Production and Detection of Exotic Nuclei in the EIC

Presented by: brynna Moran

Other Collaborators: Ben Collis, Abhay Deshpande, Zach Finger,

Ciprian Gal, Mark Harvey, Barak Schmookler,

Oleg Tarasov, Pawel Nadel-Turonski

Motivating Questions

• Would the high-energy electron-heavy nucleus scattering of the future EIC have the capability to produce exotic nuclei?

 Can we go on to detect and correctly identify the produced exotic nuclei?

• Can we also study the level structure of the nuclei by detecting the decay photons? What requirements does this place on the farforward detection area?

Rare Isotopes at EIC

EIC isn't a dedicated rare isotope facility.

Advantages of EIC in Rare Isotope Studies:

- High energy collisions
- -Survey-type experiment

Rare Isotopes at EIC

EIC isn't a dedicated rare isotope facility

Advantages of EIC in Rare Isotope Studies:

- High energy collisions
- -Survey-type experiment

2 Interaction Regions: IR6 and IR8

2022 EIC Detector Proposal Advisory Panel report cites these types of studies when discussing potential future experiments.

Isotope production at the EIC

Decay of radioactive

beam

nucleus)

Fission or evaporation products

Isotopes in ground state and decay photons

Isotopes after radioactive decay

$$t = 0$$
 5/04/2022

$$t = 10^{-22} s$$

$$t = 10^{-20} - 10^{-17} s$$

$$t = 10^{-14} s$$

$$t = ? - never (stable)$$

Isotope production at the EIC

This is primarily where the EIC could potentially contribute

Hard scattering and intra-nuclear cascade

using BeAGLE

BeAGLE (Benchmark eA Generator for Leptoproduction) is the software we use to simulate the hard scattering and intra-nuclear cascade

Using BeAGLE, we simulated 10 million events to give us the A, Z, and Excitation Energy (E*) of all the excited intermediate nucleii

Leaves us with the residual nucleus in an excited state for the next stage of simulations

Excited Intermediate Nucleus from BeAGLE

The distribution of isotopes created during this stage ←

Excited Intermediate Nucleus from BeAGLE

We find that the production of the residual nucleus in *BeAGLE* manifests as a very simple abrasion model:

5/04/2022

AbV

The cross section for abrading a given number of nucleons (for dA>1) shows a (piecewise) exponential dependence.

For a given number of abraded nucleons, the relative proportion of neutrons and protons abraded is close to a hypergeometric distribution

100

-5 0 5 Neutrons_{abr.} - Protons_{abr.}

High-energy fission/evaporation and Gamma Decay using FLUKA and ABLA07

 To simulate the high energy decay and gamma de-excitation, we had 2 good options: FLUKA and ABLA07

• FLUKA:

- Directly incorporated into the BeAGLE framework, allowing for easier analysis
- Used extensively in high-energy physics, but not rare isotope production

• ABLA07:

- The second part of the abrasion-ablation code ABRABLA07
- Used extensively in rare isotope community
- We ran the BeAGLE events through both programs and compared the results.

Fission and Evaporation Products in High

ABLAO7

Energy Decay

10 million events simulated

Fission and Evaporation Products in High

ABLAO7

30 20

Energy Decay

40

Neutrons

10³

10²

120

140

12

We can directly compare the results of FLUKA and ABLA07

Running High Statistics for High Scattering and Intra-Nuclear Cascade

- If we make the assumptions that
 - 1) we collect 10 fb⁻¹ integrated luminosity per year and
 - 2) the production of nuclear isotopes is independent of the kinematics (i.e. Q² and x),

Those 10 million events correspond to ~5 min actual runtime, which isn't enough to get a full understanding of the EIC's capacity to produce rare isotopes.

To get ~1-2 months, that requires simulating ~100 billion events. Very computationally expensive!

Comparison of *BeAGLE* results and parameterized distribution

Decay isotopes only care about A, Z, and E* of excited residual nucleus. We can create a basic parameterization of the BeAGLE intermediate isotope production and use that.

Using our parameterized model for the excited residual nucleus, we can generate 10 million events in 15 minutes.

Towards higher statistics simulations

Detection and identification of the nuclear isotopes

IR6 IR8 2nd Focus **Roman Pots ZDC Roman Pots** QDS01 Quadrupole **ZDC Roman Pots BXDS01B** Dipole Hadron Beam after IP **Off Momentun B0 Trackers + Calorimeter Off Momentum B1apf Dipole B0 Trackers + Calorimeter** BXDS01A Dipole **B1apf Dipole** OFFDS02B Quadrupole **Q2bpf Quadrupole** QFFDS02A Quadrupole Q1pf Quadrupole QFFDS01B Quadrupole Q1apf Quadrupole QFFDS01A Quadrupole **B0pf Diople BXSP01** Diople **B0pf Diople**

• Far forward magnets and detectors in the Fun4All simulation framework

We can then calculate the isotope hit position at a RP and the acceptance/exclusion area

Hit position:

$$x_{RP} = D_x(-R_{Rel}) = D_x(1 - x_L)$$

Minimum allowed hit position:

$$x_{min} = 10\sigma_x = 10\sqrt{\beta_x \varepsilon_x + D_x^2 \sigma_p^2}$$

Accelerator Parameters:

$$\varepsilon_{x}=43.2~nm$$
 (EIC CDR Table 3.5) $\sigma_{p}=6.2\times10^{-4}$ (EIC CDR Table 3.5)

IR6 Parameters at first RP:

$$\beta_x = 865 m$$

$$D_x = -16.7 cm$$

$$\rightarrow x_{min}^{RP1} = 6.11 cm$$

IR8 Parameters at first RP:

$$\beta_x = 2.28 m$$

$$D_x = 38.2 cm$$

$$\rightarrow x_{min}^{RP1} = 0.39 cm$$

Big acceptance
difference
between the two
IRs is caused by
the second focus
at the RPs in the
IR8 design

Roman Pot Acceptance

Isotope hit positions at the first RP vs. isotope Z
Includes all isotopes known/potential (NNDC and LISE++ database)
RP Positon Resolution of 10—100 microns

ZDC Acceptance

Photon Polar Angle vs. Energy

ZDC Acceptance

Photon Polar Angle vs. Energy

ZDC Acceptance

Photon Polar Angle vs. Energy

If we zoom in, we can see that most isotopes are within the acceptance region

Identification of Isotopes in IR6

To determine initial kinematics:

$$\begin{bmatrix} \theta_{x,ip} \\ \theta_{x,ip} \\ R_{rel} \end{bmatrix} = \begin{bmatrix} 0.387 & -0.428 & 0 \\ 0 & 0 & 1.95 \\ -0.359 & 5.89 & 0 \end{bmatrix} \begin{bmatrix} x_{rp2} \\ \theta_{x,rp} \\ y_{rp2} \end{bmatrix}$$

To identify isotopes, we use the relationship

$$\chi L = \frac{R}{R_{Beam}} = \left[\frac{A p_{N}}{Z} \right]_{\substack{A_{beam} p_{N,beam} \\ z_{beam}}}$$

Using the assumption $P_N = P_{N.Beam}$:

$$=> \frac{A}{Z} = (R_{rel} + 1) \left[\frac{A_{Beam}}{Z_{Beam}} \right]$$

A Reconstruction in IR6

21

A Reconstruction in IR6

22

A Reconstruction

Our initial assumption about the momentum doesn't hold for isotopes with larger scattering angles (mostly fission products)

In Summary

- We have shown that the EIC has the potential to produce exotic nuclei.
- These nuclei can be detected and identified using the proposed optics of the second interaction point with its secondary focus.
- Studying the level structure of the produced isotopes will be possible through the detection of the de-excitation photons.

Thank you for listening!

Backup Slides

Using this 10 million ²³⁸U event sample, we see hints of exotic nuclei production

4/20/2022

Detection and Reconstruction

$$Rigidity = R = \frac{p}{Z}$$

$$xL = \frac{R}{R_{Beam}} = \left[\frac{Ap_{N}}{Z} / \frac{A_{beam}p_{N,beam}}{Z_{beam}}\right]$$

$$Relative \ Rigidity = R_{Rel} = \frac{R - R_{Beam}}{R_{Beam}} = xL - 1$$

Using the assumption $P_N = P_{N,Beam}$:

$$xL = Rrel + 1 = \left(\frac{\frac{A}{Z}}{A_{Beam}}\right) \Rightarrow \frac{A}{Z} = (R_{rel} + 1) \left[\frac{A_{Beam}}{Z_{Beam}}\right]$$

To do:

LISE++ Plots

ZDC Acceptance of de-excitation photons

ore

k

