

Vector boson scattering results in CMS

Andrea Piccinelli

PhD student @ U. and INFN of Perugia andrea.piccinelli@cern.ch

on behalf of the CMS Collaboration

DIS2022, 2-6 May 2022, Galician Institute of High Energy Physics (IGFAE), Santiago de Compostela

What is VBS?

- Scattering of two Electroweak (EWK) Vector Boson (W, Z)
 - Triple and Quartic Gauge Couplings (TGC/QGC)
- "Fermionic" final state at LO
 - Two jets coming from initial state quark after Vs emission
 - Four fermions coming from the scattered Vs
- Three possible contributions
 - o pure EWK $O(\alpha_{FW}^{6})$ **signal**
 - \circ QCD-induced $O(\alpha_{\rm EW}^{-4} \, \alpha_{\rm S}^{-2})$ irreducible contribution
 - \circ EWK-QCD interference $O(\alpha_{EW}^{5} \alpha_{S})$

- Peculiar experimental signature
 - Two very energetic forward-backward jets → VBS jets
 - Large m_{ij} and Δη_{ij}
 - Hadronic activity suppressed between the two jets
 - → rapidity gap
- Main reducible background due to nonprompt leptons
 - QCD-induced jets misreconstructed as charged leptons
 - Usually estimated with data-driven methods
- Machine-Learning discriminator to enhance signal sensitivity

Data recorded: 2016-Jul-08 23:47:39.259242 GMT Run / Event / LS: 276525 / 2665335317 / 1561

Why study VBS?

- Key process to probe EW Symmetry Breaking (EWSB)
 - Higgs-like field necessary to preserve unitarity
 Only investigable in VV scattering
 - Complimentary to Higgs-sector studies
- General test of the EW sector in SM
- Background wrt other signals with similar final state

- Higgs affecting VBS processes → New Physics!
 - Suitable to investigate indirect NP effects
 - anomalous Triple/Quartic Gauge Coupling (aTGC/aQGC)
 - EFT approach (dim6 and dim8) model independent
 - Direct search for new resonances
 - new Higgs states, e.g. H[±] and H^{±±}

VBS measurements in CMS

- Big experimental effort to investigate VBS processes with full Run-II dataset
 - Inclusive cross-section measurements
 - Differential cross-section wrt different variables
 - Indirect search for New Physics within the EFT framework
- Several final state analyzed
 - Fully-leptonic → very clean final state
 - Semileptonic/fully-hadronic → more suitable for aQGC searches
 - Photonic → clean, but with larger background
- Outstanding results with the full Run-II dataset
 - Observation of leptonic WZ diboson and VBS SMP-20-014, SMP-19-012
 - Observation of leptonic W⁺W⁻ scattering SMP-21-001
 - Observation of semileptonic WV scattering SMP-21-013
 - Observation of polarized scattering W[±]W[±] SMP-20-006
 - Observation of Zγ scattering SMP-20-016
 - ...and the tightest limits on EFT coefficients!

24 August 2020

Leptonic WZ: overview

SMP-20-014 - Submitted to *JHEP* (diboson) SMP-19-012 - *Phys. Lett. B 809 (2020)* (VBS)

- Push (very) forward the knowledge of WZ in leptonic channel
 - Very important for several SM-related studies
 - High statistical power, very clean final state
- Several investigation performed (with the full Run-II dataset)
 - Inclusive cross-section measurement (diboson and VBS)
 - Charge asymmetry (diboson)
 - W/Z boson polarization fraction (diboson)
 - Search for anomalous couplings within the EFT framework dim8 with VBS, dim6 with diboson (in backup)
 - Differential cross-sections for the most interesting observables (in backup)
- Event categorization to optimize signal vs. backgrounds discrimination
 - Lepton selected with a dedicated prompt-vs-nonprompt BDT
- Control Regions to separately to take care of the main backgrounds
 - o Nonprompt background estimated with the data-driven fakeable method
 - ZZ, Zγ and tVX estimated with dedicated Monte-Carlo (MC) simulations

Region	N_ℓ	$p_{\mathrm{T}}\{\ell_{\mathrm{Z1}},\ell_{\mathrm{Z2}},\ell_{\mathrm{W}},\ell_{\mathrm{4}}\}$	$N_{ ext{OSSF}}$	$ M(\ell_{Z1},\ell_{Z2})-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	$N_{\rm btag}$	$\min(M(\ell\ell'))$	$M(\ell_{Z1},\ell_{Z2},\ell_{W})$
SR	=3	>{25, 10, 25} GeV	≥1	<15 GeV	>30 GeV	=0	>4 GeV	>100 GeV
$CR-t\bar{t}Z$	=3	>{25,10,25} GeV	≥ 1	<15 GeV	>30 GeV	>0	>4 GeV	>100 GeV
CR-ZZ	=4	>{25, 10, 25, 10} GeV	≥ 1	<15 GeV	-	=0	>4 GeV	>100 GeV
CR-conv	=3	>{25,10,25} GeV	≥1	-	\leq 30 GeV	=0	>4 GeV	<100 GeV

Leptonic WZ: diboson measurements

Total

Charge symmetry

olarization

- Fit to lepton flavour distribution performed in CRs + SR
 - Main backgrounds let free to float
- Signal strength estimated both for each final state and inclusively
- Cross-section measurement extrapolated from SR to a Fiducial (detector-independent) Region
- Inclusive measurement (in FR)

 298.9 ± 4.8 (stat.) ± 7.7 (syst.) ± 5.4 (lumi.) ± 2.7 (theo.) fb

- Similar fit strategy applied for total cross-section measurement
 - Distributions divided upon final state total charge (W⁺Z and W⁻Z)
- Consistency with PDF uncertainties verified with Bayesian reweighting techniques
 - o p-value = 0.747
- Charge asymmetry estimated in FR

 1.41 ± 0.04 (stat.) ± 0.01 (syst.) ± 0.01 (lumi.)

- W/Z polarization measured in the helicity frame (first time)
 Polarization components estimated at generator-level
 - o Simultaneous fit with every polarization
- Observation of longitudinally polarized W and Z
 Observed L-polarized W (Z) significance: 5.6σ (>9.0σ)

Leptonic WZ: VBS measurement

- Event categorization as diboson
 - Zeppenfeld variable used to enhance VBS sensitivity

$$z_\ell^* = \left| \eta^\ell - rac{\eta^{f j_1} + \eta^{f j_2}}{2}
ight| / |\Delta \eta_{f jj}|$$
 maximum < 1.0

- BDT model to discriminate pure EWK against QCD-induced process
- Fit to m_{ii} in CRs and BDT output in SR
- Observation of pure EWK WZ scattering!
 - Observed significance = 6.8σ
 - Observed fiducial cross-section

$$\sigma_{\text{EWK}} = 1.81 \pm 0.39 \text{ (stat)} \pm 0.14 \text{ (syst) fb}$$

 LO (NLO) theoretical prediction $\sigma_{th} = 1.41 \pm 0.21 \ (1.24 \pm 0.18) \ fb$

Wrong sign

Other bkg.

137 fb⁻¹ (13 TeV)

N Bkg. unc.

EWK WZ WZ ZZ

Leptonic WZ VBS: anomalous Quartic Gauge Coupling

- Search for **New Physics** in WZ scattering with **EFT approach**
 - Process suitable to study EFT dim8 operator (→ aQGC effect)
 - Set of operators O_{XY} from Eboli's basis.
- ullet CL limits on $f_{\chi \gamma}$ coefficients extracted via likelihood scan
 - o EFT effect separately simulated for each operator
 - \circ 2D fit to m_{ii} and m_T (WZ) with one O_{XY} operator at time
 - o Most stringent limits in this channel up to date
- Unitarity bound Λ_{II} estimated for each operator
 - \circ $\Lambda_{\text{FFT}} > \Lambda_{\text{II}} \rightarrow \text{unitarity-violating scattering amplitude!}$
 - Applied to EFT effects on physical distribution with clipping technique
 - Make limits less stringent

	Observed (WZ)	Observed (WZ)		Observed (WZ)	Observed (WZ)
	(TeV^{-4})	(TeV^{-4})		(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-0.62, 0.65]	[-1.6, 1.9]	$f_{\rm M6}/\Lambda^4$	[-12, 12]	[-34, 33]
$f_{\rm T1}/\Lambda^4$	[-0.37, 0.41]	[-1.3, 1.5]	$f_{\rm M7}/\Lambda^4$	[-10, 10]	[-22, 22]
$f_{\rm T2}/\Lambda^4$	[-1.0 , 1.3]	[-2.7, 3.4]	$f_{\rm S0}/\Lambda^4$	[-19, 19]	[-83, 85]
$f_{ m M0}/\Lambda^4$	[-5.8, 5.8]	[-16, 16]	$f_{\rm S1}/\Lambda^4$	[-30, 30]	[-110, 110]
$f_{\rm M1}/\Lambda^4$	[-8.2, 8.3]	[-19, 20]			•

Only Higgs doublet

$$\mathcal{O}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{O}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

Only EWK field strengths

$$\begin{split} \mathcal{O}_{T,0} &= \operatorname{Tr} \left[\widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\widehat{W}_{\alpha\beta} \widehat{W}^{\alpha\beta} \right] \\ \mathcal{O}_{T,1} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\nu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\mu\beta} \widehat{W}^{\alpha\nu} \right] \\ \mathcal{O}_{T,2} &= \operatorname{Tr} \left[\widehat{W}_{\alpha\mu} \widehat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\widehat{W}_{\beta\nu} \widehat{W}^{\nu\alpha} \right] \end{split}$$

Higgs doublet and EWK field strengths

$$\mathcal{O}_{M,0} = \operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$

$$\mathcal{O}_{M,1} = \operatorname{Tr}\left[\widehat{W}_{\mu\nu}\widehat{W}^{\nu\beta}\right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right]$$

$$\mathcal{O}_{M,6} = \left[\left(D_{\mu}\Phi \right)^{\dagger} \hat{W}_{\beta\nu}\hat{W}^{\beta\nu}D^{\mu}\Phi \right]$$

Leptonic W⁺W⁻ scattering: overview SMP-21-001 - Approved

- First cross-section measurement in this channel for the pure EW process!
 - Rare SM process irreducible background from QCD-mediated process
 - o Measurement performed with the full Run-II dataset
- Event categorization based upon the lepton pair flavour
 - Different flavour (DF) eµ pair
 - Same flavour (SF) ee/μμ pair
- Deep Neural Network developed to discriminate signal vs backgrounds
 - Exploited in the DF final state
- Control Regions to separately estimate main backgrounds in the fit
 - o top-antitop pair and associated tW productions estimated with simulations
 - \circ Drell-Yan $\to \tau\tau \to leptons data-driven, Drell-Yan <math>\to ee/\mu\mu$ simulation-based
 - Nonprompt leptons estimated with data-driven fakeable method

	еµ/µе	$Z_{\ell\ell} < 1$ $Z_{\ell\ell} \ge 1$	$m^T > 60~{ m GeV}$ $m^{\ell\ell} > 50~{ m GeV}$ no bjet with $p_{ m T} > 20~{ m GeV}$
VBS	ee	$Z_{\ell\ell} < 1$	$m^{\ell\ell} > 120~{ m GeV}$
	ee	$Z_{\ell\ell} \ge 1$	$E_{\mathrm{T}}^{\mathrm{miss}} > 60 \mathrm{GeV}$
		7/1	no high with n > 20 CoV

	еµ/µе	$m^{\ell\ell} > 50~{\rm GeV}$ no bjet with $p_{\rm T} > 20~{\rm GeV}$
top	ee	$m^{\ell\ell} > 120~{ m GeV} \ E_{ m T}^{ m miss} > 60~{ m GeV}$
	μμ	at least one bjet with $p_{\rm T} > 20~{\rm GeV}$

ee	$\Delta \eta_{jj} < 5$	$ m^{\ell\ell} - m_Z < 15 \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} > 60 \mathrm{GeV}$
ии	$\Delta \eta_{jj} \geq 5$ $\Delta \eta_{jj} < 5$	no bjet with $p_{\rm T} > 20 {\rm GeV}$
	ее µµ	$\Delta \eta_{jj} \geq 5$ $\Delta \eta_{ii} < 5$

Leptonic W⁺W⁻ scattering: statistical analysis strategy

- Fit to the most discriminating variabile in SR
 - Splitted in two sub-regions upon the Zeppenfeld variable

$$Z_{\ell\ell} = \frac{1}{2}|Z_{\ell_1} + Z_{\ell_2}|$$
, where $Z_{\ell_i} = \eta_{\ell_i} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})$ separation at $|\mathbf{Z_{II}}| = 1$

- \circ DF \rightarrow DNN output
 - One model for each Zeppenfeld sub-region
- \circ SF \rightarrow divided in four m_{ii} $\Delta \eta_{ii}$ bins
 - $2.5 < \Delta \eta_{ii} < 3.5$ and $300 \text{ GeV} < m_{ii} < 500 \text{ GeV} \rightarrow \text{number of events}$
 - $2.5 < \Delta \eta_{ii} < 3.5$ and $m_{ii} > 500$ GeV \rightarrow number of events
 - $\Delta \eta_{ii} > 3.5$ and 300 GeV < $m_{ii} < 500$ GeV \rightarrow number of events
 - $\Delta \eta_{ii} > 3.5$ and $m_{ii} > 500$ GeV $\rightarrow m_{ii}$ distribution
- Simultaneous fit in CRs to number of events
 - o Constrain normalization of main backgrounds
 - Three Drell-Yan subsamples to take under control the corresponding peculiarities
 - Drell-Yan $\rightarrow \tau \tau \rightarrow$ leptons
 - Drell-Yan without Pileup-induced jets
 - Drell-Yan with 1 Pileup-induced jet

Leptonic W+W scattering: results

- Observed signal significance
 5.6σ → First observation ever!
- Inclusive signal strength
 1.12 ± 0.17 (stat) ± 0.14 (syst) ± 0.07 (theo)
- Measured cross-section extrapolated to Fiducial Region
 - \circ σ_{FWK} = 10.2 ± 2.0 fb (LO prediction: 9.1 ± 0.6 fb)

 $L = 138 \text{ fb}^{-1} (13 \text{ TeV})$

 $L = 138 \text{ fb}^{-1} (13 \text{ TeV})$

Semileptonic WV scattering: overview SMP-20-013 - Approved arXiv:2112.05259

- First evidence of the SM process at LHC!
 - o Performed with the full Run-II dataset Submitted to PLB
- WV scattering in semileptonic channel
 - one V boson decays leptonically and the other hadronically
 - o irreducible contribution from QCD-induced process
- Resolved and boosted hadronic boson decay regimes considered
 - Events separately categorized
- Big efforts to properly estimate backgrounds (more in backup)
 - o DNN signal-vs-background discriminator in both categories
 - Dedicated Control Regions to costrain main sources

Semileptonic WV scattering: statistical analysis

Simultaneous fits in all the regions

- Performed both for pure EWK and EWK+QCD signals
- 2D fit of EWK and QCD signal strengths

• Signal Regions

Fit to DNN shape (depending on the category)

• Control Regions

- W+jets: fit to normalization per each correction bin in its CRs
- ttbar: fit to overall normalization in corresponding CRs

Semileptonic WV scattering: results

EWK

Inclusive signal strength

$$\mu_{EWK}=0.85\pm0.12 ({
m stat})^{+0.19}_{-0.17} ({
m syst})$$
 observed significance = 4.4 σ

Fiducial cross section measurement

$$\sigma_{\text{EWK}} = 1.90^{+0.53}_{-0.46} \text{ pb}$$

EWK + QCD

Inclusive signal strength

$$\mu_{EWK+QCD} = 0.97 \pm 0.06 (ext{stat})^{+0.19}_{-0.21} (ext{syst})$$

Fiducial cross section measurement

$$\sigma_{\text{EWK+QCD}} = 16.4^{+3.5}_{-2.8} \text{ pb}$$

Conclusions

- VBS processes as compelling physics scenario
 - o Both ideal to further investigate SM and New Physics effects induced in EWK sector
 - Challenging background that stimulates smart solutions
 - Cut-based and ML-based
- CMS deeply involved in VBS analyses
 - Several processes and final states investigated
 - Exploitation of the full Run-II available dataset
 - First observation of rare SM processes
 - Pushed forward BSM indirect studies with the EFT approach
 - Efforts to put together current and future studies
 - Combination of the experimental results
 - Get the theoretical basis uniform
 - Get the experimental frameworks uniform

New adventurers are welcome!

New data for our challenges are coming

backup slides

Leptonic WZ: diboson differential cross-sections

- Differential cross-sections wrt different variables
 - Next-to-Leading-Order estimates
 - Cross-check of the predictions used for other measures $cos(\theta_w)$, $cos(\theta_z)$, m_{wz}
 - Characterization of lepton WZ scattering as SM process
 p_T(Z), p_T(W), p_T(jet₁), N_{jets}
- Unfolding procedure to cancel out detector effect
 - Response matrices are almost diagonal Signature of well-established procedure
- Measurements performed for different channels
 - o positive and negative boson charge (W)
 - o charge-inclusive (W and Z)
- Good agreement with the NLO prediction from simulations

Leptonic WZ: VBS differential cross-section

- Differential cross-section wrt m_{...}
 - Characterization of lepton WZ scattering as SM process
 - Fit to m_{ii} and |Δη_{ii}|
- Same unfolding procedure as diboson process
- Good agreement with the prediction from simulations
 - both LO and NLO

Leptonic WZ: anomalous Triple Gauge Coupling in diboson

- Search for **New Physics** in WZ scattering with **EFT approach**
 - NP contribution parametrized with dim6 SM fields combination

$$\delta \mathcal{L}_{\mathrm{AC}} = \frac{c_{\mathrm{www}} \mathrm{Tr}[W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}] + c_{\mathrm{w}} \left(D_{\mu} H\right)^{\dagger} W^{\mu\nu} \left(D_{\nu} H\right) + c_{\mathrm{b}} \left(D_{\mu} H\right)^{\dagger} B^{\mu\nu} \left(D_{\nu} H\right)}{\mathsf{CP-even terms}} + \frac{\tilde{c}_{\mathrm{www}} \mathrm{Tr}[\tilde{W}_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}] + \tilde{c}_{\mathrm{w}} \left(D_{\mu} H\right)^{\dagger} \tilde{W}^{\mu\nu} \left(D_{\nu} H\right)}{\Lambda^{2}} + \frac{\tilde{c}_{\mathrm{weak}} \mathrm{Tr}[\tilde{W}_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho}] + \tilde{c}_{\mathrm{w}} \left(D_{\mu} H\right)^{\dagger} \tilde{W}^{\mu\nu} \left(D_{\nu} H\right)}{\Lambda^{2}}$$

- Dependence of yields by each of CP-even (odd) terms estimated with a dedicated 3D (2D) fit
 - Possible contamination from dim8 operator evaluated in the parametrization
- Fit to m_{w7} performed with a joint likelihood function
 - 1D and 2D CL limits extracted for dim6 EFT coefficients
 - Unitarity constraint impact provided varying the EFT cut-off scale Λ (M_{wz} as proxy interaction energy)

Semileptonic WV scattering: background estimation

- W + jets associated production
 - Differential data-driven corrections to predictions from simulation
 - Binned wrt to leptonic W p_T (both categories)
 and leading VBS jet p_T (only resolved category)
- ttbar pair production
 - Reduced with veto on b-tagged jets
- Nonprompt leptons
 - Estimated with the data-driven fakeable method
- Minor background estimated via simulations
- DNN in both categories as signal vs bkg discriminator

