

Unravelling non-linear parton dynamics at small x through high energy ep and eA scattering

Anna Stasto

Outline

- Introduction: LHeC and FCC-eh parameters and kinematics
- Parton distributions at small x
- Potential for testing resummation and saturation
- Longitudinal structure function
- Diffractive phenomena

LHeC Conceptual Design Report and beyond

CDR 2012: commissioned by CERN, ECFA, NuPECC 200 authors, 69 institutions

Journal of Physics G **Nuclear and Particle Physics** Volume 39 Number 7 July 2012 Article 075001 A Large Hadron Electron Collider at CERN arXiv:1206.2913 iopscience.org/jphysg IOP Publishing

Further selected references:

On the relation of the LHeC and the LHC

arXiv:1211.5102

The Large Hadron Electron Collider

arXiv:1305.2090

Dig Deeper

Nature Physics 9 (2013) 448

Future Deep Inelastic Scattering with the LHeC

arXiv:1802.04317

CDR update 2020 300 authors, 156 institutions

arXiv:1206.2913

arXiv:2007.14491

Accelerator concepts for electron-proton collisions

50 x 7000 GeV2: 1.2 TeV ep collider

Operation: 2035+, Cost: O(1) BCHF

CDR: 1206.2913 J.Phys.G (550 citations)

Upgrade to 10³⁴ cm⁻²s⁻¹, for Higgs, BSM

CERN-ACC-Note-2018-0084 (ESSP)

arXiv:2007.14491, subm J.Phys.G

LHeC, PERLE and FCC-eh

Powerful ERL for Experiments @ Orsay CDR: 1705.08783 J.Phys.G CERN-ACC-Note-2018-0086 (ESSP)

Operation: 2025+, Cost: O(20) MEuro

LHeC ERL Parameters and Configuration I_e =20mA, 802 MHz SRF, 3 turns \rightarrow E_e =500 MeV \rightarrow first 10 MW ERL facility

BINP, CERN, Daresbury, Jlab, Liverpool, Orsay (IJC), +

60 x 50000 GeV²: 3.5 TeV ep collider

Operation: 2050+, Cost (of ep) O(1-2) BCHF

Concurrent Operation with FCC-hh

FCC CDR:

Eur. Phys. J. ST 228 (2019) 6, 474 Physics Eur.Phys.J.ST 228 (2019) 4, 755 FCC-hh/eh

Future CERN Colliders: 1810.13022 Bordry+

Physics with Energy Frontier DIS

ep/eA collider: cleanest high resolution microscope

Precision and discovery in QCD

Study of EW physics, multi-jet final states

Transform the LHC/FCC into a high precision Higgs facility

Unique and complementary potential for the BSM studies

Empower the LHC/FCC search programme

Overall: a unique Particle and Nuclear Physics Facility

Parton distributions at small x

Complete unfolding of parton contents in unprecedented kinematic range: u,d,s,c,b,t,g

 $x \sim 5 \cdot 10^{-4}$ HERA kinematic limitations to

LHeC can constrain gluon down to $x \sim 10^{-5}$

Few percent precision on the gluon

Sensitivity to different integrated luminosities:

(Blue, yellow, red, dark blue) 5,50,1000 fb-1 and inclusive

Compared with HERA

See more on PDFs at LHeC: Talk by Claire Gwenlan

Novel dynamics at small x : resummation

Resummation at low *x* needed to stabilize BFKL expansion

Fits to HERA data: DGLAP + resummation, improve the description at low x

Ball, Bertone, Bonvini, Marzani, Rojo, Rottoli

 10^{-2}

 10^{-1}

Large differences in the parton density at low x.

Essential for LHeC and FCC-eh

0.9

0.8

 10^{-7}

 10^{-6}

 10^{-5}

 10^{-4}

Χ

 10^{-3}

Novel dynamics at small x : resummation

Important consequences for LHeC and FCC-eh 20-40% difference of central values for F_2 Factor 2 to 4 for F_L

DGLAP fit will likely fail at the LHeC range Resummation mandatory for LHeC and FCC-eh

Novel dynamics at small x: saturation

Test for saturation potential at LHeC:

Simulated pseudodata with saturation at low x

In the rest of kinematic range use DGLAP to simulate the data

Perform the fits of DGLAP to these data and check the tension/agreement

Testing for saturation at the LHeC

Pre-fit and post-fit distribution consistent for DGLAP based LHeC pseudodata

Pre-fit and post-fit distribution very different for DGLAP fit to pseudodata with saturation

DGLAP can accommodate some effects from saturation, but not all

LHeC can distinguish between DGLAP and saturation

Longitudinal structure function

Simultaneous measurement of F_2 and F_L is a cleanest way to pin down dynamics at low x

Independent constraint on the gluon density

Pseudodata simulated for E_p =7 TeV and E_e =60, 30, 20 GeV

Integrated luminosity: 10,1,1 fb⁻¹

Uncertainties: E_e ' scale uncertainty from 0.5% to 1.2%, θ_e to 0.2 mrad, background contamination from photo-production 0.5%, radiative corrections to 1%. Uncorrelated systematic error 0.2-0.5%

 F_L obtained from the slope of the fit to $\sigma_r = F_2 - f(y)F_L$

Measurement dominated by systematics

Prospect for much higher quality of F_L which would allow to discover departures from DGLAP

LHeC as eA collider

- eA at LHeC/FCC-eh: x and Q² extended by 4 decades
- Determination of inclusive and diffractive nuclear parton densities
- Studies of transverse structure: 3D picture
- Saturation (ep & eA, nuclear enhancement)
- Flavour dependent anti shadowing, Gribov relation with diffraction,...
- Strong impact on the pA/AA programmes at the HL-LHC and FCC-hh

Kinematic plane for eA

Precision structure functions, also for heavy flavors

Relative uncertainties for nuclear modification factor

Unconstrained for x below 0.01

Diffraction

Longitudinal momentum fraction of the Pomeron w.r.t hadron

$$\xi \equiv x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$

Longitudinal momentum fraction of the parton w.r.t Pomeron

$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

4-momentum transfer squared

$$t = (p - p')^2$$

Bjorken x relation

$$x_{Bj} = x_{IP}\beta$$

HERA: 10% events diffractive: rapidity gap

Rapidity gap events interpreted as exchange of vacuum quantum numbers **Pomeron**

Importance of diffraction for understanding of small x dynamics, shadowing, confinement, soft and collinear factorization

$$E_e = 60 \text{ GeV}$$

- $E_p = 7 \text{ TeV vs. HERA}$
 - x_{\min} down by factor ~20
 - $-Q_{\rm max}^2$ up by factor ~100
- $E_p = 50 \text{ TeV vs. } 7 \text{ TeV}$
 - $-x_{\min}$ down by factor ~10
 - $-Q_{\rm max}^2$ up by factor ~10

LHeC phase space: (β, Q^2) fixed ξ

FCC-eh phase space: (β, Q^2) fixed ξ

Pseudodata for σ_{red}

Simulations based on extrapolation of ZEUS-SJ DPDFs

Variable Flavor Number scheme without top

Binning to assume negligible statistical errors

5% systematic error, dominates the total error

Potential for high quality data for inclusive diffraction at LHeC/FCC-eh

Prospects for precise extraction of diffractive PDFs, tests of factorization breaking (collinear and soft)

Only small subset of simulated data is shown

Diffractive PDFs from simulations

Reduction of DPDF uncertainty by factor 5-7 at LHeC and 10-15 at FCC-eh with inclusive data alone Prospects for precise extraction of diffractive PDFs, tests of factorization breaking (collinear and soft)

Inclusive diffraction on nuclei

Reduced cross section from Frankfurt, Guzey, Strikman model

Pseudodata simulated under the same assumptions: 5% systematics, conservative luminosity 2 fb-1

High precision data would allow to extract the nuclear DPDFs with similar accuracy to the proton case

Elastic diffraction of vector mesons

Precision t, W and Q² dependence of vector mesons Example : tests of saturation from the slope in t

One of the best processes to test for novel small *x* dynamics

Summary

- LHeC and FCC-eh are electron-proton facilities which represent seminal opportunity to advance particle physics
- Broad physics potential: QCD studies, both precision and discovery, precision Higgs and EW, expand prospects for BSM, physics with nuclei
- Ultimate precision small x machines in ep/eA:
 - Precision PDFs at low x. Potential for testing resummation and saturation
 - Inclusive diffraction, constraints on diffractive PDFs, new final states in diffraction, also EW exchange. Relation between diffraction and shadowing
 - Exclusive diffraction, vector meson production, DVCS
 - Small *x* and nuclear effects can be tested in one facility. Test of universality of saturation
 - ...and much more...!