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Abstract: In this work, we study the azimuthal anisotropy for the azimuthal angle dif-

ference ϕ between two azimuthal angles defined in the back-to-back lepton-jet production

in lepton-proton collisions – the azimuthal angle of the transverse momentum imbalance

qT of the lepton and jet, and the azimuthal angle of the jet transverse momentum itself.

In particular, we provide the theoretical origins for these azimuthal dependence from a

factorization formalism derived within the SCET framework. In addition, we find that the

directed flow component related to cos(ϕ) azimuthal asymmetry is dominant. The numer-

ical results of such azimuthal anisotropy for EIC kinematics are presented, showing that

these are promising observables for studying lepton-jet correlations in future experiments.
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1 Introduction

In recent years, the azimuthal anisotropy has served as an important observable in high-

energy physics. For the studies in heavy-ion collisions, the azimuthal anisotropy contribute

to characterizing the properties of the quark–gluon plasma (QGP) and provide experimen-

tal information on the equation of state of QGP [1–4]. In ep collisions, the back-to-back

lepton-jet production from ep collisions has been providing insights for transverse momen-

tum dependent (TMD) studies, where the jet observables have been expected for prob-

ing the three-dimensional nucleon structure encoded in transverse-momentum-dependent

parton-distribution functions (TMD PDFs) [5–9]. As proposed in [10], the terminology

“azimuthal anisotropy” is also applied and has been introduced as the measure of az-

imuthal correlations1. With the azimuthal asymmetry in the collisions, non-vanishing

anisotropic flow harmonics are expected. More specifically, the radial flow, an azimuthal-

angle-independent term, corresponds to the isotropic Fourier coefficient [11, 12]. As for the

higher order Fourier coefficients that encoding the azimuthal anisotropy, the first term v1
is the directed flow component, and likewise v2 is elliptic flow, v3 is triangular flow, v4 is

quadrapole flow, etc. For instance, in e + p → e + jet + X process, the differential cross

section of back-to-back lepton-jet production can be decomposed as follows

dσ

d2pTdyJdϕJd2qT
=

dσ

2πd2pTdyJqTdqT

[
1 + 2

∞∑
n=1

vn(pT , yJ) cos(n(ϕq − ϕJ))

]
, (1.1)

where pT and yJ are the transverse momentum and rapidity of the produced jet, qT is the

transverse momentum imbalance between the produced electron and jet, while ϕJ and ϕq

are the azimuthal angles of jet direction and qT , respectively.

In Eq. (1.1), vn describes the azimuthal anisotropy of particle spectrum in the mo-

mentum space and can be measured in experiments as the expectation of the n-th order

harmonics vn = ⟨cos(n(ϕq−ϕJ))⟩, the averaged value with respect to the particle spectrum.

1Although the term “azimuthal anisotropy” has been adopted in the studies of both heavy-ion collisions

and ep collisions, it describes different observables. In particular, the azimuthal angle of the heavy-ion

collisions is defined with respect to the reaction plane of two colliding nuclei, while for ep collisions, the

azimuthal angle is related to the transverse momentum imbalance of the produced lepton and jet.
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2 Jet azimuthal anisotropy

In this section, we present the factorization theorem for ep to electron plus single jet process

with azimuthal anisotropy by projecting the collective flow to different Fourier coefficients

and provide the elliptic flow, triangular flow and higher flow harmonics in this collision.

2.1 Factorization and resummation formula

In the back-to-back electron-jet production from ep collision,

e(l) + p(P ) → e(l′) + Jq(pJ) +X , (2.1)

we define the transverse momentum of the produced electron l′T , produced jet pT , and

the transverse momentum imbalance of the electron and the jet is qT = l′T + pT . In the

back-to-back limit where |qT | is small, i.e. |qT | ≪ |pT |, the cross section can be factorized

into a convolution of hard, TMDPDFs, and soft functions. For unpolarized proton, TMD

factorization is given by [13]

dσe+p→e+jet+X

d2pTdyJd2qT
= σ̂0

∑
q

e2qH(Q,µ)

∫
d2b

(2π)2
exp(−ib · qT )xf̃TMD

q/p (x, b, µ, ζ)Jq(pTR,µ)

× Sglobal(b, µ)Scs(b, R, µ) , (2.2)

whereH(Q,µ) is the hard function that describes the partonic hard scattering and Jq(pTR,µ)

is the quark jet function, characterizing the production of the outgoing jet from a hard

interaction. Here the global soft function Sglobal(b, µ) at the NLO has the following expres-

sion [14]

Sglobal(b, µ) = 1 +
αs

2π
CF

{
2

[
yJ + ln(−2i cos(ϕbJ))

](
1

ϵ
+ ln

µ2

µ2
b

)

+
1

ϵ2
+

1

ϵ
ln

µ2

µ2
b

+
1

2
ln2

µ2

µ2
b

− π2

12

}
, (2.3)

which is universal and contributes in the lepton-jet correlations. Here ϕbJ ≡ ϕb − ϕJ with

ϕb and ϕJ are the azimuthal angles of the vector b and jet transverse momentum pT ,

respectively. We also provide the expression of the collinear-soft function Scs as below,

Scs(b, R, µ) = 1− αs

2π
CF

[
1

ϵ2
+

2

ϵ
ln

(−2i cos(ϕbJ)µ

µbR

)
+ 2 ln2

(−2i cos(ϕbJ)µ

µbR

)
+

π2

4

]
.

(2.4)

And the rapidity-regulator-independent standard TMDPDFs [15] f̃ TMD
q/p (x, b, µ, ζ) at scale

µ2 = ζ = Q2 in b-space are defined by the Fourier transform of the corresponding TMD-

PDFs in momentum space fTMD
q/p

(
x, k2T , µ, ζ

)
,

f̃ TMD
q/p (x, b, µ, ζ) = 2π

∫
dkT kTJ0 (kT b) f

TMD
q/p

(
x, k2T , µ, ζ

)
, (2.5)
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We noticed that the Fourier transformation in Eq. (2.2) can be written as an expansion of

the Bessel functions using the identity

d2b

(2π)2
exp(−ib · qT ) =

bdbd(ϕbJ − ϕqJ)

(2π)2

{
J0(bqT ) + 2

∞∑
n=1

(−i)nJn(bqT ) cos(n(ϕbJ − ϕqJ))

}

=
bdb

2π

{
J0(bqT )

dϕbJ

2π
+ 2

∞∑
n=1

(−i)nJn(bqT )

×
[
cos(nϕqJ) cos(nϕbJ)

dϕbJ

2π
+ sin(nϕqJ) sin(nϕbJ)

dϕbJ

2π

]}
, (2.6)

where ϕbJ = ϕb − ϕJ and ϕqJ = ϕq − ϕJ . In the factorization formalism, we found that

only the global soft function and collinear-soft function contain ϕbJ dependence. As a

consequence, we let Sq(b, R, µ) = Sglobal(b, µ)Scs(b, R, µ) and define the azimuthal-angle

average of Sq(b, R, µ) as S̄q(b, R, µ) and S
⟨F(ϕbJ )⟩
q (b, R, µ) when weighted by a function

F(ϕbJ) of angle ϕbJ . More specifically,

S̄q(b, R, µ) =

∫
dϕbJ

2π
Sglobal(b, µ)Scs(b, R, µ) , (2.7)

S⟨F(ϕbJ )⟩
q (b, R, µ) =

∫
dϕbJ

2π
Sglobal(b, µ)Scs(b, R, µ)F(ϕbJ) , (2.8)

where F(ϕbJ) can be ϕbJ or cos(nϕbJ), depending on the context. Specifically, when

F(ϕbJ) = 1, one has S
⟨1⟩
q (b, R, µ)S̄q(b, R, µ). To that end, Eq. (2.2) is further expanded as

dσe+p→e+jet+X

d2pTdyJdqT
=σ̂0

∑
q

e2qH(Q,µ)

∫
bdb

2π
xf̃TMD

1 (x, b, µ, ζ)Jq(pTR,µ)

{
J0(bqT )S̄q(b, R, µ)

+ 2
∑
n=1

(−i)nJn(bqT )

[
cos(nϕqJ)S

⟨cos(nϕbJ )⟩
q (b, R, µ)

]}
. (2.9)

Compared to Eq. (2.6), the azimuthal anisotropy expansion of the differential cross section

shown in Eq.(2.9) has no sin(nϕqJ)-related terms. Since the soft function Sq(b, R, µ) is an

even function of ϕbJ , with F(ϕbJ) = sin(nϕbJ) for all n, the weighted soft function will

vanish, namely S
⟨sin(nϕbJ )⟩
q (b, R, µ) = 0 .

2.2 Soft functions

As given in Eq. (2.3), the global soft function Sglobal(b, µ) is free of rapidity divergence

but depends on the magnitude b and azimuthal angle ϕb of the vector b. Similarly for

the collinear soft function Scs(b, R, µ) shown in Eq. (2.4). In this section, we present the

trigonometric function-averaged Sglobal(b, µ)Scs(b, R, µ) at NLO (∼ O(αsCF
π )) up to the

order of quadrapole flow 4ϕbJ . Then the product of the global soft function and collinear

soft function up to NLO is

Sq(b, R, µ) =Sglobal(b, µ)Scs(b, R, µ)
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=1 +
αs

2π
CF

[
2

(
lnR2 ln(−2i cos(ϕbJ))− ln2(−2i cos(ϕbJ))

)
− π2

3

+ 2yJ

(
1

ϵ
+ ln

µ2

µ2
b

)
+ lnR2

(
1

ϵ
+ ln

µ2

µ2
b

)
− 1

2
ln2R2

]
. (2.10)

Therefore, the azimuthal-angle-averaged soft function Sq(b, R, µ) as defined in Eq. (2.7) is

S̄q(b, R, µ) = 1 +
αs

2π
CF

[
2yJ

(
1

ϵ
+ ln

µ2

µ2
b

)
+ lnR2

(
1

ϵ
+ ln

µ2

µ2
b

)
− ln2R2

2
− π2

3

]
, (2.11)

and the azimuthal-angle-weighted soft functions defined in (2.8) can also be computed

accordingly.

2.3 Numerical results

In this section, we present the numerical results for cosϕ, cos 2ϕ, cos 3ϕ and cos 4ϕ az-

imuthal asymmetries where ϕ ≡ ϕqJ defined in the previous section for the EIC kinematics.

For jet radius we have R = 1 in the left plot and R = 0.5 in the right plot. At small qT
range, the directed flow v1 is dominant. We also find that the elliptic flow v2 is negative for

larger R and positive for small R as expected in theoretical calculations. The other higher

order flows triangular flow v3 and quadruple flow v4 are negative for both jet radius. And

the magnitudes for the four flows are all in a measurable region for the EIC kinematics, so

these can be possible measurements for the future experiments.
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Figure 1. The jet azimuthal anisotropy with EIC kinematics at jet radius R = 1.0 (left) and

R = 0.5 (right) for 10 < pT < 25 GeV, 0 < qT < 5 GeV.

3 Conclusion

To summarize, we study the azimuthal anisotropy of back-to-back lepton-jet production

in ep collisions. This observable is related to difference between the azimuthal angle ϕq of

the transverse momentum imbalance of the lepton and the jet, and the azimuthal angle ϕJ
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of the jet transverse momentum: ϕqJ = ϕq − ϕJ . In this work, we derive the factorization

formalism within the SCET framework and present numerical results for EIC kinematics.

We find that the directed flow component related to cos(ϕqJ) azimuthal asymmetry is

dominant and show that the anisotropic harmonic flows can be promising observables for

studying lepton-jet correlations in future experiments.
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