Contribution ID: 418

Type: Parallel talk

Coherent Deep Virtual Compton Scattering on ⁴He with CORE@EIC

Wednesday 4 May 2022 10:40 (20 minutes)

Coherent deep virtual exclusive scattering (DVES) is an important tool for mapping the quark- and gluonmatter densities of nuclei. The separation of quark and gluon contributions can be achieved by combining the $e^{Z}A \rightarrow e^{Z}A\gamma$ (DVCS), $e^{Z}A \rightarrow e^{Z}A\phi$ and $e^{Z}A \rightarrow e^{Z}AJ/\Psi$ reactions. This talk will describe the potential of the proposed "COmpact detector for Eic" (CORE) to achieve precision measurements of coherent DVCS on the α -particle at the U.S. Electron Ion Collider (EIC).

Two key challenges for DVES on nuclei are (1) measuring the net invariant momentum transfer squared t to the target ion with sufficient resolution to resolve the diffractive structure; and (2) selecting truly exclusive events without excitation in the final state. Due to the large intrinsic transverse momentum spread of nuclear beams in the EIC, the t-resolution in DVES is optimally determined by e.g. $(e, e'J/\Psi \rightarrow \mu^+\mu^-)$ or $(e, e'\phi \rightarrow K^+K^-)$ kinematics. In the DVCS reaction, we must rely upon the EM calorimeter resolution to resolve the $(e, e'\gamma)$ kinematics. With CORE, this is achieved with high resolution PbWO₄ calorimetry covering the entire backward (electron going) hemisphere of pseudo-rapidity $-3.5 \leq \eta \leq 0$. Establishing exclusivity is particularly favorable for the $e\alpha \rightarrow e\alpha\gamma$ reaction, as the helium nucleus has no bound excited states. The far-forward trackers ($\eta > 4.5$) and zero-degree-calorimeter (ZDC) can tag (and veto) all nuclear break-up channels of the four-nucleon system.

This talk will present the projected ⁴He DVCS yield, and reconstruction resolution with CORE in a variety of EIC kinematics. Extensions to heavier nuclei, will also be discussed.

Submitted on behalf of a Collaboration?

Yes

Author: HYDE, Charles

Co-authors: KIM, Andrey; MUNOZ CAMACHO, Carlos

Presenters: HYDE, Charles; KIM, Andrey; MUNOZ CAMACHO, Carlos

Session Classification: WG6: Future Experiments

Track Classification: WG6: Future Experiments