Detector design for a multi-TeV Muon Collider

N. Bartosik (a, b)

on behalf of the Muon Collider Physics and Detector group

(a) INFN Torino (Italy) (b) CERN (Switzerland)
Big question for particle physics today: which collider to build after the HL-LHC?

Several important requirements have to be satisfied:
• energy reach exceeding the LHC by a large factor
• enable precision measurements of Standard Model
• environmentally friendly

Typically two kinds of machines are considered:
• electron-positron collider (clean collisions vs limited luminosity/energy)
• proton-proton collider (high luminosity/energy vs uncertain kinematics)

Muon Collider combines the best features of the two classes of machines:
high precision of e⁺e⁻ colliders + high energy reach of pp colliders
• like e⁺/e⁻, muons are elementary particles → creating “clean” collisions
• can be placed in fairly compact ring
• × 200 higher mass → × 10⁴ less synchrotron radiation losses

At \(\sqrt{s} \geq 3 \) TeV Muon Collider is the most energy efficient machine
Extremely rich physics program provided by high-energy muon collisions

- \(\mu^+\mu^- + \text{vector-boson fusion} \) (increasing at higher energies)
- Increased interest to the muon sector of New Physics searches thanks to anomalies in some B-physics and Muon g-2 measurements
- Discovery reach at 14 TeV comparable to FCC-hh at 100 TeV for heavy particles pair production | arXiv:1901.06150

Growing rate of theory publications exploring the Muon Collider physics considering a wide range of \(\sqrt{s} = 126 \text{ GeV} - 100 \text{ TeV} \)

- The physics case of a 3 TeV muon collider stage | arXiv:2203.07261

First design studies started in 2010 by the Muon Accelerator Program (MAP)

New effort initiated in 2018 that led the establishment of the International Muon Collider Collaboration

Nazar Bartosik

Detector design for a multi-TeV Muon Collider
Assuming the beam density of 2×10^{12} muons/bunch → large number of decays in the collider ring
e.g. for $\sqrt{s} = 1.5$ TeV: 4.1×10^5 decays per meter of lattice

Secondary/tertiary particles interact with the accelerator lattice → **Beam Induced Background (BIB)**

- depends on the beam parameters (energy, size, rate)
- depends on the accelerator layout

Machine-Detector Interface (MDI) becomes critical

- must be optimised for a specific collider design
- must be consistently included in the simulation

Dedicated MDI for a $\sqrt{s} = 1.5$ TeV Muon Collider

- designed by the **Muon Accelerator Program (MAP)**

 - tungsten nozzles with BCH cladding
 - 10° opening angle (defining the forward acceptance)

MDI reduces the flux and energy of BIB particles reaching the detector by 2-3 orders of magnitude

but the remaining background still poses many experimental challenges

Beam Induced Background: the critical challenge

Assuming the beam density of 2×10^{12} muons/bunch → large number of decays in the collider ring

e.g. for $\sqrt{s} = 1.5$ TeV: 4.1×10^5 decays per meter of lattice

Secondary/tertiary particles interact with the accelerator lattice → Beam Induced Background (BIB)

- depends on the beam parameters (energy, size, rate)
- depends on the accelerator layout

Machine-Detector Interface (MDI) becomes critical

- must be optimised for a specific collider design
- must be consistently included in the simulation

Dedicated MDI for a $\sqrt{s} = 1.5$ TeV Muon Collider

- designed by the **Muon Accelerator Program (MAP)**

 - tungsten nozzles with BCH cladding
 - 10° opening angle (defining the forward acceptance)

MDI reduces the flux and energy of BIB particles reaching the detector by 2-3 orders of magnitude

but the remaining background still poses many experimental challenges
BIB properties: $\sqrt{s} = 1.5 \, \text{TeV}$

BIB has several **characteristic features** to be exploited in the detector design

1. **Predominantly very soft particles** (~10 MeV) except for neutrons
 - fairly uniform spatial distribution \rightarrow no isolated signal-like energy deposits
 - \rightarrow conceptually different from pile-up contributions at the LHC

2. **Significant spread in time** (few ns + long tails up to a few μs)
 - $\mu^+\mu^-$ collision time spread: 30ps at $\sqrt{s} = 1.5 \, \text{TeV}$ \mid ≤ 20ps at $\sqrt{s} = 3 \, \text{TeV}$
 - \rightarrow strong handle on the BIB \rightarrow requires state-of-the-art timing detectors

3. **Strongly displaced origin along the beam**
 - crossing detector surface at a shallow angle
 - \rightarrow affects charge distribution + time of flight

Each detector component needs to:

- be resistant to the BIB radiation
- enable effective BIB suppression through advanced readout and reconstruction algorithms exploiting the characteristic BIB features
The extensive physics program at a Muon Collider requires a multipurpose detector
\(\rightarrow \) the latest design of the CLIC experiment taken as a starting point \((e^+e^-\text{ collider})\)

LHC experiments have demonstrated the great power of the Particle Flow approach which relies on high-granularity calorimeter data and high-quality track reconstruction

The main components of the baseline detector:

- **Tungsten nozzles** extending over 6cm \(\rightarrow \) 6m from the interaction point (IP)
- **All-silicon tracker** with double-layer structure in the Vertex Detector
 - High-granularity sampling calorimeters
 - **ECAL** 40 layers of W + Si
 - **HCAL** 60 layers of Fe + scintillator + SiPM
- **Superconducting solenoid**: B = 3.57T magnetic field
- **Muon spectrometer**: 7 layers of Fe + RPC

Almost all the detector technologies developed by CLIC are reused in the baseline setup of the Muon Collider simulations (using GEANT4)
At the **LHC** we are used to backgrounds primarily from pile-up pp collisions

⇒ distinctive tracks pointing at displaced vertices

Event at the CMS experiment with 78 reconstructed vertices

At the **Muon Collider** background tracks are not reconstructable

A cloud of looping tracks from soft electrons: $<p_T> = 3.5$ MeV

Tremendous combinatorics for the classical outward track reconstruction
Silicon sensors with high spatial and timing resolution

- **Outer Tracker** 50μm × 1mm σ_t = 60ps
- **Inner Tracker** 50μm × 10mm σ_t = 60ps
- **Vertex Detector** 50μm × 50μm σ_t = 30ps
 - double layers with 2mm spacing
 - forward disks placed outside of the regions with highest BIB flux to minimize occupancy

Precise timing enables very narrow readout time windows to reject BIB hits on detector → minimized bandwidth

inline with ongoing R&D on 4D tracking for HL-LHC
Raw hit density in the Vertex Detector is unsustainable ($\leq 1K$ hits/cm2)

More than 50% of BIB hits can be rejected by **narrow time windows**

- requires state-of-the-art time resolution and small pixels to avoid pile-up pulses from different BIB particles

On-detector identification of **shallow-angle tracks** is even more powerful

Currently angular information is obtained from stubs in double layers

Tighter angular filtering requires the vertex position to be known in advance

- possible only at the reconstruction level but reduces combinatorial background tremendously ($by \times 20$-$\times 1000$)

Angular sensitivity from single hits could be possible also by cluster-shape or pulse-shape analysis

Can be implemented on detector further reducing bandwidth requirements

- but requires more computing power compromising the material budget (electronics, cooling)
Similarly to the Tracker, very **diffused energy deposits** from BIB across ECAL (photons) and HCAL (neutrons)

ECAL

- 5x5 mm² cells
- 40 sensitive layers
- W absorber (1.9mm) + Si sensor pads

HCAL

- 30x30 mm² cells
- 60 sensitive layers
- Fe absorber (19mm) + plastic scintillator

Distinctive out-of-time BIB contribution in ECAL

Smaller penetration depth of the soft BIB radiation
R&D directions

Ultra-fast Si sensors for the **Tracking detector:** high spatial granularity ($\leq 50 \mu m$) and time resolution ($\leq 30 ps$)

- LGAD, RSD, MAPS, 3D integrated circuits

Sensor requirements very much overlap with the ones of HL-LHC \rightarrow good synergy with ongoing R&D efforts

On-detector hit filtering is more unique to Muon Collider \rightarrow requires dedicated R&D

In **Calorimeters** BIB can’t be completely excluded \rightarrow it has to be subtracted as precisely as possible

- high spatial granularity in 3D + good time resolution ($\leq 100 ps$)

No conceptual showstoppers except for the cost ($W+Si$)

R&D on a more cost-effective ECAL concept is ongoing: Crilin

- homogenous design with Cherenkov crystals + SiPM readout

No major issues in the **Muon system**

- most of the BIB contained within Tracker + Calorimeters
- BIB muons contribute only in the very forward region and are easily removable

Developments on high-bandwidth data links for HL-LHC are highly relevant for DAQ at the Muon Collider
Up to now most studies performed on the $\sqrt{s} = 1.5$ TeV case for a connection with the previous MAP studies.

Realistic Muon Collider designs foresee $\sqrt{s} = 3$ TeV and $\sqrt{s} \geq 10$ TeV but no dramatic changes in BIB characteristics are expected.

Muon Collider will operate at ~ 100 KHz bunch-crossing rate leaving plenty of time for data-processing (10\,μs).

Radiation levels do not exceed those at HL-LHC.

Dedicated publications on physics and detector prepared as part of the Snowmass ’21 process:

- Muon Collider Physics Summary | arXiv:2203.07256
- Simulated Detector Performance at the Muon Collider | arXiv:2203.07964
- Promising Technologies and R&D Directions for the Future Muon Collider Detectors | arXiv:2203.07224

Special JINST issue on Muon Accelerators for Particle Physics.
Summary

Muon Collider is a unique machine for both discoveries and precision measurements gaining a lot of attention from the theoretical and experimental communities.

Feasibility study under way within the International Muon Collider Collaboration with a dedicated group working on detector and physics simulations.

Beam Induced Background is pushing detector requirements to the limits in terms of time resolution, granularity, data rates, ...

Baseline detector geometry revealed the main performance bottlenecks and primary targets for detector R&D.

Large overlap with ongoing efforts towards HL-LHC experiments with no obvious showstoppers considering ~10 years ahead.
Muon Collider accelerator parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$\sqrt{s} = 1.5$ TeV</th>
<th>$\sqrt{s} = 3$ TeV</th>
<th>$\sqrt{s} = 10$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam momentum [GeV]</td>
<td>750</td>
<td>1500</td>
<td>5000</td>
</tr>
<tr>
<td>Beam momentum spread [%]</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Bunch intensity</td>
<td>$2 \cdot 10^{12}$</td>
<td>$2.2 \cdot 10^{12}$</td>
<td>$1.8 \cdot 10^{12}$</td>
</tr>
<tr>
<td>$\beta_{x,y}$ [cm]</td>
<td>1</td>
<td>0.5</td>
<td>0.15</td>
</tr>
<tr>
<td>ϵ_{TN} normalised transverse emittance [$\pi \mu$m rad]</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>ϵ_{LN} normalised longitudinal emittance [MeV m]</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>$\sigma_{x,y}$ beam size [μm]</td>
<td>6</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>σ_z beam size [mm]</td>
<td>10</td>
<td>5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Integrated luminosity targets: 10 ab$^{-1}$ at $\sqrt{s} = 10$ TeV + potentially 1 ab$^{-1}$ at $\sqrt{s} = 3$ TeV with instantaneous luminosity of $\sim 10^{34} - 10^{35}$ cm$^{-2}$ s$^{-1}$