QCD at the future circular e⁺e⁻ collider (FCC-ee)

DJS2022

Santiago de Compostela, Spain, 3rd May 2022

Eduardo Ploerer (on behalf of the FCC collaboration)

Many thanks to David d'Enterria for input material

QCD = Key piece at future ee, pp colliders

- ▶ QCD is crucial for many pp, ee measurements (signals & backgrounds):
 - High-precision α_s : Affects all x-sections & decays (esp. Higgs, top, EWPOs).
 - NºLO, NºLL resummations: Affects all pQCD x-sections & decays.
 - High-precision PDFs: Affects all precision W,Z,H (mid-x) measurements & all searches (high-x) in pp collisions.
 - Heavy-Quark/Quark/Gluon separation (jet substructure, boosted topologies..):
 Needed for all precision SM measurements & BSM searches with final jets.
 - Non-perturbative QCD: Affects final-states with jets: Colour reconnection,
 e⁺e⁻ → Z,WW, ttbar → I+4j,6j... (m_w,m_{ton} extractions). Parton hadronization,...

Precision QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to very precisely probe q,g dynamics:

Advantages compared to p-p collisions:

- QED initial-state with known kinematics
- Controlled QCD radiation
- Well-defined quark, gluon jets
- Smaller non-pQCD uncertainties:
 no PDFs, no QCD "underlying event",...
 Direct clean parton fragmentation & hadroniz.

Precision QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fully-controlled initial-state to very precisely probe q,g dynamics:

Advantages compared to p-p collisions:

- QED initial-state with known kinematics
- Controlled QCD radiation
- Well-defined quark, gluon jets
- Smaller non-pQCD uncertainties:no PDFs, no QCD "underlying event",...

Direct clean parton fragmentation & hadroniz.

Future e⁺e⁻ colliders under discussion

- FCC-ee features lumis a few times larger than other machines over 90–300 GeV
- Unparalleled Z, W, jets, τ ,... data sets: Negligible stat. uncertainties

QCD physics at FCC-ee

(1) QCD coupling

(2) Quark-gluon tagging & jet substructure

(3) Non-perturbative QCD

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

QCD coupling α_s

- → Determines strength of the strong interaction between quarks & gluons.
- ▶ Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{-1}$, $\Lambda \sim 0.2$ GeV

→ Least precisely known of all interaction couplings!

$$\delta\alpha~\text{-}10^{\text{-}10}\ll\delta\text{G}_{\text{\tiny F}}\ll~10^{\text{-}7}\ll\delta\text{G}\text{-}10^{\text{-}5}\ll\delta\alpha_{\text{\tiny S}}\text{-}10^{\text{-}3}$$

DIS2022 7/21 Eduardo Ploerer (VUB)

World α_s determination (PDG today)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

DIS2022 8/21 Eduardo Ploerer (VUB)

α_s from hadronic τ-lepton decays

⇒ Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

- ⇒ Experimentally: $R_{\tau,exp} = 3.4697 \pm 0.0080 (\pm 0.23\%)$
- ◆ Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections, yield different results.

Uncertainty slightly increased: $2013 (\pm 1.3\%) \rightarrow 2019 (\pm 1.5\%)$

$$\alpha_s(m_p) = 0.1187 \pm 0.0018 \ (\pm 1.5\%)$$

 $\delta \alpha_s / \alpha_s << 1\%$

- → Future :
 - TH: Better understanding of FOPT vs CIPT differences.
 - Better spectral functions needed (high stats & better precision): B-factories (BELLE-II)?
 - High-stats: $O(10^{11})$ from $Z \rightarrow \tau\tau$ at FCC-ee(90)

α_s from e⁺e⁻ event shapes & jet rates

- → Computed at N^{2,3}LO+N⁽²⁾LL accuracy.
- → Experimentally (LEP):

 Thrust, C-parameter, jet shapes

 n-jet x-sections
- $\tau = 1 \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$

OPAL 3 jet event

→ Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically (with some disagreement)

$$\alpha_s(m_z) = 0.1171 \pm 0.027 \ (\pm 2.6\%)$$

 $\delta \alpha_{\rm s} / \alpha_{\rm s} < 1\%$

- Future:
- FCC-e⁺e⁻: Lower-√s (ISR) for shapes, higher-√s for jet rates
- TH: Improved (N^{2,3}LL) resummation for rates, hadronization for shapes

α_s from hadronic Z decays (FCC-ee)

$$\overline{\mathrm{R}_{\mathrm{W,Z}}(Q)} = \frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lep}}(Q)} = \mathrm{R}_{\mathrm{W,Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi} \right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}} \right)$$

- QCD coupling extracted from:
- (i) Combined fit of 3 Z pseudo-observ:
- (ii) Full SM fit (with α_s free parameter)
- **→** <u>FCC-ee</u>:
- Huge Z pole stats. (×10⁵ LEP)
- Exquisite systematic/parametric precision (stat. uncert. much smaller):
- TH uncertainty reduced by $\times 4$ computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
 - → 10 times better precision than today: $\delta\alpha_s/\alpha_s \sim \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp) Strong (B)SM consistency test.

$$\alpha_s(m_z) = 0.1203 \pm 0.0028 \ (\pm 2.3\%)$$

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

 $\alpha_s(m_z) = 0.12030 \pm 0.00028 \ (\pm 0.2\%)$

α_s from hadronic W decays (FCC-ee)

▶ QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

- → Very imprecise extraction:
- Large parametric uncert. from poor V_{cs} exp. precision (±2%):
 - QCD coupling unconstrained: 0.04±0.05
- Imposing CKM unitarity: large exp. uncertainties from $\Gamma_{\rm w}$, $R_{\rm w}$ (0.9–2%): QCD extracted with ~27% precision
- Propagated TH uncertainty much smaller today: ~1.5%

 $\alpha_s(m_r) = 0.101 \pm 0.027 \ (\pm 27\%)$

- → FCC-ee extraction:
- Huge W pole stats. (×10⁴ LEP-2).
- Exquisite syst./parametric precision:
- TH uncertainty reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

 $\alpha_s(m_z) = 0.11790 \pm 0.00023 (\pm 0.2\%)$

DIS2022 12/21 Eduardo Ploerer (VUB)

QCD physics at FCC-ee

(1) QCD coupling

(2) Quark-gluon tagging & jet substructure

(3) Non-perturbative QCD

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

Quark-gluon discrimination

- Exciting but challenging prospect in pp collisions
 - Enhance quark signal at hadron colliders
 (e.g. VBF, ttH hadronic W's, hadronic W/Z+jets)
 - Multijet BSM final states
- Several handles exist to separate quarks and gluons (in principle):

 See [J.Gallicchio & M.Schwartz, 1211.7038 [hep-ph]]
 - → Gluons radiate more C_F = 4/3 < C_A = 3
 - Spin correlations in subjet location
 - → p_T-weighted jet charge

DIS2022

- ML approaches have already found success
 - unclear how much we can trust gluon disc. presently

14/21 Eduardo Ploerer (VUB)

Jet substructure

 Need for state-of-the-art jet substructure studies based on angularities

$$\lambda_{eta}^{\kappa} = \sum_{i \in \mathrm{jet}} z_i^{\kappa} \theta_i^{eta},$$
 (normalized $\mathbf{E}^{\mathtt{n}} imes \mathbf{\theta}^{\mathtt{n}}$ products)

- Variables of jet constituents: multiplicity, LHA, width/broadening, mass/thrust, C-parameter,...
- k=1: IRC-safe computable (NⁿLO+NⁿLL) via SCET (but uncertainties from non-pQCD effects)

Showering Differences in Generators

- Les Houches Angularity (LHA) is angularity w/ k=1, B=0.5
- Not directly measured at LEP
- MC parton showers differ on gluon (less so quark) radiation patterns:

DIS2022 16/21 Eduardo Ploerer (VUB)

High-precision gluon & quark jet studies

- Exploit FCC-ee H(gg) as a "pure gluon" factory:
 H→gg (BR~8% accurately known) provides
 120.000 extra-clean digluon events.
- ory:

 t

 t

 common
- Multiple handles to study gluon radiation & g-jet properties:
 - → Gluon vs. quark via H → gg vs. Z → qq
 - ⇒ Gluon vs. quark via Z → bbg vs. Z → qq

- Multiple high-precision analyses possible:
 - BSM: Improve q/g/Q discrimination tools
 - pQCD: High-precision QCD coupling
 - non-pQCD: Gluon fragmentation,

Colour reconnection

Improved MC tuning

QCD physics at FCC-ee

(1) QCD coupling

(2) Quark-gluon tagging & jet substructure

(3) Non-perturbative QCD

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

Colour reconnection

- Colour reconnection of partons impacts final state kinematics (shifted angular correlations, invariant mass shifts)
- Exact dynamics poorly understood
- Source of uncertainty in m_w, m_{top}, (aGC extractions) in multijet finalstates (especially in pp: MPI cross-talk)
 - CR impacts all FCC-ee multi-jet final-states: e⁺e⁻ → WW(4j), Z(4j), ttbar,...
 String-drag effect on W mass (hinted at LEP)
- ► Exploit huge W stats (×10⁴ LEP) to measure m_w leptonically & hadronically and constrain CR in hadronic WW.

Detailed hadronization studies

- High-precision low-p_T PID hadrons in e⁺e⁻ required for detailed studies:
 - Baryon & strangeness production. Colour string dynamics.
 - Final-state correlations (spin: BoseEinstein, FermiDirac; momenta; space)
 - Bound state formation: quarkonia, multi-quark states, glueballs, ...

Understand breakdown of universality of parton hadronization observed at LHC.

Baseline vacuum e⁺e⁻ studies for high-density QCD

Summary: QCD at future e⁺e⁻ colliders

- ► The precision needed to fully exploit all future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of pQCD & non-pQCD physics.
- Unique QCD precision studies accessible at FCC-ee (CEPC, ILC):
 - (1) Per-mille α_s via hadronic Z,W, τ decays, evt shapes...

(2) NⁿLO+NⁿLL jet substructure

(3) Improved parton showering

(4) High quark-gluon discrimination

(5) <1% control of colour reconnection

(6) High-precision hadronization

Backup slides

High-precision parton FFs

Parton-to-hadron fragment. functions evolution known at NNLO at high-z

[D.Anderle et al., A.Vossen et al., B.Kniehl et al., V.Bertone et al., N.Sato et al., D.deFlorian et al.....]

provide additional	\bigcirc CD	agunling	ovtractions
NKOWINA ANNIHANAI	()()	CALIMINA	DVITACIIANE

Method	Current $\delta \alpha_{\rm s}({\rm m_{\rm z}^2})/\alpha_{\rm s}({\rm m_{\rm z}^2})$ uncertainty	Future $\delta \alpha_{\rm s}({ m m_{\rm z}^2})/\alpha_{\rm s}({ m m_{\rm z}^2})$ uncertainty
Method	(theory & experiment state-of-the-art)	(theory & experiment progress)
soft FFs	$1.8\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx \frac{2\%}{}$	$0.7\%_{\text{th}} \oplus 0.7\%_{\text{exp}} \approx \frac{1\%}{1\%} (\sim 2 \text{ yrs}), < \frac{1\%}{1\%} (\text{FCC-ee})$
SOIL FFS	(NNLO* only (+NNLL), npQCD small)	(NNLO+NNLL. More precise e^+e^- data: 90–350 GeV)
hard FFs	$1\%_{ ext{th}} \oplus 5\%_{ ext{exp}} pprox \frac{5\%}{}$	$0.7\%_{\text{th}} \oplus 2\%_{\text{exp}} \approx \frac{2\%}{\text{(+B-factories)}}, < 1\% \text{ (FCC-ee)}$
nard FFS	(NLO only. LEP data only)	(NNLO. More precise e^+e^- data)

■ FCC-ee (much broader z range) allows for α_s extraction with $\delta \alpha_s < 1\%$

Other α_s extractions (not *yet* in world average)

■ There are few other classes of e⁺e⁻ observables, computed today at lower accuracy (NLO, NNLO*), that can be used to extract the QCD coupling:

DIS2022 24/21 Eduardo Ploerer (VUB)

α_s from photon QCD structure function (NLO)

→ Computed at NNLO:
$$\int_0^1 dx F_2^{\gamma}(x,Q^2,P^2) = \frac{\alpha}{4\pi} \frac{1}{2\beta_0} \Big\{ \frac{4\pi}{\alpha_s(Q^2)} c_{LO} + c_{NLO} + \frac{\alpha_s(Q^2)}{4\pi} c_{NNLO} + \mathcal{O}(\alpha_s^2) \Big\}$$

 $p^2 = -P^2 \le \text{`target photon'}$

- → Poor $F_{\gamma}^{2}(x,Q^{2})$ experimental measurements:
- Extraction (NLO) with large exp. uncertainties today:

$$\alpha_s (m_z) = 0.1198 \pm 0.0054$$
(±4.5%)

[M.Klasen et al. PRL89 (2002)122004]

- Fit with NNLO F_{ν}^{2} evolution (ongoing)
- Better data badly needed: Belle-II?
- Dedicated simul. studies at ILC exist:
- Huge γγ (EPA) stats at FCC-ee will lead to: $\delta \alpha_s / \alpha_s < 1\%$

DIS2022 25/21

α_s extractions from jet fragmentation (NLO,NNLO*)

Soft parton-to-hadron FFs (NNLO*+NNLL):

→ Hard parton-to-hadron FFs (NLO):

Combined fit of the jet-energy evolution of the FF moments (multiplicity, peak, width,...) with $\alpha_{\rm s}$ as single free parameter:

$$\alpha_s(m_z) = 0.1205 \pm 0.0022 (\pm 2\%)$$

(full-NNLO corrections missing)

Figure 3: Energy evolution of the charged-hadron multiplicity (left) and of the FF peak position (right) measured in e^+e^- and DIS data fitted to the NNLO*+NNLL predictions. The obtained \mathcal{K}_{ch} normalization constant, individual NNLO* $\alpha_s(m_z)$ values, and the goodness-of-fit per degree-of-freedom χ^2/ndf .

DIS2022 26/21 Eduardo Ploerer (VUB)

QCD uncertainties on EWK observables

- With ×10⁵ more Z's than LEP, EWK uncertainties at FCC-ee will be dominated by syst. (QCD). Example: e⁺e⁻ → bb forward-backward asymmetry
- e^+ Z b

- 8 measurements at LEP:4 lepton-based, 4 jet-charge-based
- Exp. observable with largest discrepancy today wrt. the SM: 2.8σ
- Exp. Uncertainties: ~1.6%
 - Statistical: $\pm 1.5\%$ (~0.05% at FCC-ee)
 - Systematics: $\pm 0.6\%$ (QCD-related: $\pm 0.4\%$)
- **QCD** effects on $A_{FB}^{0,b}$ (depending strongly on exp. selection procedure):

Smearing of b-jet/thrust axis

■ We have revisited the impact of QCD effects on A_{FB}^{b} implementing original analyses in up-to-date retuned parton-shower+hadronization MCs

Reduced QCD uncertainties on A_{FR} at Z pole

- QCD uncertainties recomputed from PYTHIA8.226 (7 tunes) & VINCIA2.2
- e⁺e⁻ → bb forward-backward asymmetry for lepton-based analyses:

e⁺e⁻ → bb forward-backward asymmetry for jet-charge-based analyses:

- 2020 vs. 1998 parton shower+hadronization uncertainties:
 - Lepton-based: Consistent for ALEPH, slightly smaller for DELPHI, L3, OPAL.
 - Jet-charge-based: Much smaller for all experiments.
- Improved PS & non-pQCD tunes w/ e⁺e⁻ data needed to reduce syst. uncert.

DIS2022 28/21 Eduardo Ploerer (VUB)

Ultra-precise W, Z, top physics at FCC-ee

DIS2022 29/21 Eduardo Ploerer (VUB)

(ii) Threshold scans with $\delta E_{cm} \sim 0.1$, 0.3, 2., 4. MeV (Z,W,H,t)

Importance of the QCD coupling α_s

→ Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

Process	σ (pb)	$\delta \alpha_s(\%)$	PDF $+\alpha_s(\%)$	Scale(%)
ggH	49.87	\pm 3.7	-6.2 +7.4	-2.61 + 0.32
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9
Channel	$M_{ m H} [{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b Δ	Δm_c
$H \to c\bar{c}$	126	± 7.1	$\pm~0.1\%$ \pm	2.3 %
$H \to gg$	126	\pm 4.1	$\pm~0.1\%$ \pm	0 %

Summary of future parametric uncertainties:

Quantity	FCC-ee	future param.unc. Ma	in sou	rce
Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$	
R_b [10 ⁻⁵]	6	< 1	$\delta lpha_s$	
R_{ℓ} [10 ⁻³]	1	1.3	$\delta lpha_s$	

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

(→ Impacts physics approaching Planck scale: EW vacuum stability, GUT)

DIS2022 30/21

α_s from hadronic Z, W decays

→ Z & W observables theoretically known at N³LO accuracy:

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

• The W and Z hadronic widths:

$$\Gamma_{ ext{W,Z}}^{ ext{had}}(Q) = \Gamma_{ ext{W,Z}}^{ ext{Born}} \left(1 + \sum_{i=1}^4 a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight)$$

• The ratio of W, Z hadronic-to-leptonic widths:

$$\mathrm{R_{W,Z}}(Q) = \frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lep}}(Q)} = \mathrm{R_{W,Z}^{\mathrm{EW}}}\left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$egin{aligned} \sigma_{
m Z}^{
m had} = rac{12\pi}{m_{
m Z}} \cdot rac{\Gamma_{
m Z}^e \Gamma_{
m Z}^{
m had}}{(\Gamma_{
m Z}^{
m tot})^2} \end{aligned}$$

TH uncertainties:

 $(\alpha^2, \alpha^3 \text{ included for Z})$:

±0.015-0.03% (Z)

±0.015-0.04% (W)

Param. uncerts.:

 $(m_{z,w}, \alpha, V_{cs,ud})$:

±0.01-0.03% (Z)

±1.1–1.7% (W)

±0.03% (W, CKM unit)

→ Measured at LEP with $\pm 0.1-0.3\%$ (Z), $\pm 0.9-2\%$ (W) exp. uncertainties:

	theory			experiment			
	previous	new (this work)	$_{ m change}$	previous [6]	new [20, 21	1]	$_{ m change}$
$\Gamma_{\rm Z}^{ m tot} \ ({ m MeV})$	$2494.2 \pm 0.8_{\rm th}$	$2495.2 \pm 0.6_{ m par} \pm 0.4_{ m th}$	+0.04%	2495.2 ± 2.3	$2495.5 \pm 2.$	3	+0.012%
$R_{\rm Z}$	$20.733 \pm 0.007_{\mathrm{th}}$	$20.750 \pm 0.006_{ m par} \pm 0.006_{ m th}$	+0.08%	20.767 ± 0.025	20.7666 ± 0.0	247	-0.040%
$\sigma_{\rm Z}^{\rm had}$ (pb)	$41490\pm6_{\rm th}$	$41494 \pm 5_{\rm par} \pm 6_{\rm th}$	+0.01%	41540 ± 37	41480.2 ± 33	2.5	-0.144%
W boson	GFITTER 2.2 (NNLO) th			(N ³ LO)		exp	periment

Recent update of LEP luminosity bias(*) change the Z values by few permil

(*) Voutsinas et al. arXiv:1908.01704, Janot et al. arXiv:1912.02067

observables (CKM unit.) (exp. CKM) Γ_{W}^{had} (MeV) $1440.3 \pm 23.9_{\rm par} \pm 0.2_{\rm th}$ $1410.2 \pm 0.8_{
m par} \pm 0.2_{
m th}$ 1405 ± 29 $\Gamma_{\rm W}^{\rm tot} \; ({\rm MeV})$ $2091.8 \pm 1.0_{\rm par}$ $2117.9 \pm 23.9_{\rm par} \pm 0.7_{\rm th}$ $2087.9 \pm 1.0_{
m par} \pm 0.7_{
m th}$ 2085 ± 42 $2.1256 \pm 0.0353_{\mathrm{par}} \pm 0.0008_{\mathrm{th}}$ $2.0812 \pm 0.0007_{\rm par} \pm 0.0008_{\rm th}$ 2.069 ± 0.019 R_{W}

DIS2022 31/21 Eduardo Ploerer (VUB)

α_s from hadronic Z decays (today)

- QCD coupling extracted from:
- (i) Combined fit of 3 Z pseudo-observ:
- (ii) Full SM fit (with α_s free parameter)

Z boson	$lpha_S(m_{ m Z})$	uncertainties		
observable	extraction	exp.	param.	theor.
$\Gamma_{ m Z}^{ m tot}$	0.1192 ± 0.0047	± 0.0046	± 0.0005	± 0.0008
$R_{\mathbf{Z}}$	0.1207 ± 0.0041	± 0.0041	± 0.0001	± 0.0009
$\sigma_{ m Z}^{ m had}$	0.1206 ± 0.0068	± 0.0067	± 0.0004	± 0.0012
All combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008

- → LEP lumi-bias updates lead to much better agreement among Γ_7 , R_7 , σ_0 extractions:
- ⇒ Improved $\alpha_s(m_z) = 0.1203 \pm 0.0028 \ (\pm 2.3\%)$ PDG'19: $\alpha_s(m_z) = 0.1205 \pm 0.0030 \ (\pm 2.5\%)$

%)

 $\alpha_s(m_z) = 0.1202 \pm 0.0028$

agreement with full SM fit:

PDG'19: $\alpha_s(m_z) = 0.1194 \pm 0.0029$

EXP/TH updates lead to better

Eduardo Ploerer (VUB)

α_s from hadronic Z decays (FCC-ee)

- QCD coupling extracted from:
- (i) Combined fit of 3 Z pseudo-observ:
- (ii) Full SM fit (with α_s free parameter)

Z boson	$lpha_S(m_{ m Z})$	uncertainties		
observable	extraction	\exp .	param.	theor.
All combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008
All combined (FCC-ee)	0.12030 ± 0.00026	±0.000 <mark>13</mark>	± 0.00005	± 0.00022
Global SM fit (FCC-ee)	0.12020 ± 0.00026	$\pm 0.000 \frac{13}{13}$	± 0.00005	$\pm 0.000 \frac{22}{2}$

▶ <u>FCC-ee</u>:

- Huge Z pole stats. (×10⁵ LEP)
- Exquisite systematic/parametric precision (stat. uncert. much smaller):

$$\Delta R_{\rm Z} = 10^{-3}, \qquad R_{\rm Z} = 20.7500 \pm 0.0010$$
 $\Delta \Gamma_{\rm Z}^{\rm tot} = 0.1 \text{ MeV}, \quad \Gamma_{\rm Z}^{\rm tot} = 2495.2 \pm 0.1 \text{ MeV}$
 $\Delta \sigma_{\rm Z}^{\rm had} = 4.0 \text{ pb}, \quad \sigma_{\rm Z}^{\rm had} = 41494 \pm 4 \text{ pb}$

$$\Delta m_{\rm Z} = 0.1 \text{ MeV}, \quad m_{\rm Z} = 91.18760 \pm 0.00001 \text{ GeV}$$

$$\Delta \alpha = 3 \cdot 10^{-5}, \qquad \Delta \alpha_{\rm had}^{(5)}(m_{\rm Z}) = 0.0275300 \pm 0.0000009$$

- TH uncertainty reduced by $\times 4$ computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
- → 10 times better precision than today: $\delta\alpha_s/\alpha_s \sim \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp) Strong (B)SM consistency test.

 $\alpha_s(m_z) = 0.12030 \pm 0.00028 \ (\pm 0.2\%)$

α_s from hadronic W decays (today)

▶ QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	${\it uncertainties}$		S
observables	extraction	\exp .	param.	theor.
Γ_{W}^{tot} , R_{W} (exp. CKM)	0.044 ± 0.052	± 0.024	± 0.047	(±0.0014)
$\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.)	0.101 ± 0.027	± 0.027	(± 0.0002)	(± 0.0016)
$\Gamma_{ m W}^{ m tot}$, R _W (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

Very imprecise extraction:

- Large propagated parametric uncert. from poor V_{cs} exp. precision (±2%): QCD coupling unconstrained: 0.04±0.05
- Imposing CKM unitarity: large exp. uncertainties from $\Gamma_{\rm w}$, $R_{\rm w}$ (0.9–2%): QCD extracted with ~27% precision
- Propagated TH uncertainty much smaller today: ~1.5%

DIS2022

 $0.101 \pm 0.027 \ (\pm 27\%)$

34/21 Eduardo Ploerer (VUB)

α_s from hadronic W decays (FCC-ee)

▶ QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	uncertainties		
observables	extraction	\exp .	param.	theor.
$\Gamma_{\mathrm{W}}^{\mathrm{tot}},\mathrm{R}_{\mathrm{W}}\;(\mathrm{exp.}\;\mathrm{CKM})$	0.044 ± 0.052	± 0.024	± 0.047	(± 0.0014)
$\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.)	0.101 ± 0.027	± 0.027	(± 0.0002)	(± 0.0016)
$\Gamma_{ m W}^{ m tot}$, $ m R_{ m W}$ (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

→ FCC-ee extraction:

- Huge W pole stats. (×10⁴ LEP-2).
- Exquisite syst./parametric precision:

$$\Gamma_{\rm W}^{\rm tot}=2088.0\pm1.2~{\rm MeV}$$

$$R_{\rm W} = 2.08000 \pm 0.00008$$

$$m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$$

$$|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$$
 mesons

- TH uncertainty reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s^2$ terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

 $\alpha_s(m_z) = 0.11790 \pm 0.00023 \ (\pm 0.2\%)$

α_s at future e⁺e⁻ colliders (summary)

- World-average QCD coupling at N^{2,3}LO today:
 - Determined from 7 observables with combined 0.85% uncertainty (least well-known gauge coupling).
 - Impacts all LHC QCD x-sections & decays.
 - (Role beyond SM: GUT,)(EWK vacuum stability,)(New colored sectors?)
- e⁺e⁻ extractions:
 - Hadronic tau decays: ±1% TH
 - Event shapes, jet rates: ±1% TH
 - Z&W pseudo-observ.: ±0.1% TH
- State-of-the-art Z, W extractions:
 - Z boson: New fit with high-order
 EW corrections + updated LEP data:
 ~2.3% (exp.) uncertainty today.
 - W boson: New N³LO fit to $\Gamma_{\rm w}$, $R_{\rm w}$ ~27% (exp.) uncertainty today.)

■ Permil uncertainty only possible with a machine like FCC-e⁺e⁻

What are the detector design improvements needed to bring propagated syst. uncert. on W,Z pseudo-observ. below 0.1%?

Eduardo Ploerer (VUB)

DIS2022 36/21 DEIOW 0.13

Summary: QCD at future e⁺e⁻ colliders

- The precision needed to fully exploit all future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of pQCD & non-pQCD physics.
- Unique QCD precision studies accessible at FCC-ee (CEPC, ILC):

(2) NⁿLO+NⁿLL jet structure High g/q/Q discrimination

(3) Reduced PS+hadroniz. uncert. of EWK observ.

⊗ kinematics

<1% control of

(5) High-precision hadronization:

conservation of:

barvon number

DIS2022

37/21 Eduardo Ploerer (VUB)

High-precision gluon & quark jet studies

- Exploit FCC-ee H(gg) as a "pure gluon" factory:
 H → gg (BR~8% accurately known) provides
 120.000 extra-clean digluon events.
- Multiple handles to study gluon radiation & g-jet properties:
 - Gluon vs. quark via H → gg vs. Z → qq (Profit from excellent g,b separation)
 - Gluon vs. quark via Z → bbg vs. Z → qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).
 - **♦** Vary E_{iet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
 - → Vary jet radius: small-R down to calo resolution
- Multiple high-precision analyses at hand:
 - BSM: Improve q/g/Q discrimination tools
 - pQCD: (Check NⁿLO antenna functions.) High-precision QCD coupling.
 - <u>non-pQCD</u>: Gluon fragmentation: (Octet neutralization? (zero-charge gluon jet with rap gaps).) Colour reconnection? (Glueballs? Leading η 's,baryons)?

CERN FCC-ee project

• e^+e^- operation before pp at $\sqrt{s} = 90$, (125), 160, 240, 350 GeV

Working point	Z, years 1-2	Z, later	WW	HZ	${ m t} {ar { m t}}$		(s-channel H)
$\sqrt{s} \; (\mathrm{GeV})$	88, 91,	94	157, 163	240	340-350	365	$ m m_{H}$
Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	115	230	28	8.5	0.95	1.55	(30)
Lumi/year (ab $^{-1}$, 2 IP)	24	48	6	1.7	0.2	0.34	(7)
Physics Goal (ab ⁻¹)	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
				10^6 HZ	10^{6} 1	:t	
Number of events	5×10^{1}	2 Z	10^8 WW	+	+200k	HZ	(6000)
				$25 \text{k WW} \rightarrow \text{H}$	$+50 \mathrm{kWV}$	${ m V} ightarrow { m H}$	

# of light-q jets/year:	O(10 ¹²)	$O(10^7)$	O(10 ⁵)	_	O(10 ⁸)
# of gluon-jets/year:	O(10 ¹¹)	$O(10^6)$	O(10 ⁴)	_	$O(10^6)$
# of heavy-Q jets/yr:	O(10 ¹²)	$O(10^7)$	O(10 ⁵)	O (10 ⁶)	O(10 ⁸)

DIS2022 39/21 Eduardo Ploerer (VUB)