BSM and Top physics with LHeC and FCC-eh

Oliver Fischer

Deep Inelastic Scattering Santiago de Compostela 03/05/22

The Large Hadron-Electron Collider at the HL-LHC

LHeC and FCC-he Study Group

P. Agostini et al., [arXiv:2007.14491 [hep-ex]]

LHeC $E_e=50$ GeV, $\sqrt{s}\simeq 1.2$ TeV, $\mathcal{L}_{int}=1$ ab $^{-1}$, parallel to HL-LHC FCC-he $E_e=50$ GeV, $\sqrt{s}\simeq 3.2$ TeV, $\mathcal{L}_{int}=3$ ab $^{-1}$, parallel to FCC-hh

The Large Hadron-Electron Collider at the HL-LHC – section 5.3

0.3	Tob Q	uark Physics
	5.3.1	Wtq Couplings
	5.3.2	Top Quark Polarisation
	5.3.3	Top- γ and Top- Z Couplings
	5.3.4	Top-Higgs Coupling
	5.3.5	Top Quark PDF and the Running of α_s
	5.3.6	FCNC Top Quark Couplings
	5.3.7	Other Top Quark Property Measurements and Searches for New Physics . 136
	5.3.8	Summary of Top Quark Physics

100

Anomalous Wtq couplings

- ▶ Flagship measurement V_{tb} , $\sigma = 15.3$ pb
- ► Generic modification of *Wtq* interactions

$$\begin{split} \delta\mathcal{L}_{Wtb} &= -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}V_{tb}(f_1^LP_L - f_1^RP_R)tW_{\mu}^- \\ &- \frac{g}{\sqrt{2}}\bar{b}\frac{-i\sigma^{\mu\nu}q_{\nu}}{M_W}(f_2^LP_L - f_2^RP_R)tW_{\mu}^- + \text{h.c.} \end{split}$$

- ► SM: all *f*_i vanish at tree level.
- ▶ Analysis of $e^-p \rightarrow \nu \bar{t} + X$ at the detector level including background processes and systematic effects:
- \Rightarrow Precision of $\sim 10^{-3}$ for f_i^L and 10^{-2} for f_i^R at LHeC.

Mellado et al., Eur. Phys. J. C **75** (2015) no.12, 577 [arXiv:1307.1688 [hep-ph]].

Top $-\gamma$ couplings

- Photoproduction of $t\bar{t}$ directly proportional to $t\bar{t}\gamma$ vertex
- ► Generic effective model independent parametrisation:

$$\mathcal{L}_{t\bar{t}\gamma} = e\bar{t} \left(\lambda Q_t \gamma^{\mu} A_{\mu} + \frac{1}{4m_t} \sigma_{\mu\nu} V^{\mu\nu} (\kappa_V + i\tilde{\kappa}_V \gamma_5) \right) t$$

with anomalous magnetic and electric dipole moments κ and $\tilde{\kappa}$

Bouzas and Larios, Phys. Rev. D 88 (2013) no.9, 094007 [arXiv:1308.5634 [hep-ph]].

▶ Recent analysis (anomalous dipole moments) at the detector level incl. several backgrounds and systematics (18%).

New results from Bouzas and Larios, [arXiv:2111.04723 [hep-ph]].

Flavor changing neutral currents with top quarks

ightharpoonup Single top quark searches are sensitive to FCNC tqV:

$$\mathcal{L}_{FCNC}^{qV} = \frac{g}{\Lambda_V} \bar{t} \sigma^{\mu\nu} (\lambda_{qV}^L P_L + \lambda_{qV}^R P_R) q V_{\mu\nu} + \text{h.c.}$$

$$q = u, c, V = \gamma, Z$$

- lacktriangle These couplings also give rise to FCNC top decays: t o Vq
- ▶ Process $e^-p \rightarrow e^-W^+b + X$
- Analysis at the detector level yields sensitivity of $\lambda_{q\gamma}=0.0025$ and $\lambda_{qZ}=0.0037$ at 2σ for 1/ab.

Cakir et al., Nucl. Phys. B 944 (2019), 114640 [arXiv:1809.01923 [hep-ph]].

The Large Hadron-Electron Collider at the HL-LHC – chapter 8

8	Sear	thes for Physics Beyond the Standard Model 18	8
	8.1	Introduction	8
	8.2	Extensions of the SM Higgs Sector	8
		8.2.1 Modifications of the Top-Higgs interaction	9
		8.2.2 Charged scalars	9
		8.2.3 Neutral scalars	0
		8.2.4 Modifications of Higgs self-couplings	1
		8.2.5 Exotic Higgs boson decays	2
	8.3	Searches for supersymmetry	2
		8.3.1 Search for the SUSY Electroweak Sector: prompt signatures 19	3
		8.3.2 Search for the SUSY Electroweak Sector: long-lived particles 19	4
		8.3.3 R-parity violating signatures	
	8.4	Feebly Interacting Particles	6
		3.4.1 Searches for heavy neutrinos	6
		3.4.2 Fermion triplets in type III seesaw	7
		8.4.3 Dark photons	9
		8.4.4 Axion-like particles	0
	8.5	Anomalous Gauge Couplings	
		3.5.1 Radiation Amplitude Zero	
	8.6	Theories with heavy resonances and contact interaction	
		8.6.1 Leptoquarks	
		8.6.2 Z' mediated charged lepton flavour violation	
		8.6.3 Vector-like quarks	
		8.6.4 Excited fermions (ν^*, e^*, u^*)	6
		8.6.5 Colour octet leptons	6
		8.6.6 Quark substructure and Contact interactions	6

Beyond the Standard Model studies at ep

► Electron-proton collider ideal laboratory to study common features of electrons and quarks with EW / VBF production, LQ,multi-jet final states, forward objects

Upside:

- Small background (no QCD interaction between e and p)
- Very low pileup
- **Downside:** low production rates for new physics processes due to small \sqrt{s}
- Increased engagement from theory community in recent years, summarised in "chapter 8" (almost 100 articles).

Here: brief overview over some of the "latest" contributions.

Searching for charged lepton flavor violation at ep colliders

S. Antusch, A. Hammad and A. Rashed, JHEP 03 (2021), 230 [arXiv:2010.08907 [hep-ph]].

Lepton flavor violating processes

- An effective vertex couples incoming electron to a muon or a tau and a neutral scalar or vector boson.
- ► Flavor changing physics parametrised via an effective vertex coupling of leptons with Higgs, photon, and Z.
- Analysis for the LHeC at the detector level.

Backgrounds: small cross sections, well separable

#	Backgrounds τ final state	$\sigma_{(LHeC)}[Pb]$
bkg1	$pe^- \rightarrow Z/\gamma^* (\rightarrow \tau^- \tau^+) \nu_l j$	0.0316
bkg2	$pe^- \rightarrow W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau}) e^- j$	0.2657
bkg3	$pe^- \rightarrow ZZ(\rightarrow \tau^-\tau^+) \nu_l j$	1.1×10^{-5}
bkg4	$pe^- \rightarrow Z(\rightarrow \tau^- \tau^+)W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau}) \nu_l j$	2.64×10^{-5}

#	Backgrounds μ final state	$\sigma_{(LHeC)}[Pb]$
bkg1	$pe^- \rightarrow Z/\gamma^* (\rightarrow \mu^- \mu^+) \nu_l j$	0.0316
bkg2	$pe^- \rightarrow W^{\pm}(\rightarrow \mu^{\pm} \nu_{\mu}) e^- j$	0.2657
bkg3	$pe^- \rightarrow Z/\gamma^* (\rightarrow \tau^- \tau^+ \rightarrow \text{leptons}) \nu_l j$	9.1×10^{-4}
bkg4	$pe^- \rightarrow W^{\pm}(\rightarrow \tau^{\pm} \nu_{\tau} \rightarrow \text{leptons}) e^- j$	0.0451
bkg5	$pe^- \rightarrow ZZ(\rightarrow \mu^-\mu^+) \nu_l j$	1.1×10^{-5}
bkg6	$pe^- \rightarrow Z(\rightarrow \mu^- \mu^+)W^{\pm}(\rightarrow \mu^{\pm} \nu_{\mu}) \nu_l j$	2.64×10^{-5}

Cut-based optimisation of signal-to-background ratio.

Sensitivity to flavor violation

- Model independent limits on form factors for LHeC.
- ▶ Recast in specific model, here: sterile neutrinos.
- ► Flavor violation proportional to $|\theta_e\theta_\alpha^*|$

Exotic Higgs decays into displaced jets at the LHeC

K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, JHEP 02 (2021), 161 [arXiv:2008.09614 [hep-ph]].

Extending the SM with a complex neutral scalar singlet S

- ► *S* can couple to and mix with the SM Higgs field.
- ▶ Physical fields: h_1 ('Higgs'), h_2 with $m_{h_2} = \mathcal{O}(10)$ GeV.
- ▶ h_2 production at LHeC: $h_1 \rightarrow 2h_2$ with small branching ratio.
- ▶ Decay rate of h_2 suppressed by mixing \Rightarrow long-lived particle

Sensitivity

- ► Consider only CC Higgs production: $e^-p \rightarrow \nu_e h_1 j$.
- ▶ $h_1 \rightarrow 2h_2 \rightarrow 4b$ with two displaced vertices.
- Analysis at the detector level.
- From events with $n_{jet} \ge 5$, reconstruct m_{h_2} , require displacement. "Delphes with displacement." https://sites.google.com/site/leftrighthep/delphes.
- ▶ Inclusive backgrounds: $e^-p \rightarrow \nu_e + n_b b + n_j j + n_\tau \tau$

Displaced Neutrino Jets at the LHeC

G. Cottin, O. Fischer, S. Mandal, M. Mitra and R. Padhan, [arXiv:2104.13578 [hep-ph]].

Leptoquark \tilde{R}_2 and longlived sterile neutrino

- ▶ Heavy neutrino N with mass $\sim GeV$; long lived particle.
- $ightharpoonup ilde{R}$ with dominant branching into qN difficult to study at LHC.
- ► Can be produced in *ep* collisions via \tilde{R} : $ep \to \tilde{R} \to jN$, with $N \to$ displaced fat jet.
- ▶ 5σ with 120 fb⁻¹ for $M_N \sim 10$ GeV and $\tilde{R}Nq$ coupling ~ 0.1 .
- Significant improvement from positron-proton scattering.

Doubly Charged Higgs Production at Future ep Colliders

X. H. Yang and Z. J. Yang, [arXiv:2103.11412 [hep-ph]].

Extending the SM with a $SU(2)_L$ triplet scalar: Δ

Motivation: type II seesaw for neutrino masses:

$$\mathcal{L}_{Y_{\Delta}} = Y_{\Delta} \bar{\ell}^c i \sigma^2 \Delta \ell + H.c.$$

 $\Rightarrow m_{\nu} = Y_{\Delta} \sqrt{2} v_{\Delta}$

- ▶ Lepton flavor violating processes $\tau \to \bar{l_i} l_j l_k$ and $\mu \to \bar{e}ee$ mediated at tree level and constrain Y_{Δ} .
- ▶ Constraints from precision measurements: $v_{\Delta} \leq 1$ GeV.
- LHC searches for doubly charged scalars only stringent when $H^{\pm\pm} \to \ell^{\pm}\ell^{\pm}$ is the dominant decay mode.

cf. also S. Antusch et al., JHEP 02 (2019), 157 [arXiv:1811.03476 [hep-ph]].

Searching doubly charged scalars at FCC-he

- Scalar production via vector boson fusion.
- Search for two doubly (and singly) charged scalars, decaying to $2SS\mu$ plus jets.
- ▶ Signal: analytical calculation \rightarrow simulation with vegas.
- ▶ Background: $e^-p \rightarrow e(\nu_2)t\bar{t}W^{\pm}j \rightarrow Madgraph5$.

Other recent articles

"Search for heavy Majorana neutrinos at electronproton colliders," [arXiv:2201.12997 [hep-ph]].

- By H. Gu and K. Wang.
- Analysis at detector level with boosted decition tree.
- Sensitivity similar to lepton-number conserving signatures,
- \Rightarrow Background free to excellent approximation.

- A. Jueid, J. Kim, S. Lee and J. Song, "Studies of nonresonant Higgs pair production at electron-proton colliders," [arXiv:2102.12507 [hep-ph]].
- K. Cheung and Z. S. Wang,
 "Physics potential of a muon-proton collider," [arXiv:2101.10476 [hep-ph]].
- G. D. Kribs, D. McKeen and N. Raj, "Breaking up the Proton: An Affair with Dark Forces," Phys. Rev. Lett. 126 (2021) no.1, 011801 [arXiv:2007.15655 [hep-ph]].
- A. Gutiérrez-Rodríguez, M. A. Hernández-Ruíz, E. Gurkanli, V. Ari and M. Köksal, "Study on the anomalous quartic W⁺W⁻γγ couplings of electroweak bosons in e⁻p collisions at the LHeC and the FCC-he," Eur. Phys. J. C 81 (2021) no.3, 210 [arXiv:2005.11509 [hep-ph]].

Conclusions

- ► Top and BSM in electron-proton generated a lot of interest in the pheno community.
- Driving factor: complementary to pp and ee colliders.
- Opportunities for precision measurements of top physics:
 - * Single top and $t\bar{t}$ production;
 - \star top couplings to γ , Z, W, and FCNC interactions.
- Opportunities for BSM that is hidden at the LHC:
 - ⋆ Displaced vertices from long lived particles;
 - ★ Lepton flavor violation (electron-tau);
 - ⋆ Not-too-heavy scalars;
 - ★ GeV-scale bosons.