



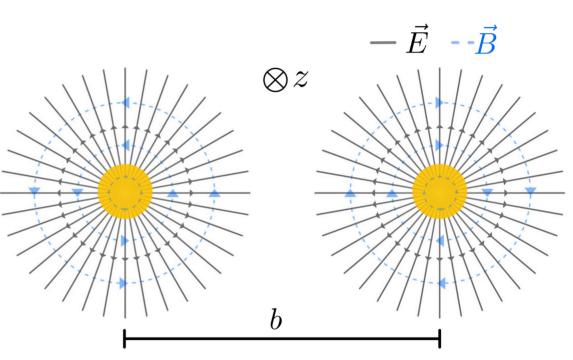
### Nuclear Tomography with Polarized Photon-Gluon Collisions at STAR

Supported in part by



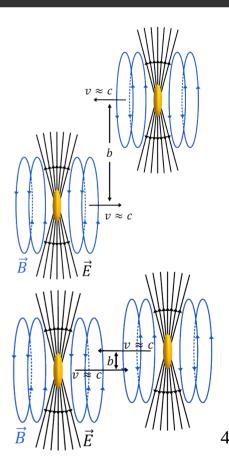
Office of Science

Isaac Upsal Rice University/USTC 05/04/22




### Talk outline

- Introduction
  - Strong EM fields in A+A collisions
  - Origins of photon polarization
- Photon-gluon interactions
  - Coherent vector-meson production in the environment of HICs
  - Extraction of diffraction information via angular distribution of  $\rho_0$  pion daughters
  - Comparisons between different systems
  - Interference-aided extraction of nuclear size
  - Modification from nuclear dynamics and the limits of coherence
- Summary


### HICs as a photon source

- Strong EM fields in HICs. Highly compressed by Lorentz contraction from fast-moving nuclei
- Make quasi-real photons which are linearly polarized <u>away</u> from their source
- Photons may interact with the other nucleus to make particles

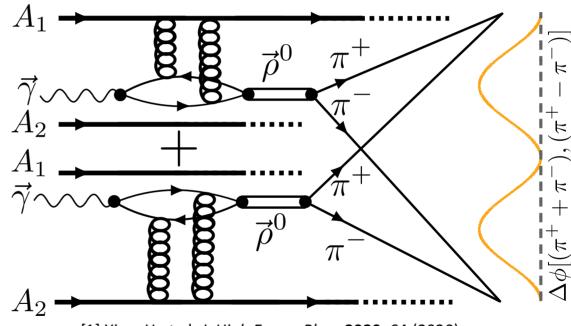



### Photonuclear production in HIC

- Photonuclear vector mesons are produced following  $\gamma \mathbb{P} \rightarrow \rho^0$ ,  $J/\Psi$ , etc.  $(J^P = 1^-)$ 
  - Photon from the EM field of one nucleus fluctuates to a  $q\overline{q}$  pair, interacts with pomeron or reggeon
  - Photon quantum numbers are  $J^{PC} = 1^{--}$
- $\rho_0$  has been studied in UPCs
  - C. Adler et al. (STAR Collaboration) Phys. Rev. Lett. 89, 272302
  - L. Adamczyk et al. (STAR Collaboration) Phys. Rev. C 96, 054904
  - S. Acharyai et al. (ALICE Collaboration) JHEP06 (2020) 35
  - etc.
- J/ $\Psi$  coherent photoproduction has been seen in nuclear collisions (noted as excess yield at low  $p_{\tau}$ )
  - J. Adam et al. (ALICE Collaboration) Phys. Rev. Lett. 116, 222301
  - J. Adam et al. (STAR Collaboration) Phys. Rev. Lett. 123, 132302



### Measure $\rho$ polarization


- Photon polarization vector aligned radially with the "emitting" source
  - Measured ρ (otherwise identical) virtual partner polarization is exactly 180° out of sync
  - Hadronically produced ρs (+pions) have no such spin correlation
    - HBT interference, but not polarization-dependent interference
- Polarization dictates finalstate distribution of the  $\pi^+\pi^$ pairs – allows for measurement



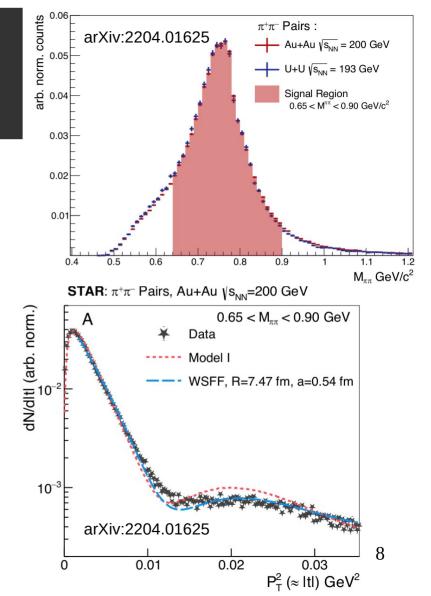
 $\Delta \phi = \phi (\pi^{+} + \pi^{-}) - \phi (\pi^{+} - \pi^{-})$ 5

### **Double-slit modulation**

- Analogous to double-slit pattern
- Expected modulation in  $\Delta \phi$  is  $\cos(2\Delta \phi)$  [1]
- Interference strength depends on
  - Nuclear geometry (gluon distribution)
  - Impact parameter (detailed spatial distribution)



[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).


$$\Delta \phi = \phi (\pi^{+} + \pi^{-}) - \phi (\pi^{+} - \pi^{-})$$

6

### Interference in UPCs

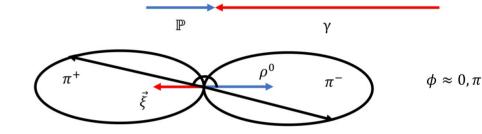
### Measurement in UPC

- Combine  $\pi^+\pi^-$  from events collected by the STAR UPC trigger
- Extremely clean  $\rho^{_0}$  peak and obvious low-  $p_{_T}$  peak
- The p<sub>T</sub> peak comes from a diffractive pattern
  - ps are coherently photoproduced
  - This peak is consistent with models estimating the photoproduction and can only be explained with this production mechanism
  - Second peak of diffraction pattern visible

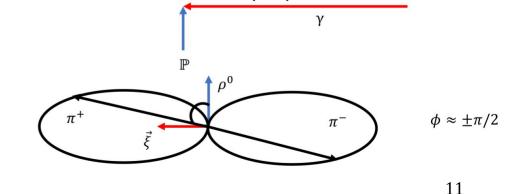


### UPC results

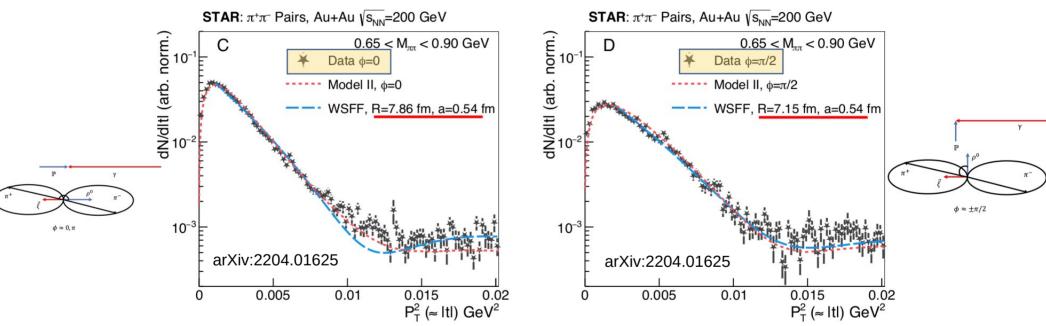
- Strong modulation in A+A collisions
- Difference in Au+Au and U+U demonstrates sensitivity to nuclear geometry
- This can be falsified in p+A, where effect is not expected




### Measuring the Nuclear Radius


### Interference gives event config.

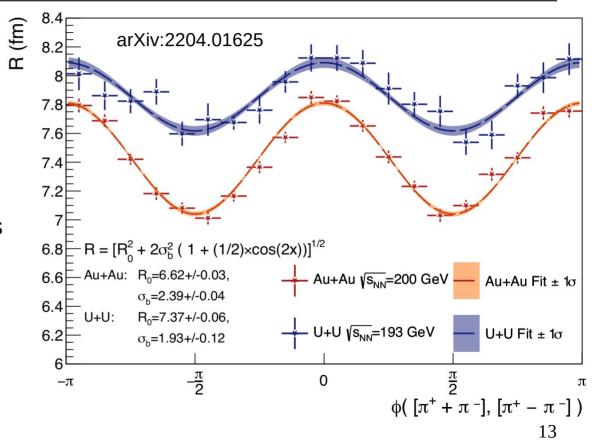
- Polarization is always determined by photon direction, ρ momentum by pomeron direction
- Circles represent harmonic angular probability distribution of pions
- "Case 1"  $\rightarrow$  max interference, "Case 2"  $\rightarrow$  no interference


• Case I : Photon & Pomeron are (anti-) parallel



• Case II : Photon & Pomeron are perpendicular




## Test of |t| slope



- Extracted slope depends *significantly* on interference!
- Demonstrates flaw in direct extraction of radius from |t|

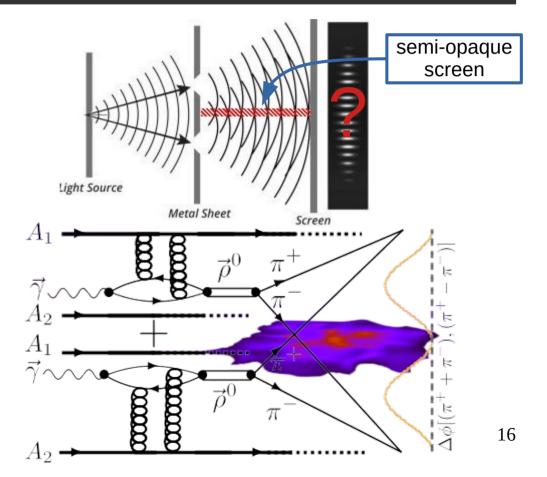
### Radius from interference

- Radius can be extracted directly from harmonic fit
- At  $\pm \pi/2$  smearing from finite photon momentum disappears
- Correct for
  - Smearing from decay kinematics
  - Depolarization from finite size nuclei (4%) and size of probe (transverse size of the ρ wavefunction)
- Extraction removes known effects



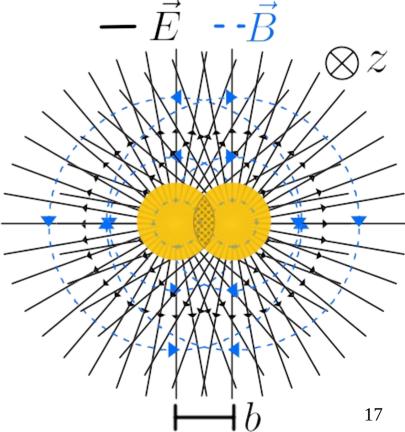
### Comparison of radii

|                                     | Au+Au (fm)                                 | U+U (fm)                                     |
|-------------------------------------|--------------------------------------------|----------------------------------------------|
| Charge Radius                       | 6.38 (long: 6.58, short: 6.05)             | 6.81 (long: 8.01, short: 6.23)               |
| Inclusive  t  slope (STAR 2017) [1] | 7.95 ± 0.03                                |                                              |
| Inclusive  t  slope (WSFF fit)*     | 7.47 ± 0.03                                | 7.98 <u>+</u> 0.03                           |
| Tomographic technique*              | $6.53\pm0.03$ (stat.) $\pm0.05$ (syst.)    | 7.29 $\pm$ 0.06 (stat.) $\pm$ 0.05 (syst.)   |
| DESY [2]                            | $6.45 \pm 0.27$                            | $6.90 \pm 0.14$                              |
| Cornell [3]                         | $6.74 \pm 0.06$                            |                                              |
|                                     |                                            |                                              |
| Neutron Skin                        | $0.17 \pm 0.03$ (stat.) $\pm 0.08$ (syst.) | $0.44 \pm 0.05$ (stat.) $\pm 0.08$ (syst.)   |
| (Tomographic Technique)*            | $\sim 2\sigma$                             | $\sim 4.7\sigma$ (Note: for Pb $pprox 0.3$ ) |
|                                     |                                            | *arXiv:2204.01625                            |


- Precision measurement of nuclear interaction radius at high energy
- Uranium shows evidence of (relatively) thick neutron skin, gold consistent with previous measurements

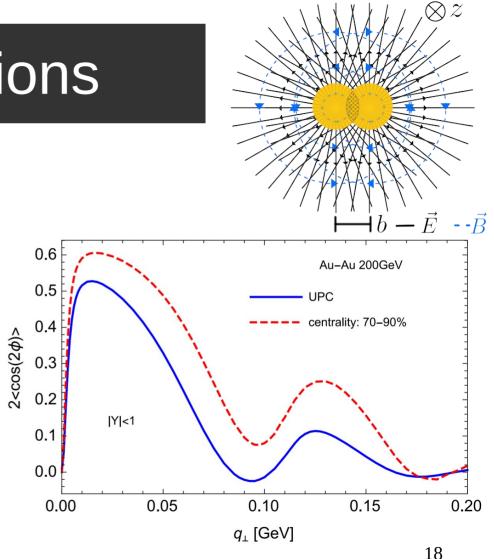
STAR Collaboration, L. Adamczyk, *et al.*, *Phys. Rev. C* 96, 054904 (2017).
 H. Alvensleben, *et al.*, *Phys. Rev. Lett.* 24, 786 (1970).
 G. McClellan, *et al.*, *Phys. Rev. D* 4, 2683 (1971).

# Limits of coherent diffractive production in nuclear medium


### Modification of double-slit

- In double-slit analogy hadronic interactions might be semi-opaque screen dividing the holes
- J/Ψ measurements demonstrate coherent photoproduction in central collisions, but do not investigate how these hadronic interactions affect the wave function

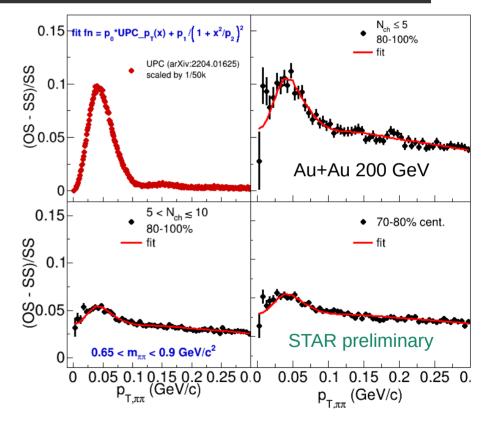



### EM studies and non-UPC

- UPC studies
  - Clean signal representative of only photon production
  - Unmuddied by effects of hadronic interactions
  - Ideal environment for studying pure photon interactions
- Non-UPCs: greater degree of polarization overlap between photons from their respective nuclei (larger initial signal)
- Signals from pure photoproduction may be modified by the collision medium
- Studying this process in non-UPCs tests our understanding of what "coherent" really means
  - How much can a nucleus break up and still have coherent interactions?
  - How might this breakup affect the overall wave function?



### Non-UPC collisions


- Photoproduction signal expected to increase in non-UPCs
  - Theory plot is a prediction of the size of this effect with <u>no</u> hadronic interactions
- Measures both polarization and quantum interference. These have been measured in A+A (global polarization + HBT), but not yet together
- Can polarization and quantum entanglement survive the abundant hadronic interactions of a non-UPC?
  - If so, how might they be modified?



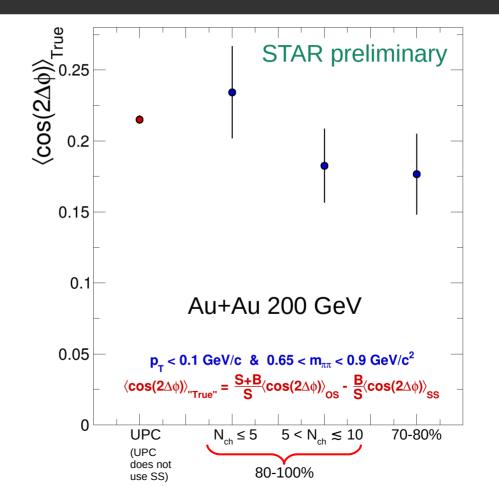
Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020)

## Divided p<sub>T</sub> distributions

- Au+Au 200 GeV (taken in 2014 and 2016)
- $\rho^0$  swamped by combinatorics in central collisions  $\rightarrow$  focus on peripheral collisions
- Hadronic component of the  $p_T$  distribution can be divided out (OS SS)/SS
- Clear signal of coherent photoproduction!
- Distributions fit using UPC results to demonstrate this effect
  - Coherent part of fit from UPC ( $p_0$  parameter) is ~ 8 standard deviations for each fit



### Subtracting background in $\Delta \phi$


- Dominant background makes it much more important than in the UPC data
- Background estimated by same-sign pairs
- Subtraction method:

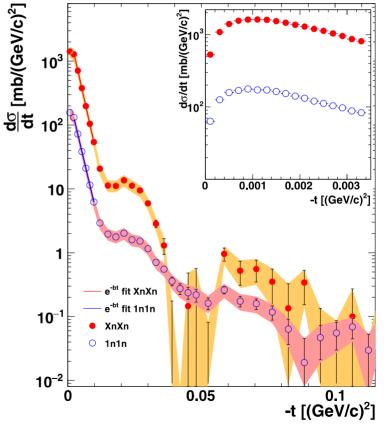
$$(S+B)\langle\cos(2\Delta\phi)\rangle_{\rm OS} = B\langle\cos(2\Delta\phi)\rangle_{\rm SS} + S\langle\cos(2\Delta\phi)\rangle_{\rm True}$$

$$\implies \langle\cos(2\Delta\phi)\rangle_{\rm True} = \frac{S+B}{S}\langle\cos(2\Delta\phi)\rangle_{\rm OS} - \frac{B}{S}\langle\cos(2\Delta\phi)\rangle_{\rm SS} \qquad 20$$

### Comparison to UPC

- Signal persists in peripheral events
- Wavefunction is surviving potential hadronic interference
- There does not appear to be a strong centrality dependence
  - Though expectation is increasing signal




### Conclusions

- Clear excess at low  $p_{T}$  is evidence of coherent production
- First measurements of a cos( $2\Delta\phi$ ) modulation in the angular distribution of  $\rho$  daughters from photon polarization
  - Strong modulation in measurements of Au+Au and U+U UPC events
  - Interference is also excellent tool for measuring nuclear size
  - This interference survives the strongly-interacting medium of a peripheral HIC (Au+Au data)
    - Possible effects from wave function collapse are relatively small

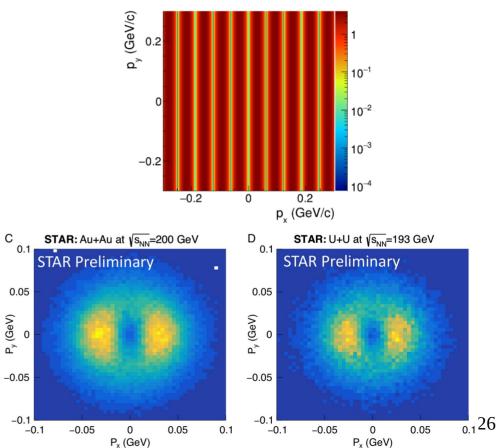
# Backup

### Nuclear radius is too large!


- Photo-nuclear measurements have historically produced a |t| slope that corresponds to a mysteriously large source!
- Charged radii for Au and Pb are 6.38 fm and 6.62 fm respectively
- |t| slopes measured in HICs:
  - STAR (2017): 407.8 ± 3 (GeV/c)-2
  - ALICE (Pb): 426 ± 6 ± 15 (GeV/c)<sup>-2</sup>
- These correspond to an effective radius of > 8 fm!
- Where is this discrepancy coming from?



STAR Collaboration, L. Adamczyk, *et al.*, *Phys. Rev. C* 96, 054904 (2017). J. Adam *et al.* (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.


### Measurements using Woods Saxon

- New STAR measurements also a large radius
- Is this a deficiency of the exponential fit?
- Use a Woods-Saxon instead, radius is still >1 fm too big
- Uranium has the same issue,
   >1 fm larger than charge radius



### New method

- Two-source interference takes place in x-axis (impact parameter direction)
- Interference pattern disappears in y direction
- Can select event orientations

