# Inclusive let Cross Sections in pp Collisions at $\sqrt{s} = 200 \text{ and } 510 \text{ GeV}$

#### **Dmitry Kalinkin** For the STAR Collaboration

Indiana University - Bloomington

<sup>2</sup>Brookhaven National Laboratory

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects May 4, 2022









### Proton Structure in Hard Interactions



Jet production in high energy collisions of hadrons can be described in terms of following ingredients:

- Initial state of hadrons
- Hard collision of partons
- Parton Shower
- Underlying Event (UE)
- Hadronization

$$d\sigma_{pp \to jet + X}(Q^2) = \sum_{a,b} \int \underbrace{f_a(x_1,Q^2)f_b(x_2,Q^2)}_{proton \ structure} \underbrace{d\hat{\sigma}_{a+b \to jet + X}(x_1,x_2,Q^2)}_{hard \ process + PS + Had.} dx_1 dx_2$$





Original plot from NNPDF 3.1 Catalog of plots:  $\alpha_S$  variations at NNLO

## Jet Measurements using STAR Detector



- TPC: Interaction vertex and charged particle tracks
- BEMC and EEMC: Photon energy measurement
- **Trigger condition** on deposited EMC energy sum in  $1 \times 1$  patches in  $\eta \phi$
- East and west
  Zero Degree
  Calorimeter: Absolute
  luminosity monitoring



# Gluon Polarization using lets at STAR



- Measurements using a similar collinear factorization framework  $A_{II} \sim \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma}$  to determine  $\Delta g$ , the helicity distribution of gluons inside the proton
- Detector effects are not unfolded but corrected by adjusting  $p_T$  (or  $M_{ii}$ ) and  $A_{LL}$  of independent points
- Run 15 mid-rapidity inclusive jet and di-jet A<sub>11</sub> results at 200 GeV recently published [PRD 103 (2021) L091103]
- Run 13 mid-rapidity inclusive jet and di-jet results at 510 GeV accepted to PRD [arXiv:2110.11020]





4/11

## Published Jet Cross Sections from STAR



Phys. Rev. Lett. 97 (2006) 252001

- An inclusive jet cross section
- Mid-point cone algorithm
- No UE or hadronization corrections provided
- Bin-by-bin detector effects correction
- Limited acceptance



Phys Rev D 95 (2017) 071103

- A di-jet cross section
- $\blacksquare$  anti- $k_T$  algorithm
- Detector effects unfolded
- No data-driven UE correction

### Jets at Three Levels

### **Parton jets**



- Made of partons outgoing from the hard interaction
- Definition flexible depending on theoretical needs (e.g. fit using pQCD)

#### Particle jets



- Made of stable particles (at STAR the  $\pi^0$  treated as stable)
- Universal Free from all detector effects
- Includes effects of
  - QCD radiation
  - Hadronization
  - UE (unless subtracted)

#### **Detector jets**



©2009 Tai Saku

- Made of tracks and discrete calorimeter towers
- Experiment specific

# **Detector Effects Unfolding**

#### Particle jets



#### **Detector jets**



- Matrix inversion gives the exact result for the maximum likelihood estimator
- Statistical fluctuations are regularized by choosing sufficiently large bin sizes

## **Underlying Event Correction**

■ Two off-axis cone regions defined as  $(\varphi - \varphi_{\rm jet} \pm \pi/2)^2 + (\eta - \eta_{\rm jet})^2 \le R_{\rm UE}^2$  with  $R_{\rm UF} = 0.5$ 



- For each jet calculate a jet area A and a ρ<sub>T</sub>-density of constituents ρ<sub>UE</sub>
- Correction implemented via a jet  $p_T$  shift:

$$jet p_T \rightarrow jet p_T - A \cdot \rho_{UE}$$

 Applied to data before unfolding and to simulation in definition of the detector response



## Inclusive Jet Cross Section at $\sqrt{s} = 200$ GeV, Particle Level



#### Preliminary result

- $0.067 < x_T = \frac{2p_T}{\sqrt{s}} < 0.5$
- Jet Energy Scale uncertainty from the EM calorimeter response
  - leading inherent uncertainty
- Simulation sample statistics limits unfolding in finer binning
- to be improved for final results
- Final result will feature 12  $p_T$ -bins and 2  $\eta$ -bins

## Inclusive Jet Cross Section at $\sqrt{s} = 510$ GeV, Particle Level





#### ■ Preliminary result

$$0.021 < x_T = \frac{2p_T}{\sqrt{s}} < 0.32$$

#### Different triggers:

- JP0:  $E \ge 5.4 \text{ GeV}$
- JPI:  $E \ge 7.3$  GeV
- JP2:  $E \ge 14.4 \text{ GeV}$

#### Measured in two $\eta$ -ranges:

■  $0 < |\eta| < 0.5$  ■  $0.5 < |\eta| < 0.9$ 



### **Conclusions**

- Jet measurements in pp collisions at STAR are extended to the unpolarized case at both available energies  $\sqrt{s} = 200$  GeV and 510 GeV
- Inclusive jet measurements at RHIC will allow to better constrain high-x behaviour of the gluon PDF
- ...and serve as a normalization for other measurements like measurement of hadron fragmentation inside jets

$$\left(\frac{d^2\sigma}{dp_{T:jet}dz_h}\right) / \left(\frac{d\sigma}{dp_{T:jet}}\right)$$

■ Measurements at two values of  $\sqrt{s}$ , at 200 GeV and 510 GeV, provide insights into energy dependence of various MC tune parameters