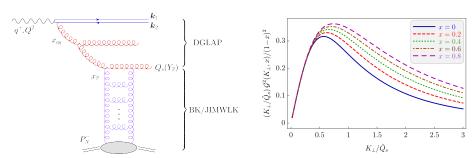
Probing gluon saturation via diffractive jet production at the EIC

Edmond Iancu

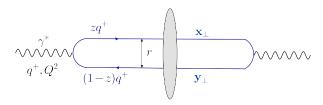
IPhT, Université Paris-Saclay

with A.H. Mueller, D.N. Triantafyllopoulos (2112.06353, PRL) and S.-Y. Wei (w.i.p.)



How to measure gluon saturation in DIS?

ullet High energy/small Bjorken x: one can use the Colour Dipole Picture



$$\sigma_{\gamma^* p}(Q^2, x) = \int d^2 r \int_0^1 dz \left| \Psi_{\gamma^* \to q\bar{q}}(r, z; Q^2) \right|^2 \underbrace{\sigma_{\text{dipole}}(r, A, x)}_{2\pi R_A^2 T(r, A, x)}$$

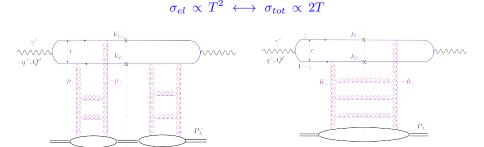
- ullet Gluon saturation \Longleftrightarrow Strong (multiple) scattering: $T\simeq 1$ ("black disk")
- ullet Saturation requires large dipoles: $r\gtrsim 1/Q_s$ with $Q_s^2(A,x)\propto A^{1/3}x^{-\lambda}$
- The dipole size is limited by virtuality: $r \lesssim 1/\bar{Q}$ with $\bar{Q}^2 \equiv z(1-z)Q^2$
- In order to probe saturation, one needs $z(1-z)Q^2 \lesssim Q_s^2$

Saturation fits to DIS at HERA

- \bullet Excellent saturation/CGC fits at HERA: $x_{\mbox{\tiny Bj}} \leq 10^{-2}, \ Q^2 \leq 50 \ \mbox{GeV}^2$
 - the pioneers: Golec-Biernat and Wüsthoff, 1999
 - many subsequent analyses, with more and more input from first principles (BK/JIMWLK evolution, NLO effects, resummations...)
 - Ducloué, E.I., Soyez and Triantafyllopoulos, 2019
 - Beuf, Hänninen, Lappi, Mäntysaari, 2020 ...
- Interesting qualitative predictions: geometric scaling, diffraction ...
- ullet However, gluon saturation only marginally probed: $Q_s^2 \sim 1~{
 m GeV^2}$
 - limited region in phase-space, non-perturbative contamination
- Can one measure saturation at high $Q^2 \gg Q_s^2$?
- Less inclusive observables: particle (jet/hadron) production, diffraction

Elastic scattering (LO Diffraction)

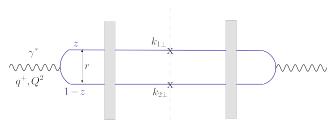
Elastic scattering is more sensitive to gluon saturation



- ullet Colourless exchange: 2-gluon ladder, (BFKL) Pomeron, rapidity gap $Y_{\mathbb{P}}$
- ullet At weak scattering $T\ll 1$, elastic scattering is strongly suppressed
- Diffraction controlled by the black disk limit ($T\sim 1$) even when $Q^2\gg Q_s^2$

Dijet production in the correlation limit

Two relatively hard jets (or hadrons) which are nearly back to back

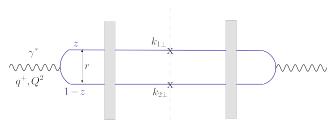


$$k_{1\perp} \simeq k_{2\perp} \sim Q \gg K_{\perp} \equiv |\mathbf{k}_{1\perp} + \mathbf{k}_{2\perp}| \sim Q_s$$

- Momentum imbalance fixed by (multiple) scattering/gluon saturation
- Measure saturation from azimuthal correlations (Marquet, 2007)

Dijet production in the correlation limit

Two relatively hard jets (or hadrons) which are nearly back to back

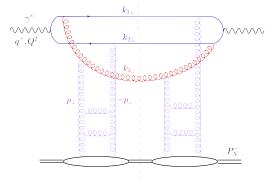


$$k_{1\perp} \simeq k_{2\perp} \sim Q \gg K_{\perp} \equiv |\mathbf{k}_{1\perp} + \mathbf{k}_{2\perp}| \sim Q_s$$

- Momentum imbalance fixed by (multiple) scattering/gluon saturation
- Measure saturation from azimuthal correlations (Marquet, 2007)
- Additional broadening due to final-state radiation (Sudakov effect)
 (Mueller, Xiao and Yuan, 2013)
- The two effects are difficult to disentangle in practice ©

2+1 jets in hard DIS diffraction

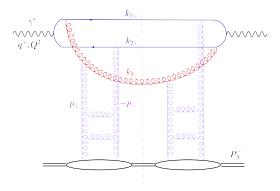
- What is the analog of the "correlation limit" for diffractive dijets?
- ullet 2+1 jet production: $k_{1\perp},\,k_{2\perp}\sim\,Q\,\gg\,k_{3\perp}\,\sim\,Q_s$
 - ullet a value $k_{3\perp} \sim Q_s$ is naturally selected by the elastic scattering



- The longitudinal momentum is soft as well: $k_3^+ = \xi q^+$ with $\xi \lesssim \frac{Q_s^2}{O^2} \ll 1$
 - time ordering: $k_3^+/k_{3\perp}^2 \lesssim q^+/Q^2$

2+1 jets in hard DIS diffraction (2)

- Coherent diffraction: elastic scattering, the target is not broken
 - ullet total momentum transfer is negligible: $|m{k}_1 + m{k}_2 + m{k}_3| \sim \Lambda_{
 m QCD}$

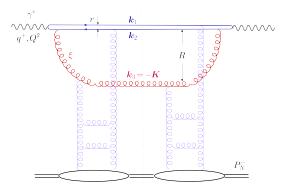


- The gluon jet needs **not** be measured ... yet, it plays an essential role:
 - ullet it controls the imbalance between the hard jets: $K_{\perp} \equiv |m{k}_1 + m{k}_2| \simeq k_{3\perp}$
 - ullet it allows for strong scattering (saturation) even at high Q^2

The gluon dipole picture

A simpler, effective, picture for the colour flow (Wüsthoff, 97)

$$R \sim 1/k_{3\perp} \sim 1/Q_s \gg r \sim 1/Q \implies$$
 effective gg dipole

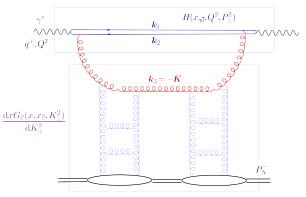


- A gg dipole scatters twice as strong as a $q\bar{q}$ one: $Q_s^2(gg)=(9/4)Q_s^2(q\bar{q})$
- The saturation momentum is evaluated at the rapidity gap: $Q_s^2(Y_{\mathbb{P}})$

TMD factorisation for diffractive dijets

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, arXiv:2112.06353)

- So far, the soft gluon was seen as part of the projectile wavefunction
- It can be viewed as a part of target wavefunction as well



- Hard dijet cross-section = Hard factor × UGD of the Pomeron
- The hard factor: the same as for inclusive dijets (cf. talk by Bowen Xiao)

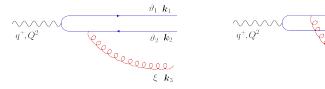
Rapidity scales

$$\begin{cases} \frac{\vartheta_{1}}{q^{+},Q^{2}} & \frac{k_{1}}{k_{2}} & x_{qq} \\ \frac{\vartheta_{2}}{\xi, x} & k_{2} & k_{3} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p} & x_{p} & x_{p} & x_{p} \\ \frac{\vartheta_{2}}{\xi, x} & x_{p}$$

- $x_{\mathbb{P}}$: fraction of the target P_N^- transferred to $q\bar{q}g$ system (by the Pomeron)
- ullet $x_{qar{q}}\sim x_{ ext{Bj}}$: the respective quantity for the hard $qar{q}$ dijets
- $x\equiv x_{q\bar{q}}/x_{\mathbb{P}}$: gluon splitting fraction w.r.t. the Pomeron (a.k.a. β)
- The most interesting situation: $\xi \sim {Q_s^2 \over Q^2} \ll 1 \implies M_{q\bar q g}^2 \sim Q^2 ~\&~ x \sim 1$
 - ullet $\Delta Y\ll Y_{\mathbb{P}}\Longrightarrow$ maximal value for the gap $Y_{\mathbb{P}}$, hence for $Q^2_s(Y_{\mathbb{P}})$

Gluon dipole wavefunction (1)

• Two diagrams: gluon emission by the quark and by the antiquark



$$\mathcal{A}^{lj} = \left[\frac{k_1^l \left(k_3^j + \frac{\xi}{1 - \vartheta_1} k_1^j \right)}{k_{1\perp}^2 + \bar{Q}^2} + \frac{k_2^l \left(k_3^j + \frac{\xi}{1 - \vartheta_2} k_2^j \right)}{k_{2\perp}^2 + \bar{Q}^2} \right] \frac{1}{k_{3\perp}^2 + \mathcal{M}^2}$$

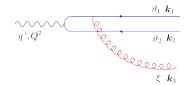
- $\mathcal{M}^2 \equiv \xi \left(\frac{k_{1\perp}^2}{\vartheta_1} + \frac{k_{2\perp}^2}{\vartheta_2} + Q^2 \right)$: effective virtuality of the gluon emission (Ayala, Hentschinski, Jalilian-Marian, Tejeda-Yeomans, 2016; G. Beuf, '17; Caucal, Salazar, Venugopalan, 2021; Taels, Altinoluk, Beuf, Marquet, 2022; Y. Mulian and E.I., to appear...)
- Both the gluon vertex and the energy denominators violate factorisation
 - mixing of hard $(k_{1\perp}, k_{2\perp}, \vartheta_1, \vartheta_2)$ and soft $(k_{3\perp}, \xi)$ variables

 $\vartheta_1 | k_1$

Gluon dipole wavefunction (2)

• Two diagrams: gluon emission by the quark and by the antiquark



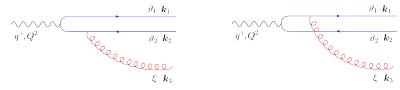


$$\mathcal{A}^{lj} = \left[\frac{k_1^l \left(k_3^j + \frac{\xi}{1 - \vartheta_1} k_1^j \right)}{k_{1\perp}^2 + \bar{Q}^2} + \frac{k_2^l \left(k_3^j + \frac{\xi}{1 - \vartheta_2} k_2^j \right)}{k_{2\perp}^2 + \bar{Q}^2} \right] \frac{1}{k_{3\perp}^2 + \mathcal{M}^2}$$

- Change variables: $\mathbf{k}_1, \mathbf{k}_2 \longrightarrow \mathbf{P} \equiv \vartheta_2 \mathbf{k}_1 \vartheta_1 \mathbf{k}_2, \quad \mathbf{K} \equiv \mathbf{k}_1 + \mathbf{k}_2 = -\mathbf{k}_3$
- \bullet Expand to first order in $K_{\perp}/P_{\perp}\ll 1$ and $\xi\sim \frac{Q_s^2}{Q^2}\ll 1$
 - zeroth order terms cancel in the sum
- Add contributions from graphs with instantaneous quark propagators

Gluon dipole wavefunction (3)

The final result is remarkably simple:



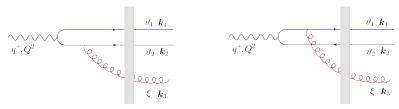
$$\mathcal{A}^{lj} = \underbrace{\frac{1}{P_{\perp}^2 + \bar{Q}^2} \left(\delta^{li} - \frac{2P^l P^i}{P_{\perp}^2 + \bar{Q}^2} \right) \underbrace{\frac{K_{\perp}^i K_{\perp}^j - (\delta^{ij}/2) K_{\perp}^2}{K_{\perp}^2 + \mathcal{M}^2}}_{\text{hard factor}} \underbrace{\frac{K_{\perp}^i K_{\perp}^j - (\delta^{ij}/2) K_{\perp}^2}{K_{\perp}^2 + \mathcal{M}^2}}_{\text{gluon dipole wavefunction}}$$

$$\mathcal{M}^2 = \xi \left(\frac{P_\perp^2}{\vartheta_1 \vartheta_2} + Q^2 \right) = \frac{x}{1 - x} K_\perp^2$$

- Similar expression proposed by Wüsthoff in 1997
 - gluon contribution to the diffractive structure function
- Factorisation holds only when using the target rapidity: x rather than ξ

Gluon dipole wavefunction (4)

ullet Adding the scattering is simple: multiply with the gg dipole amplitude



$$\mathcal{A}^{lj} = \underbrace{\frac{1}{P_{\perp}^{2} + \bar{Q}^{2}} \left(\delta^{li} - \frac{2P^{l}P^{i}}{P_{\perp}^{2} + \bar{Q}^{2}} \right) \underbrace{\left(\frac{K_{\perp}^{i}K_{\perp}^{j}}{K_{\perp}^{2}} - \frac{\delta^{ij}}{2} \right) \mathcal{G}(x, K_{\perp}, Y_{\mathbb{P}})}_{\text{Pomeron UGD}}$$

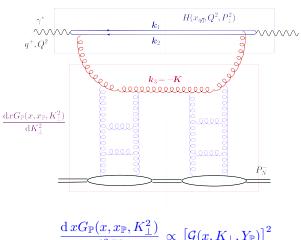
A Bessel transform of the gluon dipole scattering amplitude:

$$\mathcal{G}(x, K_{\perp}, Y_{\mathbb{P}}) = \mathcal{M}^2 \int_0^\infty \mathrm{d}R \, R \, \mathrm{J}_2(K_{\perp}R) \mathrm{K}_2(\mathcal{M}R) \, \mathcal{T}_{gg}(R, Y_{\mathbb{P}})$$

• $J_2(K_{\perp}R)$ reflects the tensor structure; $K_2(\mathcal{M}R)$: the virtuality

TMD factorisation for diffractive dijets

• We have proven collinear (TMD) factorisation, with an explicit result for the Pomeron gluon distribution obtained from first principles

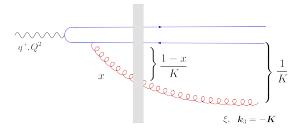


$$\frac{\mathrm{d}\,xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}}\,\propto\,\left[\mathcal{G}(x,K_{\perp},Y_{\mathbb{P}})\right]^2$$

The Pomeron UGD

$$\frac{\mathrm{d} x G_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp}^{2})}{\mathrm{d}^{2} \mathbf{K}} \simeq (1 - x) \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_{s}(x) \\ \frac{\tilde{Q}_{s}^{4}(x)}{K_{\perp}^{4}}, & K_{\perp} \gg \tilde{Q}_{s}(x) \end{cases}$$

- \bullet Effective (x-dependent) saturation momentum: $\tilde{Q}_s^2(x,Y_{\mathbb{P}})=(1-x)Q_s^2(Y_{\mathbb{P}})$
 - the gluon dipole size R is limited by the virtuality: $R\lesssim 1/\mathcal{M}$

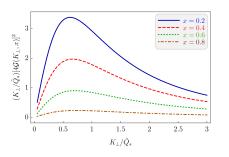


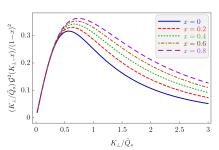
- \bullet Very fast decrease $\sim 1/K_{\perp}^4$ at large gluon momenta $K_{\perp}\!\gg \tilde{Q}_s(x)$
 - the cross-section is controlled by the Black Disk Limit

The Pomeron UGD

$$\frac{\mathrm{d}\,x G_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}} \simeq (1-x) \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_s(x) \\ \\ \frac{\tilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg \tilde{Q}_s(x) \end{cases}$$

ullet Effective (x-dependent) saturation momentum: $ilde{Q}_s^2(x,Y_{\mathbb{P}})=(1-x)Q_s^2(Y_{\mathbb{P}})$





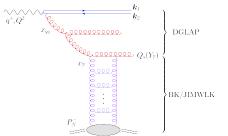
- ullet Very fast decrease $\sim 1/K_\perp^4$ at large gluon momenta $K_\perp \gg ilde{Q}_s(x)$
- Geometric scaling after dividing through 1-x: a function of $K_{\perp}/\tilde{Q}_s(x)$

The integrated gluon distribution of the Pomeron

- ullet Sensitivity to saturation persists after integrating out the K_{\perp} -distribution
 - ullet the integral is rapidly converging and effectively cut off at $K_\perp \sim ilde{Q}_s(x)$

$$xG_{\mathbb{P}}(x, x_{\mathbb{P}}, P_{\perp}^2) \propto (1-x)^2 Q_s^2(Y_{\mathbb{P}})$$

- Why is this interesting ?
 - eliminates the Sudakov effect (final state radiation)
 - introduces the DGLAP evolution: powers of $\alpha_s \ln \frac{P_\perp^2}{Q_s^2}$



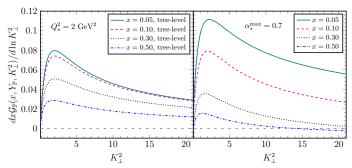
- BK evolution of the Pomeron
- DGLAP evolution with initial condition provided by saturation

A unique situation where DGLAP and BK/JIMWLK can be interconnected

Recent results including DGLAP

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, in preparation)

- Initial condition taken from the MV model (adding BK in project)
- ullet The unintegrated gluon distribution (multiplied by K_\perp^2)



- left plot: the initial condition (MV)
- right plot: DGLAP evolution preserves the sensitivity to saturation
- a pronounced peak at $K_{\perp}^2 \simeq (1-x)Q_s^2$

Conclusions

- A new, hard, process to study gluon saturation in DIS
- Strongly sensitive to saturation since relying on elastic scattering
- TMD factorisation for diffractive jets emerging from the Color Dipole Picture
- The experimental measurement of the gluon-gluon dipole would be a bonus!
- Saturation remains important if the dijet imbalance is not measured
 - initial condition for DGLAP evolution emerging from first principles
- Open problems: adding BK (easy), including Sudakov (difficult), phenomenology, feasibility at the EIC, LHeC ...
- \bullet Similar processes might be interesting in ultraperipheral pA and AA