Far-Forward Detectors at the Electron-Ion Collider

The Electron-Ion Collider (EIC)

- Two interaction regions (IRs) for possible detector locations.
- Only one IR (IP6) part of the project scope.

The Electron-Ion Collider (EIC)

- In addition to the central detector \rightarrow detectors integrated into the beamline on both the hadron-going (far-forward) and electron-going (far-backward) direction.

The far-forward system functions almost like an independent spectrometer experiment at the EIC!

Far-Forward Physics at the EIC

Far-Forward Physics at the EIC

e+He3 spectator tagging ${ }^{2}$
ै $_{6}$)

coherent/incoherent
J / ψ production in $\mathrm{e}+\mathrm{A}^{3}$

Rare isotopes**

e+He4 DVCS***

Quasi-elastic electron scattering ${ }^{4}{ }^{e}$

e+d DIS spectator tagging ${ }^{5}$

[1] Z. Tu, AJ, et al., Phys. Lett. B 811, 135877 (2020) [2] I. Friscic, D. Nguyen, J. R. Pybus, AJ, et al., Phys. Lett. B, 823, 136726 (2021)
[3] W. Chang, E.C. Aschenauer, M. D. Baker, AJ, J.H. Lee, Z. Tu, Z. Yin, and L. Zheng, Phys. Rev. D 104, 114030 (2021)
[4] F. Hauenstein, AJ, J. R. Pybus, A. Kiral, M. D. Baker Y. Furletova, O. Hen, D. W. Higinbotham, C. Hyde, V. Morozov, D. Romanov, and L. B. Weinstein, Phys. Rev.
C 105, 034001 (2022)
[5] AJ, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205 (2021) (Editor's Suggestion)

Many examples of detailed impact studies with full detector simulations! (non-exhaustive)

Thurs. 10:00 WG6

Wed. Moran
W:00 WG6

Far-Forward Physics at the EIC

states for EIC physics which require far-forward detectors!!

Far-Forward Physics at the EIC

$>$ Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states \rightarrow tailored detector subsystems.
$>$ Various collision systems and energies (h: 41, 100-275 GeV, e: 5-18 GeV; e+p, e+d, e+Au, etc.).
$>$ Placing of far-forward detectors uniquely challenging due to integration with accelerator.
>Details studied in EIC Yellow Report and Conceptual Design Report, and in the ATHENA, ECCE, and CORE EIC detector proposals.

Far-Forward Physics at the EIC

$>$ Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states \rightarrow tailored detector subsystems.
$>$ Various collision systems and energies (h: 41, 100-275 GeV, e: 5-18 GeV; e+p, e+d, e+Au, etc.).
$>$ Placing of far-forward detectors uniquely challenging due to integration with accelerator.
>Details studied in EIC Yellow Report and Conceptual Design Report, and in the ATHENA, ECCE, and CORE EIC detector proposals.

The Far-Forward Detectors

BO Silicon Tracker and Preshower

The Far-Forward Detectors

Far-Forward Detector Subsystems

B0 Detectors

B0 Detectors

($5.5<\boldsymbol{\theta}<20.0 \mathrm{mrad}$)
Charged particle reconstruction and photon tagging.
> Precise tracking ($\sim 10 u m$ spatial resolution).
> Fast timing for background rejection and to remove crab smearing ($\sim 35 \mathrm{ps}$).
$>$ Photon detection (tagging or full reco).

Electrons

B0 Detectors

($5.5<\boldsymbol{\theta}<20.0 \mathrm{mrad}$)

> Higher granularity silicon (e.g. MAPS) required.
$>$ Tagging photons important in differentiating between coherent and incoherent heavy-nuclear scattering, and for reconstructing $\pi^{0} \rightarrow \gamma \gamma$.
\rightarrow Space is a major concern here - an EMCAL is highly preferred, but may only have space for a preshower.

Roman Pots @ the EIC

Protons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Full GEANT4 simulation.

Roman "Pots" @ the EIC

- Silicon detectors placed directly into machine vacuum!
- Allows maximal geometric coverage!
- Need space for detector insertion tooling and support structure.

Roman "Pots" @ the EIC

25.6 cm

DD4HEP Simulation

- Two main options
$>$ AC-LGAD sensor provides both fine pixilation (~ 140 um spatial resolution), and fast timing ($\sim 35 \mathrm{ps}$).
$>$ MAPS + LYSO timing layer.
- "Potless" design concept with thin RF foils surrounding detector components.

Roman "Pots" @ the EIC
25.6 cm

$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.
ε is the beam emittance.

$$
\sigma(z)=\sqrt{\varepsilon \cdot \beta(z)}
$$

$>$ Low-pT cutoff determined by beam optics.
$>$ The safe distance is $\sim 10 \sigma$ from the beam center.
$>1 \sigma \sim 1 \mathrm{~mm}$
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

Off-Momentum Detectors

Off-momentum detectors implemented as horizontal "Roman Pots" style sensors.

- Same technology choice(s) as for the Roman Pots.
- Need to also study use of OMD on other side for tagging negative pions.

```
Protons
```

Protons
123.75 < E < 151.25 GeV
123.75 < E < 151.25 GeV
(45%<<\frac{\mp@subsup{p}{\mathrm{ z,proton }}{}}{\mp@subsup{p}{\mathrm{ z,bam }}{}}<55%)
(45%<<\frac{\mp@subsup{p}{\mathrm{ z,proton }}{}}{\mp@subsup{p}{\mathrm{ z,bam }}{}}<55%)
0<0<5 mrad

```
0<0<5 mrad
```


Summary of Detector Performance (Trackers)

- Includes realistic considerations for pixel sizes and materials
- More work needed on support structure and associated impacts.
- Roman Pots and Off-Momentum detectors suffer from additional smearing due to improper transfer matrix reconstruction.
- This problem is close to being solved!

Summary of Detector Performance (Trackers)

- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.

Beam effects the dominant source of momentum

 smearing!
Zero-Degree Calorimeter

Summary and Takeaways

- All FF detector acceptances and detector performance well-understood with currently available information.
- Numerous impact studies done!
- Some final choices on technology underway \rightarrow also important for IP8 complementarity.
- Full effort benefitted from three (ECCE, ATHENA, CORE) proposals to identify multiple technology solutions!
- More realistic engineering considerations need to be added to simulations as design of IR vacuum system and magnets progresses toward CD-2/3a.
- Lots of experience in performing these simulations, so this work will progress rapidly as engineering design matures.
- Already well-established line of communication between detector and physics parties and the EIC machine/IR development group \Rightarrow Crucial for success!!!

Backup

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$-> lower lumi., smaller beam at RP

Digression: Machine Optics

275 GeV DVCS Proton Acceptance

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$->
lower lumi., smaller beam at RP

B0-detectors (calorimetry)

- For studies of u-Channel (Backwardangle) exclusive electroproduction, need capability to reconstruct photons from π^{0} decays.
- Physics beyond the EIC white paper!
- Would require full EMCAL with high granularity and energy resolution.
$>$ PbWO4 used in ECCE studies.
- Longitudinal space in BOpf magnet limited.
- Would be a great candidate for an upgrade or for IP8 complementarity!

Thanks to Bill Li for the figure!

Zero-Degree Calorimeter (alt. option)

Multi-functional design including EMCAL and HCAL, with imaging layers to improve PT /angular resolution for neutrons.

EMCAL (W/SciFi):

- Scintillating fibers embedded in W powder.
- Photon energy resolution $\frac{12 \%}{\sqrt{E}} \oplus 3 \%$.
- $23 X_{0}$ and $1 \lambda_{I}$ HCAL (Pb/Sci):
- Neutron energy resolution $\frac{36 \%}{\sqrt{E}} \oplus 2.2 \%$ - using $\mathrm{Pb} / \mathrm{Sci}$ sampling HCAL with $7 \lambda_{I}$, plus EMCAL section.

- Imaging layers could be silicon or scintillating fibers.
- Need to better establish how many are needed and at what level of granularity to produce needed resolution.

Alt. ZDC Performance (E resolution)

- Alt. ZDC
- Comparisons made with simulations for pure $\mathrm{Pb} / \mathrm{Sci}$.
- Performance in GEANT4 simulations consistent with test beam studies for similar construction.
- Performance will worsen for particles with larger polar angles due to transverse leakage.

So how does the FF system perform for measurements (non-exhaustive)?

Off-Momentum Detectors

Off-Momentum Detectors

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.

Digression: particle beams

- Angular divergence
- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.

- Crab cavity rotation
- Can perform rotations of the beam bunches in 2D.
- Used to account for the luminosity drop due to the crossing angle allows for head-on collisions to still take place.

Spectator Tagging in Light Nuclei

EIC enables use of deuteron beams \rightarrow the next best thing to a beam of neutrons!

- Measurements on unpolarized deuterons ${ }^{1}$ (or polarized $\left.\mathrm{He}-3\right)^{2}$ at the EIC.
- Spectator proton momentum \rightarrow enables selection of nuclear (p / n) configurations.
- Extract free neutron structure function ${ }^{3} \rightarrow$ Not possible elsewhere!
- Study nuclear modifications of both nucleons in the deuteron (study in progress).

e+d Spectator Tagging

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Proton spectator case.
Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.
Short-range correlations!

Protons

Protons

Spectator proton acceptance (in the off-momentum detectors)
$e+\underset{\text { Protons }}{\text { Spectator Trotons }}$ Tagging

Protons

Proton spectator case
Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.
Short-range correlations!

- Spectator kinematic variables reconstructed over a broad range.
- All beam/detector effects included.
- Bin migration is observed due to smearing in the reconstruction.
$>$ In the proton spectator case, essentially all spectators tagged.
$>$ Active neutrons only tagged up to 4.5 mrad .

e+d Spectator Tagging

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Neutron spectator case.
Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Short-range correlations!

Active proton acceptance!

Need multiple FF subsystems!

e+d Spectator Tagging

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Neutron spectator case.
Particular process in BeAGLE:

Protons

Protons
 incoherent diffractive J/psi production off bounded nucleons.
Short-range correlations!

t-reconstruction using doubletagging (both proton and neutron). Takes advantage of combined B0 + off-momentum detector coverage. Better coverage in the neutron spectator case.

Free Neutron F_{2} Extraction

(Active nucleon reduced cross section) $\sim \mathrm{F}_{2}$

- Cross-section as a function of the proton spectator kinematics \rightarrow dial to select nuclear configuration \rightarrow allows extrapolation to "free" neutron region.
- Enables measurement of free neutron structure function!

$$
\begin{gathered}
P_{p T}^{2}=p_{p x}^{2}+p_{p y}^{2} \\
\sigma_{\text {red }, n} \sim F_{2, n} \text { (cross section) }
\end{gathered}
$$

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

Neutron Spin Structure in He3

- Studies of neutron structure with a polarized neutron.
- More challenging final state tagging since both protons must be tagged in the FF region.
- MC events generated with CLASDIS in fixed-target frame, and then boosted to collider frame.

Beam pipe
B1apf Dipole

The Far-Forward Detectors

Detector	Acceptance
Zero-Degree Calorimeter (ZDC)	$\boldsymbol{\theta}<5.5 \mathrm{mrad}(\eta>6)$
Roman Pots (2 stations)	$0.0^{*}<\boldsymbol{\theta}<5.0 \mathrm{mrad}(\eta>6)$
Off-Momentum Detectors (2 stations)	$0.0<\boldsymbol{\theta}<5.0 \mathrm{mrad}(\eta>6)$
B0 Detector	$5.5<\boldsymbol{\theta}<20.0 \mathrm{mrad}$ $(4.6<\eta<5.9)$

Focusing Quadrupoles

Off-Momentum Detectors
Station 1 (as Roman Pots)

Four independent subsystems leveraging different technologies!

Roman Pots

- Active sensor area very large ($26 \mathrm{~cm} \times 13 \mathrm{~cm}$).
- "Potless" design could make better use of space.
- With AC-LGADS + ALTIROC ASIC, current estimates of power dissipation around 400-500 watts for entire subsystem, so roughly 100 watts/layer.
- With potless design, leveraging experience from LHCb VELO for cooling would allow for cooling of the electronics within the vacuum.
- Support structure only to be placed between hadron pipe and wall to avoid interference with the ZDC.

Roman Pots

- Updated layout with current design for AC-LGAD sensor + ASIC.
 (ALTIROC) for use with AC-LGADs.
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { ASIC size } & \begin{array}{c}\text { ASIC Pixel } \\ \text { pitch }\end{array} & \begin{array}{c}\text { \# Ch. } \\ \text { per ASIC }\end{array} & \begin{array}{c}\text { \# ASICs } \\ \text { per module }\end{array} & \text { Sensor area } & \begin{array}{c}\text { \# Mod. } \\ \text { per layer }\end{array} & \begin{array}{c}\text { Total \# } \\ \text { ASICs }\end{array} & \begin{array}{c}\text { Total \# Ch. }\end{array} \\ \hline 1.6 \times 1.8 \mathrm{~cm}^{2} & 500 \mu \mathrm{~m} & 32 \times 32 & 4 & 3.2 \times 3.2 \mathrm{~cm}^{2} & 32 & 512 & 524,288 \\ \text { Si Area }\end{array}\right\} 1,311 \mathrm{~cm}^{2} 10$

Luminosity Monitor

- Must make measurement in challenging environment.
- High synchrotron radiation, high bremsstrahlung rates ($\sim 10 \mathrm{GHz}$), etc.
- Need $\sim 1 \%$ for absolute luminosity measurement, $\sim 10^{-4}$ for relative luminosity measurement.
- Can make direct photon measurement, or indirect via pair conversion in exit window, where $\mathrm{e}^{+} \mathrm{e}^{-}$pair is steered toward two calorimeters opposite a dipole magnet.
- Direct photon calorimeter includes moveable SR filters/monitors (F1 and F2), and has configurations for high (PCALf) and low (PCALc) luminosity running.

Exit window for luminosity monitor

- Part of outgoing electron beam pipe
- Conversion layer for bremsstrahlung photons
- Tilt angle vs. electron (and photon) beam axis against synchrotron radiation

Low-Q² Taggers

- Two taggers for reconstructing electrons from low- $\mathrm{Q}^{2}\left(<10^{-1} \mathrm{GeV}^{2}\right)$ reactions.
- Combination of EM calorimetry for energy reconstruction, and silicon layers (High Resolution Hodoscope - HIHS) for position and angular resolution.

Performance for low-Q2 tagger

- Tagger 1 and 2 are placed closer (further) from the IP
- Overlap in Q2 acceptance (<0.1 GeV^2)
- Complementary in electron energy (higher energies reach Tagger 2)
- Consistent for Pythia6 and quasi-real photoproduction (QR)

(a) Tagger 1

(b) Tagger 2

Machine Optics: Roman Pots

Momentum Resolution - Timing

For exclusive reactions measured with the Roman Pots we need good timing to resolve the position of the interaction within the proton bunch. But what should the timing be?

- Because of the rotation, the Roman Pots see the bunch crossing smeared in x.
- Vertex smearing $=12.5 \mathrm{mrad}$ (half the crossing angle) $* 10 \mathrm{~cm}=1.25 \mathrm{~mm}$
- If the effective vertex smearing was for a 1 cm bunch, we would have .125 mm vertex smearing.
- The simulations were done with these two extrema and the results compared.
$>$ From these comparisons, reducing the effective vertex smearing to that of the 1 cm bunch length reduces the momentum smearing to negligible from this contribution.
> This can be achieved with timing of ~ 35 ps ($1 \mathrm{~cm} /$ speed of light).

Momentum Resolution - Comparison

- The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

$$
\Delta p_{t, t o t a l}=\sqrt{\underbrace{\left(\Delta p_{t, A D}\right)^{2}}_{\begin{array}{l}
\text { Angular } \\
\text { divergence }
\end{array}}+\underbrace{\left(\Delta p_{t, C C}\right)^{2}}_{\begin{array}{l}
\text { Primary vertex } \\
\text { smaaring from crab } \\
\text { cavity rotation. }
\end{array}}+\underbrace{\left(\Delta p_{t, p x l}\right)^{2}}_{\begin{array}{l}
\text { Smearing from } \\
\text { finite pixel size. }
\end{array}}}
$$

- Beam angular divergence
- Beam property, can't correct for it - sets the lower bound of smearing.
- Subject to change (i.e. get better) - beam parameters not yet set in stone
- Vertex smearing from crab rotation
- Correctable with good timing (~ 35 ps)
- Finite pixel size on sensor

Free Neutron F_{2} Extraction

$$
\sigma_{r e d, n}\left(x, Q^{2}\right)=\frac{\sigma_{r e d, d}}{\left[2(2 \pi)^{3}\right] S_{d}\left(p_{p T}, \alpha_{p}\right)}
$$

$$
\begin{aligned}
& R=2 \alpha_{n}^{2} m_{N} \Gamma^{2}\left(2-\alpha_{n}\right) \\
& a_{T}^{2}=m_{N}^{2}-\alpha_{p}\left(2-\alpha_{p}\right) \frac{M_{d}^{2}}{4} \\
& R=\text { residue of spectral function } \\
& a_{T}^{2}=\text { position of pole }
\end{aligned} S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]=\frac{R}{\left(p_{p T}^{2}+a_{T}^{2}\right)^{2}}
$$

What about IP8?

Major potential benefit: Secondary Focus

Major potential benefit: Secondary Focus
 Generated

Generated

Nucleon Momentum Fraction, $x_{1} D_{\text {T }}$ VS. X_{L}

Accepted

Accepted (RPSF)

Roman Pots @ the EIC

- Updated layout with current design for AC-LGAD sensor + ASIC.

Based on eRD24 R\&D work.

- Current R\&D aimed at customizing ASIC readout chip (ALTIROC) for use with AC-LGADs.

