_{x,y}^{\star} m^{\mu,p} / E^{\mu,p}}$
ε* _{x,y} (μm)	200	25	25	0.3	25	2.5	
β* _{x,y} @IP (cm)	1.7	1	0.75	5	0.5	15	
Trans. beam size, $\sigma_{x,y}$ (µm)	48	7.6	4.7	7.1	3	7.1	

Muon Collider parameters + BNL/EIC and LHC proton beam parameters

DIS Reach in x and Q^2 for p Collisions

- Expands DIS reach at high Q² and low x by 1-3 orders of magnitude over HERA and the EIC
- Coverage of MulC at BNL is nearly identical with that of the proposed Large Hadron electron Collider (LHeC) at CERN with 50 GeV e⁻ beam
 - With complementary kinematics
- Coverage of a mu-LHC collider at CERN (LHmuC) would significantly exceed even that of the FCC-eh option of a 50 TeV proton beam with 50 GeV e⁻ beam

DIS Reach in x and Q^2 for ℓA Collisions

- Can explore well the predicted region of gluon saturation regime in ions at low x in the GBW model [Phys. Rev. D 59, 014017 (1998)]
 (and in protons, prev. slide)
- Also the MulC at BNL can scan a wide range of ion species, and beam polarization

Saturation scale: $Q_s^2(A) = A^{1/3}Q_s^2(p)$

DIS Evolution and Physics Landscape

DIS Evolution and Physics Landscape

DIS Differential Cross Sections in Q²

Computed with Pythia8 and NNPDF2.3 PDF set. 0.1 < y < 0.9

Total integrated CC cross section

 μ^{-} p NC μ⁺ p NC

Q² [GeV²]

Machine	$Q^2 > 1$	$Q^2 > 3 \times 10^4$	$Q^2 > 10^5$	$Q^2 > 3 \times 10^5$					
	$\mu^- p \to \nu_\mu X$								
HERA	68	0.038	_	g					
MuIC	200	5.2	0.12	0.0053					
MuIC2	345	13	0.92	0.20					
$_{ m LHmuC}$	860	43	4.6	1.6					
			$\mu^+ p \to \overline{\nu}_{\mu}$	X					
HERA	37	0.00095	-	.—.					
MuIC	160	1.4	0.0090						
MuIC2	300	6.5	0.22	0.029					
LHmuC	850	36	3.0	0.83					

- Probes well beyond HERA and the electroweak scale
- Highest Q² requires largest integrated lumi (10³³–10³⁴ Hz/cm²)
 - But measurements low Q² and x can benefit from relatively low lumi orders of magnitude smaller

 10^{6}

Nuclear Physics at the MulC

Gluon saturation

What's the property of high-density gluon matter

3D Nucleon structure

Nucleon spin puzzle

MuIC to reach $x \sim 10^{-5}$

Equivalent Reach for Production, μp vs. μ+μ-

- Compute equivalent parton luminosity of a μp collider for $2\rightarrow 1$ and $2\rightarrow 2$ processes
- We find that a µ⁺µ⁻ collider is equivalent to a µp collider with 1.5× higher √s in terms of its discovery potential.
- A 1.5x7 TeV LHmuC with √s = 6.5 TeV exceeds that of a 3 TeV µ+µ- collider as proposed by the IMCC (equiv. to 4.3 TeV).

(1)

The parton luminosity of a μp collider is expressed as,

$$\frac{dL_i}{d\tau}(\tau,\mu_f) = \int_{\tau}^{1} \frac{dx}{x} f_i(x,\mu_f).$$

Here the $f_i(x, \mu_f)$ are the parton distribution functions (PDFs) for parton i carrying a fraction x of the longitudinal momentum, at factorization scale $\mu_f = \sqrt{\hat{s}}/2$, where \hat{s} is the partonic center-of-mass energy and $\tau = \hat{s}/s$.

Higgs Physics with MulC

VBF mode

- σ grows with √s, CC exchange larger than NC
- Cross section comparable to LHeC and μ⁺μ⁻ colliders

Acceptance

All final state objects, other than the muon,
 are in central region of detector (in contrast to LHeC)

 NC^{μ}

Higgs Physics with MulC

- Pseudo-analysis for H→bb
 - Requirements that enhance CC VBF process over NC DIS bb background:
 - 3 jets in final state (2 b-tagged)
 - muon veto, MET
 - Higgs p_T
 - S/B ~ 1 for H→bb
 - Expect ~900 selected H→bb in 400 fb⁻¹ (10y) @
 1TeV MulC
 - Increases by factor 10 at LHmuC
- → CC may become measurable also with higher cross section at LHmuC

Other SM Particle Production

Vector boson production,

- e.g.
- Sensitive to triple gauge couplings
- \circ $\sigma(W) = 19 \text{ pb for 1 TeV MulC}$
 - 2.1×10^4 leptonic W → lv decays into each lepton flavor for 10 fb⁻¹

- Single top production
 - Direct measurement of |V_{tb}|
 - \circ $\sigma(t) = 5.4 \text{ pb for 1 TeV MulC}$

Potential for precision coupling measurements (and maybe mass measurements, with larger σ at higher \sqrt{s} and higher luminosity)

Leptoquark Production with Bottom, Tau

- Studies focused on LQ models inspired by B and μ anomalies and LFV
- s-channel S3 LQ(b) production

• t-channel S3 LQ(τ) production

Leptoquark Production with Top

 Final state muon in central region of detector

Potential limits still to be worked out

DIS Scattering Kinematics at a µp Collider

- The scattered muon is in the far backward (downstream muon) direction
- Hadronic system is more central, but toward muon beam direction

Detector Considerations and Challenges

- Modified μ⁺μ⁻ conceptual detector design
- Hadron PID over wide phase space
- Detection of scattered muons is important, mostly at high η (far-backward), with good resolution up to TeV scale
 - Useful also for a $\mu^+\mu^-$ experiment to tag NC VBF processes?
- Shielding nozzle only on incoming muon side (Needs BIB study)

	Main requirements	
Muons	-7<η<0, <u>σ(</u> p)/p < 5%	
Tracking	-4<η<2.4	
PID (π/k/p)	-4<η<2.4, p<100 GeV	
Calorimetry (jets, photons)	-5<η<2.4	

DIS Resolution Studies

Resolutions of reconstructed Q^2 , x and y with 3 methods

Simple assumptions of detector resolutions to smear particles from PYTHIA 8

		Resolution			
Particle	Detector	$\frac{\sigma(p)}{p}$ or $\frac{\sigma(E)}{E}$	$\sigma(\eta, \varphi)$		
(Forward) Muons	e.g., MPGD	0.01% p ⊕1%	0.2×10 ⁻³		
Charged particles $(\pi^{\pm}, K^{\pm}, p/\bar{p}, e^{\pm})$	Tracker + PID	0.1% <i>p</i> ⊕1%	$\left(\frac{2}{p} \oplus 0.2\right) \times 10^{-3}$		
Photons	EM Calorimeter	$\frac{10\%}{\sqrt{E}} \oplus 2\%$	$\frac{0.087}{\sqrt{12}}$		
Neutral hadrons (n, K_L^0)	Hadronic Calorimeter	$\frac{50\%}{\sqrt{E}} \oplus 10\%$	$\frac{0.087}{\sqrt{12}}$		

- Muons: 10% at 1 TeV, η > -7
- Hadrons: $-4 < \eta < 2.4$ (shielding)

MulC Synergies with a Muon Collider

- Siting a muon collider at a facility with a high energy hadron ring opens up an interesting additional, complementary science program
 - \circ DIS and QCD, but also electroweak cross sections are comparable to those in $\mu^+\mu^-$ collisions
- Re-use of existing hadron ring infrastructure helps allay some of the cost
- A MulC provides a science case for an initial muon collider demonstrator
 - Luminosity demands for proton/nuclear structure measurements at extreme parton density (low x) are much less stringent than the ultimate needs for Higgs studies, etc.
 - Interesting DIS measurements even for staged muon energies from ~100 GeV
- A MulC would have both particle physics and nuclear physics interests
 - Two communities to join in detector development and construction
 - Joint funding from particle and nuclear physics programs?
- Similar detector needs

Summary

- Collisions of a TeV-scale muon beam with a high-energy proton/ion beam provides a novel way to explore new a regime in DIS at high Q² and low x
 - Proposed options at BNL/EIC ($\sqrt{s} = 1-2 \text{ TeV}$) and CERN/LHC ($\sqrt{s} = 6.5 \text{ TeV}$)
- Luminosity > 10³³ Hz/cm² may be possible
- Precision electroweak, QCD, and SM particle production measurements (including Higgs) can be performed
- Complementary way to probe BSM physics
- Kinematics: small muon scattering angles, more central hadronic systems
- Many synergies with muon collider development, nuclear and particle physics programs
- In case you are interested to support this concept for the U.S. Snowmass process (or provide any comments):
 https://docs.google.com/spreadsheets/d/1Vqz_4DqSt7HFrvpSYs5-e1k7GgQBsypxvYebfR17ic/edit#gid=0

Acknowledgements

• This work is in part supported by the Department of Energy, United States grant numbers DE-SC0010266 (D.A.), DE-SC0005131 (W.L.)

Backup

Lepton DIS Kinematics of MuIC Compared to LHeCN

Much higher scattered muon energy and higher |η| at MulC

Hadron DIS Kinematics of MuIC Compared to LHeCN

Hadron system peaks more in proton direction and lower energy at low x for LHeC

DIS Differential Cross Sections in Q²

TABLE XII. Cross sections, in fb, for 125 GeV Higgs boson production in $\mu^- p$ scattering. The μ^- beam energy is 960 GeV and the proton beam energy is 275 GeV. P is the polarization of the muon beam.

	P = -40%	P=-20%	P = -10%	P = 0 %	P=10%	P=20%	P=40%	P=100%
σ_{CC}	91.1	78.2	71.7	65.1	58.8	52.1	39.0	0
σ_{NC}	12.6	12.1	11.9	11.6	11.4	11.1	10.5	8.9
σ_{tH}	0.0224	0.0187	0.0174	0.0158	0.0139	0.0128	0.0096	0
total	103.7	90.3	83.6	76.7	70.2	63.2	49.5	8.9

TABLE XIII. Cross sections, in fb, for 125 GeV Higgs boson production in μ^+p scattering. The μ^+ beam energy is 960 GeV and the proton beam energy is 275 GeV. P is the polarization of the muon beam.

	P = 40%	P=20%	P = 10%	P=0~%	P=-10%	P = -20%	P = -40%	P=-100%
σ_{CC}	45.0	38.2	35.6	32.1	28.9	25.6	19.2	0
σ_{NC}	12.4	12.0	11.7	11.6	11.3	11.0	10.6	9.1
σ_{tH}	0.0220	0.0190	0.0173	0.0157	0.0142	0.0127	0.0093	0
total	57.4	50.2	47.3	43.7	40.2	36.6	29.8	9.1

W Boson Cross Sections at MulC

TABLE VIII. Cross sections for the $W^+\mu^-$ process in μ^-p collisions for different beam energy configurations and with different cutoffs on the scattered muon $p_{\rm T}$. The listed cross sections are in pb, with scale uncertainties and PDF $\oplus \alpha_s$ uncertainties. The μ^- beam energy is unpolarized in all cases.

$E_{\mu} \times E_p \text{ (TeV}^2)$	Inclusive	$p_{\mathrm{T}}^{\ell} > 1~\mathrm{GeV}$	$p_{\mathrm{T}}^{\ell} > 2~\mathrm{GeV}$	$p_{\mathrm{T}}^{\ell} > 5 \mathrm{~GeV}$
0.96×0.275	$8.93 {}^{+1.0\%}_{-1.2\%} {}^{+0.7\%}_{-0.7\%}$	$2.29 {}^{+2.4\%}_{-2.5\%} {}^{+0.8\%}_{-0.8\%}$	$1.86_{-2.7\%}^{+2.6\%}_{-2.7\%}^{+0.8\%}$	$1.32 {}^{+3.2\%}_{-3.1\%} {}^{+0.8\%}_{-0.8\%}$
0.96×0.96	$22.4 {}^{+1.2\%}_{-1.7\%} {}^{+0.7\%}_{-0.7\%}$	$6.19 {}^{+0\%}_{-0.4\%} {}^{+0.7\%}_{-0.7\%}$	$\left[5.13 \begin{array}{ccc} +0\% & +0.7\% \\ -0.3\% & -0.7\% \end{array} \right]$	$3.77 {}^{+0.4\%}_{-0.7\%} {}^{+0.7\%}_{-0.7\%}$
1.5×7	$90.1 {}^{+6.0\%}_{-6.7\%} {}^{+1.0\%}_{-1.0\%}$	$27.4^{~+4.6\%}_{~-5.3\%}^{~+0.8\%}_{~-0.8\%}$	$23.1 {}^{+4.3\%}_{-5.0\%} {}^{+0.8\%}_{-0.8\%}$	$17.6 {}^{+4.0\%}_{-4.6\%} {}^{+0.8\%}_{-0.8\%}$
1.5×13.5	$124 {}^{+7.4\%}_{-8.0\%} {}^{+1.1\%}_{-1.1\%}$	$38.7 {}^{+5.9\%}_{-6.5\%} {}^{+0.9\%}_{-0.9\%}$	$32.6 {}^{+5.6\%}_{-6.3\%} {}^{+0.9\%}_{-0.9\%}$	$25.0 {}^{+5.2\%}_{-5.9\%} {}^{+0.8\%}_{-0.8\%}$
1.5×20	$150 {}^{+8.1\%}_{-8.8\%} {}^{+1.1\%}_{-1.1\%}$	$47.0 {}^{+6.6\%}_{-7.3\%} {}^{+0.9\%}_{-0.9\%}$	$\left 40.0\ ^{+6.4\%}_{-7.0\%}\ ^{+0.9\%}_{-0.9\%}\right $	$30.6^{+5.9\%}_{-6.5\%}{}^{+0.9\%}_{-0.9\%}$
1.5×50	$225 {}^{+9.9\%}_{-10\%} {}^{+1.3\%}_{-1.3\%}$	$72.8 {}^{+8.4\%}_{-8.9\%} {}^{+1.0\%}_{-1.0\%}$	$61.7 {}^{+8.2\%}_{-8.7\%} {}^{+1.0\%}_{-1.0\%}$	$47.8 {}^{+7.7\%}_{-8.2\%} {}^{+1.0\%}_{-1.0\%}$

TABLE IX. Cross sections for the $W^-\mu^-$ process in μ^-p collisions for different beam energy configurations and with different cutoffs on the scattered muon $p_{\rm T}$. The listed cross sections are in pb, with scale and PDF $\oplus \alpha_s$ uncertainties. The μ^- beam energy is unpolarized in all cases.

$E_{\mu} \times E_p \text{ (TeV}^2\text{)}$	Inclusive	$p_{\mathrm{T}}^{\ell} > 1 \mathrm{~GeV}$	$p_{\mathrm{T}}^{\ell} > 2~\mathrm{GeV}$	$p_{\mathrm{T}}^{\ell} > 5 \mathrm{~GeV}$
0.96×0.275	$8.69 {}^{+0.7\%}_{-1.0\%} {}^{+0.9\%}_{-0.9\%}$	$2.10 {}^{+1.6\%}_{-2.0\%} {}^{+0.9\%}_{-0.9\%}$	$1.71 {}^{+1.8\%}_{-2.1\%} {}^{+0.9\%}_{-0.9\%}$	$1.23 {}^{+2.4\%}_{-2.4\%} {}^{+0.9\%}_{-0.9\%}$
0.96×0.96	$21.2 {}^{+1.7\%}_{-2.3\%} {}^{+0.8\%}_{-0.8\%}$	$\left 5.76 \right _{-1.4\%}^{+0.7\%} \left _{-0.8\%}^{+0.8\%} \right $	$\left 4.79\ ^{+0.6\%}_{-1.2\%}\ ^{+0.8\%}_{-0.8\%}\right $	$3.57 {}^{+0.2\%}_{-0.7\%} {}^{+0.8\%}_{-0.8\%}$
1.5×7	$86.7 {}^{+6.7\%}_{-7.4\%} {}^{+1.0\%}_{-1.0\%}$	$26.8 {}^{+5.5\%}_{-6.3\%} {}^{+0.9\%}_{-0.9\%}$	$22.8 {}^{+5.4\%}_{-6.1\%} {}^{+0.9\%}_{-0.9\%}$	$17.8 {}^{+5.0\%}_{-5.7\%} {}^{+0.8\%}_{-0.8\%}$
1.5×13.5	$121 {}^{+7.9\%}_{-8.6\%} {}^{+1.1\%}_{-1.1\%}$	$38.3 {}^{+6.8\%}_{-7.6\%} {}^{+1.0\%}_{-1.0\%}$	$32.6 {}^{+6.6\%}_{-7.4\%} {}^{+0.9\%}_{-0.9\%}$	$25.6_{-6.9\%}^{+6.2\%}_{-0.9\%}^{+0.9\%}$
1.5×20	$145 {}^{+8.6\%}_{-9.3\%} {}^{+1.2\%}_{-1.2\%}$	$47.0 {}^{+7.4\%}_{-8.2\%} {}^{+1.0\%}_{-1.0\%}$	$\left 40.1 \right _{-8.1\%}^{+7.4\%} \left _{-1.0\%}^{+1.0\%} \right $	$31.6 {}^{+7.0\%}_{-7.7\%} {}^{+0.9\%}_{-0.9\%}$
1.5×50	$221 {}^{+11\%}_{-11\%} {}^{+1.4\%}_{-1.4\%}$	$73.6_{-9.9\%}^{+9.3\%}_{-1.1\%}^{+1.1\%}$	63.3 +9.0% +1.1% -9.7% -1.1%	$50.3_{-9.3\%}^{+8.6\%}_{-1.1\%}^{+1.2\%}$

TABLE VI. Cross sections for the $W^-\nu_\mu$ process in μ^-p collisions for different beam energy configurate. The μ^- beam energy is unpolarized in all cases.

$E_{\mu} \times E_p \text{ (TeV}^2\text{)}$	σ (pb)	Scale unc.	PDF $\oplus \alpha_s$ unc.
0.96×0.275	1.80	+2.8% -5.6%	+1.4% -1.4%
0.96×0.96	7.47	$^{+7.9\%}_{-11\%}$	$^{+1.4\%}_{-1.4\%}$
1.5×7	52.8	$^{+15\%}_{-17\%}$	+1.3% -1.3%
1.5×13.5	79.8	$^{+16\%}_{-18\%}$	$^{+1.2\%}_{-1.2\%}$
1.5×20	100	$^{+17\%}_{-19\%}$	$^{+1.2\%}_{-1.2\%}$
1.5×50	167	$^{+19\%}_{-20\%}$	$^{+1.2\%}_{-1.2\%}$

Acosta, Barberis, Hurley, Li, Miguel, Wood, Zuo
arXiv:2203.06258 (2022)

