ATLAS Results on B_c Production and Decay

Sally Seidel, for the ATLAS Collaboration DIS 2022 4 May 2022

Two recent results on B_c production and decay from ATLAS, using LHC pp data.

ATLAS from inside to out:

- Inner detector (pixel, silicon microstrips, straw-tube TRT) $|\eta| < 2.5$, surrounded by a 2T axial B field from the solenoid
- Sampling calorimeters (LAr EM $|\eta|$ < 3.2; Scint tile HAD $|\eta|$ < 3.2; LAr HAD 1.5 < $|\eta|$ < 4.9)
- Air core toroids provide B field for Muon drift tubes + cathode strip chambers (muon tracking to $|\eta| < 2.7$) and resistive plate + thin gap chambers (triggering to $|\eta| < 2.4$)

- I. Relative B_c[±]/B[±] Production Cross Section at 8 TeV
- II. $B_c^+ \to J/\psi D_s^{(*)+}$ Decays at 13 TeV

Measurement of the Relative B_c[±]/B[±] Production Cross Section at 8 TeV*

Message and motivation: No published calculation of the cross section at 8 TeV is available. Evidence of dependence of this ratio upon $p_T(B)$ is shown. This is the first measurement of this relative cross section for this combination of fiducial volume and energy.

The outcome:
$$\frac{\sigma(B_c^{\pm}) \cdot B(B_c^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \cdot B(B^{\pm} \to J/\psi\pi^{\pm})}$$
 is measured for bins:

• 2 p_T bins for the rapidity range |y(B)| < 2.3:

$$13 \text{ GeV} < p_T(B_c^{\pm}) < 22 \text{ GeV} \text{ and } p_T > 22 \text{ GeV}$$

• 2 rapidity bins for the p_T range $p_T(B) > 13$ GeV:

$$|y| < 0.75$$
 and $0.75 < |y| < 2.3$

• and for the full range: $p_T > 13$ GeV and |y| < 2.3

^{*} Phys. Rev. D 104 (2021) 012010.

Overview of the method:

- Find the J/ ψ : combine every oppositely-signed pair of muons, constrain to a common vertex.
- Find the B candidates: fit the tracks of the 2 muons to a charged-hadron track, constrain to a common vertex. Charged hadron takes kaon (pion) mass for B^{\pm} (B_c). Constrain the J/ ψ mass to its world average value.
- Remove combinatorial background in which J/ψ is combined with an unrelated light charged hadron: select on significance of impact parameter of hadron track relative to PV in transverse plane.
- Remove partially-reconstructed B_c semileptonic decays in which a muon fakes a hadron.
- Find $\frac{\sigma(B_c^{\pm}) \cdot B(B_c^{\pm} \to J/\psi\pi^{\pm}) \cdot B(J/\psi \to \mu^{+}\mu^{-})}{\sigma(B^{\pm}) \cdot B(B^{\pm} \to J/\psi\pi^{\pm}) \cdot B(J/\psi \to \mu^{+}\mu^{-})} = \frac{N^{reco}(B_c^{\pm})}{N^{reco}(B^{\pm})} \cdot \frac{\varepsilon(B^{\pm})}{\varepsilon(B_c^{\pm})}$

where ε 's are efficiencies and N^{reco} is extracted from mass distributions by unbinned maximum-likelihood fits.

Reconstruction details:

- require **muon** $\mathbf{p_T} > 4$ GeV
- vertex fit quality $\chi^2 < 15$
- dimuon invariant mass must lie in a window that depends on the η of the muons (tighter window for more central tracks).
- **Primary vertex chosen** by extrapolating the B flight direction to the z-axis and choosing the closest vertex in the z-direction.
- Reconstructed B candidates selections:
 - $\chi^2/(\text{dof} = 4) < 1.8$
 - |y(B)| < 2.3
 - $p_T^{hadron} > 2.0 \text{ GeV}$
- Impact parameter significance of the hadron track, $d_{xy}^0 / \sigma(d_{xy}^0) > 1.2$

Unbinned maximum likelihood fit details:

Signal – Gaussian pdf with event-by-event errors

$$F_{B_c \text{ signal}} \propto \exp \left(-\frac{\left(m_{J/\psi\pi^{\pm}} - m_{B_c^{\pm}} \right)^2}{2 \left(s \delta m_{J/\psi\pi^{\pm}} \right)} \right) \text{ and } F_{B^{\pm} \text{ signal}} \propto \exp \left(-\frac{\left(m_{J/\psi K^{\pm}} - m_{B^{\pm}} \right)^2}{2 \left(s \delta m_{J/\psi K^{\pm}} \right)} \right)$$

- $B_c bkg F \propto exp(a \cdot m_{J/\psi\pi^{\pm}}) + b$
- Partially-reconstructed b-hadron decays in the lower part of the B[±] spectrum fitted with the complementary error function-

$$F \propto 1 - erf(A) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{A} e^{-t^{2}} dt; A = \frac{m_{J/\psi K^{\pm}} - m_{0}}{S_{0}}$$

• Cabibbo-suppressed bkg in the high part of the B[±] spectrum fitted with a Gaussian

$$F \propto \exp\left(-\frac{\left(m_{J/\psi K^{\pm}} - m_{B^{\pm},\pi^{\pm}}\right)^{2}}{2\left(s\delta m_{J/\psi K^{\pm}}\right)^{2}}\right)$$

Remaining bkg – due to production of J/ ψ mesons from decays of b-hadrons other than B^{\pm}

$$F \propto \exp\left(d \cdot m_{J/\psi K^{\pm}}\right)$$

Efficiency details:

$$\varepsilon = \varepsilon^{\text{trigger}} \cdot \varepsilon^{\text{muon spectrometer}} \left(\mu^{+} \right) \cdot \varepsilon^{\text{muon spectrometer}} \left(\mu^{-} \right) \cdot \left(\varepsilon^{\text{Inner Detector}} \left(\mu^{\pm} \right) \right)^{2} \cdot \varepsilon^{\text{Inner Detector}} \left(X_{h} \right) \cdot \varepsilon^{\text{vertex}} \left(B \right) \cdot \varepsilon^{\text{selection}} \left(B \right)$$

- Efficiency correction is 8.2% 9.9% for all differential bins in p_T and rapidity, 22% for the full range of the analysis
- Systematic uncertainties:
- Size of the Monte Carlo samples
- Monte Carlo based reweighting procedure
- Minimal selection criteria
- Tracking uncertainty
- Choice of signal models
- Choice of background models
- Estimate of Cabibbo-suppressed decay contributions

$$B_c^{\pm} \rightarrow J/\psi K^{\pm}$$
 and $B^{\pm} \rightarrow J/\psi \pi^{\pm}$

- B lifetime uncertainty
- Trigger and reconstruction effects

Example invariant mass distributions:

Inclusive result: For full range $p_T > 13$ GeV and |y| < 2.3, the production cross section ratio is $0.34 \pm 0.04(\text{stat})_{-0.02}^{+0.06}(\text{syst}) \pm 0.01(\text{lifetime})$

Differential (points) and inclusive (lines) results:

Inner error bars: statistical **Outer** error bars:

stat ⊕ syst ⊕ lifetime

The differential measurement suggests a possible dependence on p_T : the production cross section of the B_c decreases faster with p_T than the production cross section of the B^{\pm} .

No significant dependence on rapidity is observed.

Study of $B_c^+ \to J/\psi D_s^{(*)+}$ Decays at 13 TeV*

Message: Branching fractions of the decays $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$ are measured relative to that of $B_c^+ \to J/\psi \pi^+$ and relative to each other.

The motivation: B_c^+ provides a unique laboratory for testing theoretical approaches to weak decays, because it is the only weakly decaying meson consisting of 2 heavy quarks. Examples of its decay modes include:

color-favored spectator:

color-suppressed spectator:

annihilation topology:

Outcome: The precision of the measurements exceeds that of all previous studies of these decays. The measurements are compared with 9 theoretical predictions and with LHCb[†] and ATLAS Run 1** results.

^{*}ATLAS-CONF-2021-046.

[†] Phys. Rev. D 87 (2013) 112012 and Phys. Rev. D 89 (2014) 019901.

^{**}Eur. Phys. J. C 76 (2016) 4.

The method:

- Use the full Run 2 pp dataset: 139 fb⁻¹.
- Find the $J/\psi \to \mu^+\mu^-$. Refit muon tracks to a common vertex.
- **Reconstruct** $D_s^+ \to \phi(\to K^+K^-)\pi^+$. All oppositely-charged pairs are considered for the kaon mass hypothesis. Any additional track is assigned the pion mass. Keep candidates with good vertex and masses consistent with ϕ [1019±7 MeV] and D_s^+ [1930-2010 MeV]
- Combine the J/ ψ and D_s^+ candidates. The J/ ψ and the B_c^+ share the common secondary vertex, and the D_s^+ tertiary vertex is distinct. Require the D_s^+ momentum to point back to the B_c^+ vertex. Constrain the J/ ψ and D_s^+ candidates to world-average masses.
- Apply p_T and $|\eta|$ selections to refitted μ , K, and π tracks. Suppress combinatorial bkg with selections on B_c^+ vertex χ^2/N_{DOF} ; transverse impact parameters of D_s^+ and B_c^+ vertices; transverse and longitudinal impact parameters of B_c^+ relative to the primary vertex; p_T cut to select hard fragmentation.
- Suppress fake B_c^+ from $B_s^0 \rightarrow J/\psi \phi$ combined with a random track: Exclude range $m(B_s^0) \pm 30$ MeV.
- Further suppress combinatoric bkg: Apply boosted decision tree multivariate classifier in TMVA, trained on D_s^+ spectrum of p_T and L_{xy} and 4 angular variables. Training uses BCVEGPY* simulation for signal and $J/\psi D_s^+$ sidebands for bkg.

The method, continued –

- Reconstruct the reference channel $B_c^+ \to J/\psi \pi^+$ (selections similar to those of the signal channels.) Exclude $B_c^+ \to J/\psi \mu^+ \nu_\mu X$ by excluding from the pion candidates tracks identified as low- p_T muons.
- Dataset is split to accommodate various trigger conditions.
- Apply an extended unbinned maximum likelihood fit to the 2D distribution of $m(J/\psi D_s^+)$ and $|\cos\theta'(\mu^+)|$. The θ'(μ+) is the helicity angle: the angle between the μ+ and the D_s^+ momenta in the rest frame of the μ+μ-.
- The D_s^{*+} decays to D_s and π^0/γ which is not reconstructed, but the mass difference between D_s^{*+} and D_s leads to **2 distinct structures** in the mass plot.
- As the $B_c^+ \to J/\psi D_s^{*+}$ channel is a transition of a pseudoscalar meson into 2 vector states, it **involves 3 helicity amplitudes** $(A_{J/\psi Ds^*})$ given as A_{++} , A_{00} , A_{--} . The combination of A_{++} and A_{--} is called $A_{\pm\pm}$ and corresponds to transverse polarization. The contributions to the signal PDF for the helicity components are produced with adaptive kernel estimation technique.†

^{*}Comput. Phys. Commun. 197 (2015) 335, arXiv: 1507.05176 [hep-ph]

[†]Comput. Phys. Commun. 136 (2001) 198, arXiv:hep-ex/0011057.

Results:

$$R_{D_s^+/\pi^+} \equiv \frac{B(B_c^+ \to J/\psi D_s^+)}{B(B_c^+ \to J/\psi \pi^+)} = 2.76 \pm 0.33 \pm 0.29 \pm 0.16$$

$$R_{D_s^{*+}/\pi^+} \equiv \frac{B(B_c^+ \to J/\psi D_s^{*+})}{B(B_c^+ \to J/\psi \pi^+)} = 5.33 \pm 0.61 \pm 0.67 \pm 0.32$$

$$R_{D_s^{*+}/D_s^+} \equiv \frac{B(B_c^+ \to J/\psi D_s^{*+})}{B(B_c^+ \to J/\psi D_s^+)} = 1.93 \pm 0.24 \pm 0.10$$

The third error derives from the uncertainty on the branching fraction of $D_s^+ \rightarrow \phi(K^+K^-)\pi^+$.

$$\Gamma_{\pm\pm}/\Gamma$$
 = (fraction of transverse polarization in $B_c^+ \rightarrow J/\psi D_s^{*+}$) = 0.70 ± 0.10 ± 0.04

- QCD PM: rel. potential model (P. Colangelo et al., arXiv:hep-h/9909423)
- QCD SR: sum rules (V. Kiselev, arXiv:hepph/0211021)
- RCQM: rel. constituent quark model (M. Ivanov et al., arXiv:hep-ph/0602050)
- CCQM: covariant confined quark model (S. Dubnicka et al., arXiv:1708.09607[hep-ph])
- BSW: rel. quark model (R. Dhir et al,., arXiv:0810.4284[hep-ph])
- LFQM: light-front quark model (H.W. Ke et al., arXiv:1307.5925[hep-ph])
- pQCD: pert. QCD (Z. Rui et al., arXiv:1407.5550[hep-ph])
- RIQM: rel. independent quark model (S. Kar et al., PRD 88 (2013) 094014.
- FNCM: factorization approach (B. Mohammadi, Int. J. Mod. Phys. A 33 (2018) 1850044.

Summary

ATLAS presents 2 recent results on B_c production and decay:

- Measurement of the production cross section of B_c mesons relative to B^{\pm} mesons new data in an energy and fiducial volume regime for which no prediction exists, and some indication of p_T dependence in the ratio.
- Study of $B_c^+ \to J/\psi D_s^{(*)+}$ decays The precision exceeds that of all previous studies of these decays. The QCD relativistic potential model describes all three branching ratios well. Comparisons to 8 other models are also provided.