Measurements of jet substructure using the CMS detector

Cristian Baldenegro

LLR-École Polytechnique

Deep Inelastic Scattering 2022 Santiago de Compostela

Jet substructure

 New insights on the strong force via detailed studies of the radiation pattern inside jets.

- In last years, we have achieved the experimental precision to challenge state-of-the-art pQCD analytical calculations and constrain parton shower & hadronization models of MC generators.
- Additional inputs for quark-gluon jet discriminators, and to discriminate V/H/t jets from quark/gluon jets.

diagram by M. Seidel, LHCP2021

Jet substructure in CMS

Particle-flow (PF) candidates are clustered into jets with anti-kt algorithm, (R = 0.4 & 0.8 as standard sizes)

PUPPI algorithm: weigh down neutral clusters not close to PV tracks, remove tracks not associated to PV.

Optional: iterative soft drop declustering to remove soft and wide-angle radiation.

Standard choice: β =0 (mMDT) for zCut = 0.1

Soft-drop criterion

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$

Jet angularities in Z+jets and dijets

arXiv:2109.03340

Generalized angularities, suggested by theorists to separate quark and gluon jets:

$$\lambda_{\beta}^{\kappa} = \sum_{i \in jet} z_{i}^{\kappa} \left(\frac{\Delta R_{i}}{R} \right)^{\beta} \quad z_{i} \equiv \frac{p_{Ti}}{\sum_{j \in jet} p_{Tj}}$$

Events classified in multiple categories:

Dimension	Variants				
Region	Z+jet vs. central dijet vs. forward dijet				
Observable λ_{β}^{κ}	LHA, width, thrust, multiplicity, $(p_{\rm T}^{\bar{D}})^2$				
Jet $p_{\rm T}$	$50 < p_{\rm T} < 65 {\rm GeV}$,, $p_{\rm T} > 1000 {\rm GeV}$				
Jet size parameter R	0.4 vs. 0.8				
Constituents	Charged+neutral vs. charged-only				
Grooming	Ungroomed vs. groomed				

Z+jet, quark enriched

dijet, gluon enriched

Event samples

 \geq 2 jets with |y| < 1.7 and $p_{\rm T}^{J} > 30\,{\rm GeV}$ $\Delta\phi(j_1,j_2) > 2$ $|p_{\rm T}^{J_1} - p_{\rm T}^{J_2}|/(p_{\rm T}^{J_1} + p_{\rm T}^{J_2}) < 0.3$

 \geq 2 muons with $|\eta| < 2.4$ and $p_{\rm T}^{\mu} > 26\,{\rm GeV}$ Opposite charge muons $|m_{\mu\mu} - m_Z| < 20\,{\rm GeV}$

 \geq 1 jet with |y| < 1.7 and $p_{\rm T}^j > 30$ GeV, not overlapping with muons of the Z boson candid $\Delta \phi(i_1, Z_1) > 2$

$$\Delta \phi(j_1, Z) > 2$$

 $|p_T^{j_1} - p_T^Z|/(p_T^{j_1} + p_T^Z) < 0.3$

Z+jet, quark enriched

dijet, gluon enriched

Les Houches Angularity (LHA) distribution

Measurement unfolded to stable-particle level.

MG5+Pythia8 and Herwig++ describe well the quark-enriched sample. They "envolve" the gluon-enriched data.

For Z+jet: analytical resummation at NLL accuracy matched to fixed order NLO matrix element, supplemented w/ non-perturbative corrections from Sherpa (NLO+NLL'+NP)

D. Reichelt, S. Caletti, O. Fedkevych, S. Marzani, S. Schumann, G. Soyez *arXiv:2112.09545*

Z+jet, quark enriched

Dijet, gluon enriched

summary plot

Angularities are generally larger in gluon-enriched jet samples, consistent with LO picture.

Quark- and gluon-initiated parton showers are not well described by generators, *important for flavor tagging developments*.

Newest Pythia8 (CP2, CP5) and Herwig7
(CH3) tunes: description of gluon-like jets improves, not much improvement for quark-like jets.

Dijet/Z+jet ratio (gluon-like/quark-like jet ratio)

- experimental uncertainties partially cancel in the Z+jet / dijet ratio
- generators in LO+PS mode overestimate the gluon-enriched/quark-enriched ratio

 Description of gluon-enriched / quark-enriched ratio worsens with newest Pythia8 and Herwig7 tunes.

Jet substructure in top quark pair + jet events

Top quark pair production provides: bottom, light-quark enriched, and gluon-enriched jet samples:

- Light-enriched: non b-tagged jets with |mjj mW | < 15 GeV
- Gluon-enriched: non b-tagged jets with |mjj mW | > 15 GeV

33 observables were tested (Nsubjettiness, energy correlators, gen. angularities, ...). A set of minimally-correlated variables is analyzed in detail:

 $\triangle Rg$, zg, multiplicity (λ 00), eccentricity (ϵ)

Measurement of jet substructure in top quark pair+jets

- Groomed momentum fraction zg, related to the splitting function of QCD, at LO insensitive to αS
- Angle between groomed subjets $\triangle Rg$: sensitivity to αS , robust against non-perturbative corrections.
- LHA is expected to be larger for gluon-jets than quark jets. B-quark jets are expected to have smaller LHA.

αs extraction from ttbar lepton + jets

- ARg is expected to be the least sensitive to NP effects.
- Substructure of b-jets is used for the extraction of αS (NLO matrix element of top quark decay in PYTHIA8, effectively LO+LL b-jet substructure)
- Higher-order corrections supplemented in an effective way using 2-loop running and CMW rescaling of AQCD.
- Result:

$$\alpha_S(m_Z) = 0.115^{+0.015}_{-0.013}$$

experimental uncertainties are less than 1% of αS , uncertainty in αS is dominated by FSR scale uncertainties.

Boosted object tagging using machine learning algorithms

- Improved tagging performance with neural networks (NN) over cutoff methods
- DeepAK8 (convolutional NN) gives best performance for highly boosted topologies.

Performance of taggers & scale factors is highly sensitive to modeling of quark- and gluon-initiated jet parton showers. Important to have as many experimental inputs to constrain these uncertainties!!

Summary

 Measurements of jet substructure in Z+jet, dijet, and top quark pair production expose building blocks of QCD (splitting function, αS)

Valuable input for a better understanding of quark-jet and gluon-jet substructure

Data also provides additional input for quark-gluon jet discriminators, or to discriminate
 V/H/t jets from light-quark jets.

Algorithm	Subsection	jet p _T [GeV]	t quark	W boson	Z boson	H boson	
$m_{\mathrm{SD}} + \tau_{32}$	6.1	400	✓				
$m_{\mathrm{SD}} + \tau_{32} + \mathrm{b}$	6.1	400	\checkmark				
$m_{\mathrm{SD}} + au_{21}$	6.1	200	\checkmark	\checkmark			
HOTVR	6.2	200	\checkmark				
N_3 -BDT (CA15)	6.3	200	\checkmark				
$m_{\rm SD} + N_2$	6.3	200		\checkmark	\checkmark	\checkmark	
BEST	6.5	500	\checkmark	\checkmark	\checkmark	\checkmark	
ImageTop	6.6	600	\checkmark				
DeepAK8(*)	6.7	200	\checkmark	\checkmark	\checkmark	\checkmark	
Jet mass decorrelated algorithms							
$m_{\mathrm{SD}} + N_{2}^{\mathrm{DDT}}$	6.3	200		\checkmark	\checkmark	\checkmark	
double-b	6.4	300			\checkmark	\checkmark	
ImageTop-MD	6.6	600	\checkmark				
DeepAK8-MD ^(*)	6.7	200	\checkmark	✓	✓	√	