

Overview of Electron-ion collider in China

Jinlong Zhang (张金龙), Shandong University
On behalf of the EicC working group

Deeply Inelastic Scattering

Precision microscope with superfine control

 Q^2 : Resolution/scale

y: Scattering inelasticity

x: Momentum fraction of struck quark

s: center of mass energy

$$Q^2 = sxy$$

- Inclusive events: $e + p/A \rightarrow e' + X$ Detect the scattered lepton only
- Semi-Inclusive events: $e + p/A \rightarrow e' + h(\pi, K, p, jet, etc) + X$ Detect the scattered lepton + identified hadrons/jets
- **Exclusive events:** $e + p/A \rightarrow e' + p'/A' + h(\pi, K, p, jet, etc)$ Detect everything

Questions expecting EIC to answer

- How does the spin of proton arise?
- How does the mass of proton arise?
- How does gluon bind quarks and gluons inside proton?
- What are the emergent properties of dense gluon system?
- Can we map the quark and gluon inside the proton in 3D?

Proposed Electron-ion colliders

Electron-ion colliders in China

Location: Huizhou, south coast of China

HIAF → EicC: Take use of facility under construction

HIAF - High Intensity heavy-ion Accelerator Facility

- Funded 2.5 billion RMB, under construction
- for atomic physics, nuclear physics, applied research in biology and material science etc.
- Upgrades to EicC taken into consideration during the design stage

Booster Ring:

Circumference: 569 m

Rigidity: 34 Tm

- A accumulation
- Colling & acceleration
- Two-plane painting injections scheme
- Fast ramping rate operation

Superconducting Ion Linac:

Length: 180 m

Energy: 17 MeV/u (U³⁴⁺)

CW and pulsed modes

Layout of EicC

Need to be built for the EicC

HIAF under construction

- Polarized electron injector + racetrack eRing + Figure 8 pRing
- 2 interaction regions
- 3.5 GeV (e) x 20 GeV (p)

EicC Parameters

Facility	CoM energy	$lum./10^{33}cm^{-2}s^{-1}$	Ions	Polarization
EicC	15 - 20	2 - 3	$p \rightarrow U$	e^- , p, and light nuclei
EIC-US	30 - 140	2 - 15	$p \rightarrow U$	$e^{-}, p, {}^{3}{\rm He, Li}$

- EicC covers the kinematic region between JLab experiments and US-EIC.
- EicC complements the ongoing scientific programs at JLab and future EIC project.
- EicC focus on moderate x and sea-quark for spin, exotic hadrons and nuclear modification.
- EicC can systematically study Υ near threshold and shed lights on proton mass origin.

EicC white-paper

arXiv: 2102.09222

EicC white paper: Front. Phys., 2021, 16(6): 64701

Published in the Frontiers of Physics Journal (open access)

100+ physicists from 46 institutes

Highlighted physics topics

1D spin structure of nucleon

3D and 2+1D tomography of nucleon

Quark

Energy

Trace

Anomaly

Quark

Mass

Gluon

Energy

Partonic structure of nucleus

Proton mass

Exotic hadron states

1D spin structure of nucleon

$$\langle S_p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$
Jaffe-Manohar 1990

 $\Delta\Sigma$ Quark spin ΔG gluon spin

 $L_{q,g}$ Orbital angular momentum

NLO EicC SIDIS projection:

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV x 20 GeV
- eHe-3: 3.5 GeV x 40 GeV
- Pol.: e(80%), p(70%), He-3(70%)
- Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹

Significantly reduce uncertainties of spin contribution from the sea

3D spin structure at momentum space

Access to quark Sivers function, especially the strange quark Sivers via SIDIS

LO analysis of EicC projection

Pion(+/-), Kaon(+/-)

ep: 3.5 GeV x 20 GeV

eHe-3: 3.5 GeV x 40 GeV

Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹

- Stat. Error vs Sys. Error

TMDs		Quark Polarization					
		Unpolarized (U)		Longitudinally polarized (L)		Transversely polarized (T)	
	U	f ₁	• unpolarized			\mathbf{h}_{1}^{\perp}	→ – • Boer-Mulders
Nucleon Polarization	L			g _{1L}	helicity	h _{1L}	longi-transversity
FOIAIIZAUOII	Т	f _{1T} ⊥	Sivers	g _{1T}	trans-helicity	h ₁	transversity
)→ Nu	ıcleon spin	•	Quark spin		p.co.zo.co.cy

GPDs

Polarized beam, unpolarized target (SSA)

$$A_{LU}^{\sin\phi} \propto \frac{y\sqrt{1-y}}{2-2y-y^2}\sqrt{\frac{-t}{y^2Q^2}} \times x_B Im \left[F_1\mathcal{H} + \xi(F_1+F_2)\widetilde{\mathcal{H}} - kF_2\mathcal{E} + \ldots\right](x_B,t,Q^2),$$

Unpolarized beam, longitudinal target (ITSA)

$$A_{UL}^{\sin\phi} \propto \frac{\sqrt{1-y}}{2-y} \sqrt{\frac{-t}{y^2Q^2}} \times x_B Im \left[F_1 \widetilde{\mathcal{H}} + x_B (F_1 + F_2) (\widetilde{\mathcal{H}} + \frac{x_B}{2\mathcal{E}}) - x_B k F_2 \widetilde{\mathcal{E}} + \ldots \right] (x_B, t, Q^2),$$

Unpolarized beam, transverse target (tTSA)

$$A_{UT}^{\sin(\phi-\phi_{\rm S})\cos\phi} \propto \frac{\sqrt{1-y}}{2-y} \frac{-t}{2yM_NQ} \times x_B Im \left[F_1 \mathcal{H} + \xi (F_1+F_2)(\widetilde{\mathcal{H}} + \frac{x_B}{2}\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}} + \ldots \right] (x_B,t,Q^2),$$

Polarized beam, longitudinal target (DSA)

$$A_{LL} \propto (A + B\cos\phi) Re \left[F_1 \mathcal{H} + \xi (F_1 + F_2) (\mathcal{H} + \frac{x_B}{2} \mathcal{E}) + \dots \right],$$

- Spatial distribution of partons encoded in GPDs
- GPD is related to quark angular momentum [Ji, 95]
- Access to GPDs via exclusive reactions DVCS, DVMP, etc
- Flavor separation and sea quark GPD in DVMP

Extraction of CFF with neutral network methods [Kumericki, 19]

Only this azimuthal angular modulation

Understanding Proton Mass

Mass decomposition [Ji, 95]

$$M = M_q + M_m + M_g + M_a$$

 M_a : quark energy

 M_m : quark mass (condensate)

 $M_{\it g}$: gluon energy

 M_a : trace anomaly

- $oldsymbol{L} M_q$ and M_g : constrained by PDFs
- M_m via πN scattering
- M_a via threshold production of J/ψ (8.2 GeV, JLab) and Υ (12 GeV)
- Threshold requires low CoM energy (low y at EIC)
- Complementarity between EicC (and EIC) and Lattices.

Lattice QCD, Yang et al 2018

Partonic structure of nucleus

- Use heavy nuclei to study parton energy loss in cold nuclear medium
- Hadronization inside and outside medium. (Nucleus as a lab at the fm scale)
- Medium modification of light meson and heavy meson in SIDIS.
- Precision study of nuclear PDFs with heavy ion beams.

With only a few hours of running

Exotic hadron states

Exotic hadrons

Exotic states	Production/decay processes	Detection efficiency	Expected events
$P_c(4312)$	$\begin{array}{c} ep \rightarrow eP_c(4312) \\ P_c(4312) \rightarrow pJ/\psi \\ J/\psi \rightarrow l^+l^- \end{array}$	~30%	15-1450
$P_c(4440)$	$\begin{array}{c} ep \rightarrow eP_c(4440) \\ P_c(4440) \rightarrow pJ/\psi \\ J/\psi \rightarrow l^+l^- \end{array}$	~30%	20-2200
$P_c(4457)$	$ep \to eP_c(4457)$ $P_c(4457) \to pJ/\psi$ $J/\psi \to l^+l^-$	~30%	10-650
$P_b(\text{narrow})$	$ep \rightarrow eP_b(\text{narrow})$ $P_b(\text{narrow}) \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+l^-$	~30%	0-20
$P_b(\text{wide})$	$ep \rightarrow eP_b \text{ (wide)}$ $P_b \text{ (wide)} \rightarrow p\Upsilon$ $\Upsilon \rightarrow l^+l^-$	~30%	0-200
$\chi_{c1}(3872)$	$ep \to e\chi_{c1}(3872)p$ $\chi_{c1}(3872) \to \pi^{+}\pi^{-}J/\psi$ $J/\psi \to l^{+}l^{-}$	~50%	0-90
$Z_c(3900)^+$	$ep \to eZ_c(3900)^+ n$ $Z_c^+(3900) \to \pi^+ J/\psi$ $J/\psi \to l^+ l^-$	~60%	90-9300

- Complementary to e+e- and pp collisions.
- Larger acceptance, exotic hadrons produced at middle rapidity.
- Heavy-flavor exotic hadrons, in particular to charmonium-like states and hidden charm pentaquarks.
- Polarization helps to determine the quantum numbers.

Towards Conceptual Design Reports 🖽

Volume I: Accelerator

C	onte	ents	Vol	ume II: Physics and Detectors
1	Over	view of EicC	V OI	diffe II. I flysics and Detectors
•				ntonts
		EicC Design Concept	COI	ntents
		3	1 E	icC Physics
		Ion Accelerator Complex Design	1.	
		Electron Accelerator Complex Design	1.	•
		Staged Electron Cooling for Ions	1.	1.2.1 TMDs
		The Interaction Region Design		1.2.2 GPDs
			1	3 Nucleon mass
	1.8	Overview Summary	1.	
2	Roan	n Dynamics Design	1.	
4		EicC Collision Scheme	1.	
		Luminosity lifetime	1.	o Structure of fight pseudoscalar mesons
		ů .	2 P	hysics requirements and detector concept
		Collective Effects and Beam Stabilities		1 Physics requirements
		Space Charge Effects	2.	2.1.1 Particle multiplicity and event rate
		Beam-Beam Effects		2.1.2 Scattered electron
	2.6	Intra-beam Scattering		2.1.3 Charged hadron identification
3	Ion /	Accelerator Complex		2.1.4 Small angle detection
J		Introduction	2.	8
		Formation of EicC Ion Beams		2 2000000 00100pt
			3 T	racking system
		Polarized Ion Source	3.	1 Vertex detector
		iLinac	3.	
		Booster Ring	3.	3 All silicon tracker
		pRing		3.3.1 All silicon tracker layout
		Beam Synchronization		3.3.2 Detector simulation and reconstruction
	3.8	Polarization and Polarimetry		3.3.3 Tracking and vertexing performance
4	Floor	tron Accelerator Complex	3.	4 Endcap disk
±	4.1	Introduction		•
			4 P	ID system
		Polarized Electron Source	4.	1 Detector consideration
			4.	2 Time of flight detector
		eRing		4.2.1 MRPC
		Synchrotron Radiation and Beam Parameters		4.2.2 DIRC-based TOF
	4.6	Polarization and Polarimetry	4.	3 Cherenkov detector
5	Floct	tron Cooling		4.3.1 DIRC
,		Introduction		4.3.2 Module RICH
		Marie D. Division C. 1		
		Medium Energy Electron Cooler ERL Based High Energy Electron Cooler		alorimetry
			5.	
	5.4	Novel cooling scheme development	5.	2 Shashlik-type EMCal
				5.2.1 Module design and simulation
				5.2.2 Energy and spatial resolution
				5.2.3 Detector layout
			5.	
			5.	4 HCal

EicC white paper

Conceptual design of the EicC detector [15]

A general purpose detector with:

- Vertex detector;
- Tracking detector;
- Particle Identification detector (ToF & RICH);
- Calorimeter (EM & Hadron)

Detailed full Geant4 simulation is ongoing

Detector R&D

Clean room (200 m²) for detector assembling

Micromegas 25cm x 25cm

GEM 1m x 0.5m

sTGC @SDU

ALICE style ITS2 MAPS pixel detector

DIRC prototype @IMP

Shashlik and W-powder+SciFi EMCal

Timeline

- HIAF construction is near complement
- Aiming to finish EicC CDR by 2023
- Hope to get support in the next 5-year-plan and first collision in 2032

Summary

- Electron-ion collider in China EicC
 - Focused on sea-quark/gluon at moderated/large-x region
 - Complements EICs at higher energies
- Conceptual design report by 2023
 - Geant4 simulations and detector R&D
- More physics topics under development

EicC white paper: Front. Phys., 2021, 16(6): 64701

Thanks for your attention and welcome to join us!