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QCD: Basic Facts

QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

 Formation of colorless bound states: “Hadrons” 

 Emergence of hadron masses (EHM) 
from QCD dynamics

Higgs mechanism QCD dynamics

 Quarks and gluons not isolated in nature.

(~ 928 MeV)
(~ 10 MeV)

 1-fm scale size of hadrons?
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QCD: Basic Facts

QCD is characterized by two emergent phenomena:
confinement and dynamical generation of mass (DGM).

 Emergence of hadron masses (EHM) 
from QCD dynamics

Can we trace them down to 
fundamental d.o.f ?
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QCD: Basic Facts

Confinement and the EHM are tightly connected with QCD’s running coupling.

Modern picture of QCD coupling. 

Cui:2019dwv

Saturation

UV fallHadron Scale

: Fully dressed valence quarks 
express all hadron’s properties

No Landau Pole

Enhancement

‘Effective Charge’

Combined continuum + QCD lattice analysis
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(figure: D. Binosi’s courtesy!)



Why bother about pions?

Pions and kaons emerge as (pseudo)-Goldstone bosons of DCSB. 

‘Higgs’ masses

 Dominated by QCD dynamics

 Interplay between Higgs and 
strong mass generating 
mechanisms.

 Their study is crucial to understand the EHM 
and the hadron structure:

Simultaneously explains the 
mass of the proton and the 
masslessness of the pion

(besides being ‘simple’ bound states)
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Resolution Scale

(quasiparticles) (partons)

● Fully-dressed valence 
quarks

● Unveiling of glue and 
sea d.o.f.

Parton distributions: energy scales 3



Parton distributions: energy scales

➢ At this scale, all properties of the hadron are 
contained within their valence quarks.

➢ QCD constraints are defined from here 
(e.g. large-x behavior of the PDF)

● Fully-dressed valence 
quarks
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Parton distributions: energy scales

➢ At this scale, all properties of the hadron are 
contained within their valence quarks.

➢ QCD constraints are defined from here 
(e.g. large-x behavior of the PDF)

● CSM results produce:
➢ EHM-induced dilated distributions

➢ Soft end-point behavior
Cui:2020tdf

● Fully-dressed valence 
quarks
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Parton distributions: energy scales

➢ Experimental data is given here.

➢ The interpretation of parton distributions from 
 cross sections demands special care.

➢ In addition, the synergy with lattice QCD and 
phenomenological approaches is welcome.

● Unveiling of glue and 
sea d.o.f.
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Parton distributions: energy scales

Conway:1989fs Aicher:2010cb Sufian:2020vzb

(ASV)

➢ Experimental data is given here.

➢ The interpretation of parton distributions from 
 cross sections demands special care.

➢ In addition, the synergy with lattice QCD and 
phenomenological approaches is welcome.

● Unveiling of glue and 
sea d.o.f.
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Resolution Scale

Parton distributions: energy scales

Evolution equations
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Parton distributions: energy scales

Evolution equations

➢ Experimental data is given here.

➢ The interpretation of parton distributions from 
 cross sections demands special care.

➢ In addition, the synergy with lattice QCD and 
phenomenological approaches is welcome.

● Unveiling of glue and 
sea d.o.f.

➢ At this scale, all properties of the hadron are 
contained within their valence quarks.

➢ QCD constraints are defined from here 
(e.g. large-x behavior of the PDF)

● Fully-dressed valence 
quarks

3





DGLAP: All orders evolution

Raya:2021zrz

Cui:2020tdf

DGLAP leading-order evolution equations
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DGLAP: All orders evolution

Assumption: define an effective charge such that

Starting from fully-dressed 
quasiparticles, at 

Sea and Gluon content unveils, 
as prescribed by QCD

➔ Not the LO QCD coupling but an effective one.

➔ Making this equation exact.

➔ Connecting with the hadron scale, at which the fully-
dressed valence-quarks express all of the hadron’s 
properties.

(thus carrying all the momentum)

Raya:2021zrz

Cui:2020tdf

DGLAP leading-order evolution equations
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as prescribed by QCD
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properties.

(thus carrying all the momentum)
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DGLAP leading-order evolution equations
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DGLAP: All orders evolution

Implication 1: valence quarks
Cui:2020tdf
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DGLAP: All orders evolution

Implication 1: valence quarks
Cui:2020tdf

This ratio encodes the 
information of the charge 
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DGLAP: All orders evolution

Implication 1: valence quark PDF
Cui:2020tdf

This ratio encodes the 
information of the charge 
and use isospin symmetry 

Direct connection bridging from hadron to experimental 
scale: only one input is needed to evolve “all” the Mellin 
moments up and reconstruct the PDF. 
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order:
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DGLAP: All orders evolution

Implication 1: valence quark PDF
Cui:2020tdf

This ratio encodes the 
information of the charge 
and use isospin symmetry 

Direct connection bridging from hadron to experimental 
scale: only one input is needed to evolve “all” the Mellin 
moments up and reconstruct the PDF. 

Capitalizing on the Mellin moments of asymptotically large 
order:

Under a sensible assumption at large momentum scale:

Reconstruction after evolving a CSM PDF 

ASV data

CSM output

Evolution
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DGLAP: All orders evolution

Implication 2: glue and sea-quark distributions (n
f
=4)

Obtained from valence-quark 
inputs

6



DGLAP: All orders evolution

Implication 2: glue and sea-quark distributions (n
f
=4)

Momentum sum rule:

Obtained from valence-quark 
inputs
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DGLAP: All orders evolution

Implication 2: glue and sea-quark distributions (n
f
=4)

Momentum sum rule:

Asymptotic (massless) limit is manifestly in 
agreement with textbook results: G. Altarelli, 
Phys. Rep. 81, 1 (1982) 

Obtained from valence-quark 
inputs
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DGLAP: All orders evolution

Implication 2: glue and sea-quark distributions (n
f
=4)

Momentum sum rule:

Asymptotic (massless) limit is manifestly in 
agreement with textbook results: G. Altarelli, 
Phys. Rep. 81, 1 (1982) 

 R.S. Sufian et al., arXiv:2001.04960

Obtained from valence-quark 
inputs
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DGLAP: All orders evolution

Implication 2: glue and sea-quark distributions (n
f
=4)

Momentum sum rule:

Asymptotic (massless) limit is manifestly in 
agreement with textbook results: G. Altarelli, 
Phys. Rep. 81, 1 (1982) 

 R.S. Sufian et al., arXiv:2001.04960

glue DF

sea DF

Compute all the moments and reconstruct:

Obtained from valence-quark 
inputs
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DGLAP: All orders evolution

● Since isospin symmetry limit implies:

● Odd moments can be expressed in terms 
of previous even moments.

● Thus arriving at the recurrence relation on 
the left which is satisfied if, and only if, the 
source distribution is related by evolution to 
a symmetric one at the initial scale .

Implication 3: recursion of Mellin moments
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of previous even moments.

● Thus arriving at the recurrence relation on 
the left which is satisfied if, and only if, the 
source distribution is related by evolution to 
a symmetric one at the initial scale .

Implication 3: recursion of Mellin moments

[99] C. Alexandrou et al., PRD104(2021)054504

Reported lattice moments 
agree very well with the 
recursion formula 
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DGLAP: All orders evolution

● Since isospin symmetry limit implies:

● Odd moments can be expressed in terms 
of previous even moments.

● Thus arriving at the recurrence relation on 
the left which is satisfied if, and only if, the 
source distribution is related by evolution to 
a symmetric one at the initial scale .

Implication 3: recursion of Mellin moments

[99] C. Alexandrou et al., PRD104(2021)054504

Reported lattice moments 
agree very well with the 
recursion formula and so 
also does and estimate for 
the 7-th moment from lattice 
reconstruction. 

Moments from global fits can 
be also compared to the 
estimated from recursion !  

Moments computed from: P. Barry et al., 
PRL127(2021)232001  

7





Pion PDF: from CSM (DSEs) to the experiment 

Symmetry-preserving DSE computation of the 
valence-quark PDF: 
[L. Chang et al., Phys.Lett.B737(2014)23] 
[M. Ding et al., Phys.Rev.D101(2020)054014 

Dilation 
owing to CSB and 
hence to the EHM
 

Farrar, Jackson, Phys.Rev.Lett 35(1975)1416
Berger, Brodsky, Phys.Rev.Lett 42(1979)940

● The EHM-triggered broadening shortens the 
extent of the domain of convexity lying on the 
neighborhood of the endpoints, induced too by the 
QCD dynamics

● It cannot however spoil the asymptotic QCD 
behaviour at large-x (and, owing to isospin 
symmetry, at low-x)       
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Pion PDF: from CSM (DSEs) to the experiment 

Symmetry-preserving DSE computation of the 
valence-quark PDF: 
[L. Chang et al., Phys.Lett.B737(2014)23] 
[M. Ding et al., Phys.Rev.D101(2020)054014 

Dilation 
owing to CSB and 
hence to the EHM
 

Farrar, Jackson, Phys.Rev.Lett 35(1975)1416
Berger, Brodsky, Phys.Rev.Lett 42(1979)940

● The EHM-triggered broadening shortens the 
extent of the domain of convexity lying on the 
neighborhood of the endpoints, induced too by the 
QCD dynamics

● It cannot however spoil the asymptotic QCD 
behaviour at large-x (and, owing to isospin 
symmetry, at low-x)       

CSM output

ASV data Evolution
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Pion PDF: from CSM (DSEs) to the experiment 

Symmetry-preserving DSE computation of the 
valence-quark PDF: 
[L. Chang et al., Phys.Lett.B737(2014)23] 
[M. Ding et al., Phys.Rev.D101(2020)054014 

Dilation 
owing to CSB and 
hence to the EHM
 

Farrar, Jackson, Phys.Rev.Lett 35(1975)1416
Berger, Brodsky, Phys.Rev.Lett 42(1979)940

● The EHM-triggered broadening shortens the 
extent of the domain of convexity lying on the 
neighborhood of the endpoints, induced too by the 
QCD dynamics

● It cannot however spoil the asymptotic QCD 
behaviour at large-x (and, owing to isospin 
symmetry, at low-x)       

Glue DF
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Proton PDF: from CSM (DSEs) to the experiment 

An analogous symmetry-preserving DSE 
computation of the valence-quark PDFs within 
a proton, based on diquark-quark approach:
[L. Chang et al., Phys.Lett.B, arXiv:2201.07870]  
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An analogous symmetry-preserving DSE 
computation of the valence-quark PDFs within 
a proton, based on diquark-quark approach:
[L. Chang et al., Phys.Lett.B, arXiv:2201.07870]  
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Proton PDF: from CSM (DSEs) to the experiment 

An analogous symmetry-preserving DSE 
computation of the valence-quark PDFs within 
a proton, based on diquark-quark approach:
[L. Chang et al., Phys.Lett.B, arXiv:2201.07870]  

And analogous evolution approach: 

Producing an isovector distribution in fair 
agreement with lattice results 
[H-W. Lin et al., arXiv:2011.14791]
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Reverse engineering the PDF data



Pion PDF

 Let us assume the data can be parameterized 
with a certain functional form, i.e.:

Normalization
Free parameters

 Then, we proceed as follows:

1) Determine the best values α
i
 via least-

squares fit to the data.

2) Generate new values α
i
, distributed 

randomly around the best fit.

3) Using the latter set, evaluate:

Data point with error

4) Accept a replica with probability:

Repeat (2-5).5) Evolve back to 
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Pion PDF: Original E615 Data

 Applying this algorithm to the original data yields:

✗ But also exhibit agreement with the SCI results.

✔ The produced moments are compatible with a 
symmetric PDF at the hadronic scale.

We shall discard this for the upcoming 
construction of the valence quark GPD

Thus, given the QCD prescription,

(average)

(SCI)
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Pion PDF: ASV Data

 Applying this algorithm to the ASV data yields:

✔ The produced moments are compatible with a 
symmetric PDF at the hadronic scale.

✔ It seems it favors a soft end-point behavior… 
just like the CSM result.

CSM

(average)
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Pion PDF: ASV Data

 Applying this algorithm to the ASV data yields:

✔ The produced moments are compatible with a 
symmetric PDF at the hadronic scale.

✔ It seems it favors a soft end-point behavior… 
just like the CSM result.

CSM

✔ Then, we can reconstruct the moments produced by 
each replica, using the single-parameter Ansatz:

CSM
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Pion PDF: Lattice Data

 We can follow an analogous procedure to infer, 
based upon lattice data, how the hadronic 
scale PDF should look like.

 Let us consider the list of lattice QCD moments:

 Those verify the recurrence relation, thus being 
compatible with a symmetric PDF at 

 While also falling within the physical bounds.

Produced by 

(massless SCI case)

Produced by 

(infinitely heavy valence quarks)

Joo:2019bzr Sufian:2019bol Alexandrou:2021mmi

Cui:2022bxn
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CSM

Pion PDF: recapitulation

 Both (ASV) experimental and lattice data yield 
hadronic scale PDFs exhibiting soft end-point 
behavior and EHM-induced broadening.

CSM

Mean

 The results are compatible, although current 
precision of the lattice moments still leaves us 
with a somewhat wide band of uncertainty.

 The (original) experimental data yield a 
hadronic scale PDF compatible with SCI results. 
 

➔Thus should be disfavored since it does not 
produce the expected large-x behavior.

 Thus we focus on the ASV data for the rest of 
the discussion.

Cui:2022bxn
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GPDs from PDFs and form factors



Light-front wave functions

 Many distributions are related via the leading-
twist light-front wave function (LFWF), e.g.:

Distribution 
amplitudes

Distribution 
functions

 In the DGLAP kinematic domain, this is also the 
case of the valence-quark GPD:

“One ring to rule them all”
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LFWF: Factorized models

 Many distributions are related via the leading-
twist light-front wave function (LFWF), e.g.:

Distribution 
amplitudes

Distribution 
functions

 If the x-k dependence is factorized, then:

 In the DGLAP kinematic domain, this is also the 
case of the valence-quark GPD:

➔The x-dependence of the LFWF lies within 
the PDF or, equivalently, the PDA:

Raya:2021zrz
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LFWF: Factorized models

 Many distributions are related via the leading-
twist light-front wave function (LFWF), e.g.:

Distribution 
amplitudes

Distribution 
functions

 If the x-k dependence is factorized, then:

 In the DGLAP kinematic domain, this is also the 
case of the valence-quark GPD:

➔The x-dependence of the LFWF lies within 
the PDF or, equivalently, the PDA:

 Our experience with CSM have 
revealed correlations proportional to

Raya:2021zrz

 So it should be a very good Ansatz 
for the pion, and fairly good for the 
kaon.
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LFWF: Factorized models

 Starting with a factorized LFWF, 

 The overlap representation for the GPD entails:

Raya:2021zrz

Heaviside Theta

 Where and:

This dictates the off-forward 
behavior of the GPD

… will be driven by the 
electromagnetic form factor

This one shall be obtained as 
in the first part of the talk
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The GPD model

 The factorized LFWF motivates the following GPD model:

Raya:2021zrz

● The GPD connects Φ(z) with the EFF via:

● The PDF might be inferred from 
data, as described before. 

● Thus, parameterized by:

● A useful parametrization is:

● Where r
π
 is taken from PDG and b

1,2
 are  

parameters to be fitted to the experimental data.
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The GPD model

 We have a 3-parameter model for the GPD:

Raya:2021zrz

➢ The strategy is as follows:

1) Following the described procedure for the PDF, generate a replica 
“i”, storing the value ρ

i
, and its probability of acceptance P(ρ

i
).

2) Using such replica, integrate the GPD (for ξ=0) using random 
values of b

1,2
 and varying randomly r

π
  within the range 0.659 +/- 

0.005 fm (in agreement with its PDG value).

3) Compute the χ2
i
 by comparing with the EFF experimental data 

[Amendolia:1984nz, JeffersonLab:2008jve].
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The GPD model

 We have a 3-parameter model for the GPD:

Raya:2021zrz

➢ The strategy is as follows:

4) Use χ2
i 
to calculate

Subsequently, accept the set of parameters with probability:

Repeat.

18



Numerical Results

➢ Combining pion PDF data (ASV) and pion EFF data, one arrives at:

(with proper mass units)
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Summary and Scope



Summary and Scope
➢ We have derived, and tested, some key implications stemming from 

the evolution from a hadronic scale with the assumed all orders 
scheme.

➢ Contrasting with empirical information on the EFF, a GPD can be 
delivered and, at the end of the day, is fully described by only 3 
parameters.

➢ Lattice QCD and the ASV analysis favor the CSM results, but other 
sets of data could be used, if required.

➢ The experimental and lattice data of the pion PDF is evolved, 
downwards, toward the hadronic scale following the all orders 
evolution scheme. 

➢ We can also evolve back to produce gluon and sea content!!



Summary and Scope
➢ We have derived, and tested, some key implications stemming from 

the evolution from a hadronic scale with the assumed all orders 
scheme.

➢ Contrasting with empirical information on the EFF, a GPD can be 
delivered and, at the end of the day, is fully described by only 3 
parameters.

➢ Lattice QCD and the ASV analysis favor the CSM results, but other 
sets of data could be used, if required.

➢ The experimental and lattice data of the pion PDF is evolved, 
downwards, toward the hadronic scale following the all orders 
evolution scheme. 

➢ We can also evolve back to produce gluon and sea content!!

➢ The robustness of the approach is to be tested in the case of 
proton PDFs.
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QCD effective charge
7

Modern continuum & lattice QCD analysis in the gauge 
sector delivers an analogue “Gell-Mann-Low” running 
charge, from which one obtains a process-independent, 
parameter-free prediction for the low-momentum 
saturation

● No landau pole

● Below a given mass scale, the interaction become scale-
independent and QCD practically conformal again (as in 
the lagrangian).  

Then, we define:

where

defines the screening mass and an associated 
wavelength, such that larger gluon modes 
decouple.
Then, we identify:  



QCD effective charge
7

The strength of the charge defines 
de input for the evolution  



QCD effective charge
7

The strength of the charge defines 
de input for the evolution  

Then, the glue, valence- and sea-quark DFs can 
be predicted, with no tuned parameter, on the 
ground of the effective charge definition, from the 
LFWF (or, equivalentely, from a symmetry-
preserving DSE/BSE computation of the valence-
quarks Mellin moments    
[M. Ding et al, CPC44(2020)3,031002] 

[Z-F. Cui et al, EPJC80(2020)11,1064]
[Z-F. Cui et al, EPJA57(2021)1,5] 
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