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Abstract
We promote to next-to-leading order (NLO) the hybrid high-energy factorization

formula, in which one initial-state parton momentum is space-like and carries non-
vanishing transverse components while the other is on-shell. We identify all non-
cancelling soft and collinear divergencies in the real and virtual contribution for the
partonic cross section, and observe that they force to change the interpretation of
the factorization formula. Coincidentally, we recover expressions for inclusive NLO
quark-and gluon impact factor corrections known in literature.

1 Hybrid kT -factorization and the auxiliary parton method

The hybrid high-energy, or kT -, factorization formula for cross sections in hadron scattering
looks, at lowest order, schematically like

dσ(0) =

∫
dxin d

2k⊥ dx̄ın F(xin, |k⊥|) f(x̄ın)dB⋆(xin, k⊥, x̄ın) . (1)

The functions F(xin, |k⊥|) and f(x̄ın) are parton density functions (PDFs). They both depend on
a longitudinal momentum fraction, but only one of them depends on transverse momentum. The
Born-level differential partonic cross section dB⋆ is special compared to collinear factorization,
as highlighted by the ‘⋆’, in the sense that one of its initial-state partons is space-like, and has
momentum

kµ
in = xinP

µ
A + kµ

⊥ , (2)

where PA is the light-like hadron momentum and k⊥ is transverse, i.e. k⊥ ·PA = 0. We consider
the general case, for which the scattering process may involve a number of final-state jets, and/or
massive quarks, and/or a Higgs boson etc. dB⋆ is implied to depend on the momenta of those,
and to include the differential phase space.

It is straightforward to define and calculate the tree-level amplitudes necessary to construct
dB⋆ with the auxiliary parton method [1]. We need a Sudakov decomposition of momenta as

Kµ = ξKP
µ + x̄KP̄

µ + Kµ
⊥ (3)
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where the momenta P and P̄ have positive energy and satisfy

P2 = P̄2 = 0 , 2P·P̄ = ν2 > 0 , P·K⊥ = P̄·K⊥ = 0 . (4)

We introduce the symbols ξ and P to have the possibility of defining

x = λ−1ξ and PA = λP (5)

via a scaling yet to be determined. Now let the desired parton-level process be

g⋆(kin) ωın(kın) → ω1(p1) ω2(p2) · · · ωn(pn) (6)

where g⋆ represents the space-like gluon, and the ωi represent the other partons or particles
involved in the process. In the auxiliary parton method, this process is obtained from the quark
scattering process

q
(
k1(Λ)

)
ωın(kın) → q

(
k2(Λ)

)
ω1(p1) ω2(p2) · · · ωn(pn) (7)

where

kµ
1 = ΛPµ , kµ

2 = pµ
Λ = (Λ− ξin)P

µ − kµ
⊥ +

|k⊥|
2

(Λ− ξin)ν2
P̄µ , (8)

so k2
1 = k2

2 = 0 and k1 − k2 = kin + O
(
Λ−1

)
with kin = ξinP + k⊥. The process of Eq. (7) with

the auxiliary quarks is on-shell, and its squared matrix element is well-defined and it is known
how to calculate it. The squared matrix element of the desired process with the space-like gluon
is obtained by taking

Λ → ∞ . (9)

In [2] and [3] it was noted that instead of an auxiliary scattering quark, also an auxiliary scattering
gluon can be used. At the level of squared matrix elements summed over color, one just needs to
include a different overall factor to correct for the difference in color representation:

1

g2
sCaux

ξ2
in|k⊥|

2

Λ2

∣∣Maux∣∣2(ΛP, kın ;pΛ, {pi}
n
i=1

) Λ→∞−→ ∣∣M ⋆∣∣2(kin, kın ; {pi}
n
i=1

)
(10)

with

Caux-q =
N2

c − 1

Nc
, Caux-g = 2Nc . (11)

The other factors on the left-hand side of Eq. (10) assure the correct power of the coupling
constant, and the correct on-shell limit. In particular, because of the factor ξ2

in, the right-hand
side does not depend on the Sudakov representation of the momenta, and is invariant under the
scaling of Eq. (5).
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2 Promotion to NLO

The NLO contribution to the cross section is expected to schematically look like

dσ(1) =

∫
dxin d

2k⊥ dx̄ın

{
F(xin, |k⊥|) f(x̄ın)

[
dV⋆(xin, k⊥, x̄ın) + dR⋆(xin, k⊥, x̄ın)

]
+
[
F(1)(xin, |k⊥|) f(x̄ın) + F(xin, |k⊥|) f

(1)(x̄ın)
]
dB⋆(xin, k⊥, x̄ın)

}
, (12)

where, dV⋆ represents the virtual contribution involving one-loop amplitudes, and dR⋆ the real
contribution involving an extra final-state parton. Both dV⋆ and dR⋆ are suppressed by an extra
strong coupling constant compared to dB⋆. The functions f(1), F(1) in the second line of Eq. (12)
are higher-order corrections to the PDFs, and carry an extra power of the coupling constant
compared to the leading-order ones.

The loop integrals in dV⋆ and the phase space integrals in dR⋆ cause soft and collinear diver-
gences. Not all of these cancel, a well-known phenomenon in collinear factorization, for which
the remnant divergences are absorbed by what is denoted f(1) in Eq. (12). In the auxiliary parton
approach, extra divergences appear caused by the limit of Λ → ∞. Firstly, Λ effectively acts as a
regulator of divergences associated with linear denominators in the loop integrals. Secondly, one
cannot just take tree-level space-like gluon amplitudes with a radiative gluon to get the whole
real contribution. Also the situation for which the radiative gluon shares the large Λ component
with the auxiliary final-state parton must be included.

This was recently worked out in [4], where it was found that the difference between using
auxiliary quarks or gluons goes beyond a simple color factor. Furthermore, the scaling invariance
of Eq. (5) is broken. It turns out that in order to obtain a consistent result, one must take λ = Λ

and assume that xin = O
(
Λ−1

)
. While such a criterion in inherently absent at LO, it does

appear at NLO that xin must be small, and that considering leading powers of Λ is equivalent to
considering lowest powers in xin. Under this restriction, the non-cancelling divergences can be
organized within the NLO cross section as follows:

dσ(1) =

∫
dxin d

2k⊥ dx̄ın

{
F(xin, |k⊥|) f(x̄ın)

[
dV⋆(xin, k⊥, x̄ın) + dR⋆(xin, k⊥, x̄ın)

]
cancelling

+
[
F(1)(xin, |k⊥|) + ∆⋆

coll + F(xin, |k⊥|)∆unf

]
f(x̄ın)dB⋆(xin, k⊥, x̄ın)

+ F(xin, |k⊥|)
[
f(1)(x̄ın) + ∆coll

]
dB⋆(xin, k⊥, x̄ın)

}
. (13)

The first line of Eq. (13) is free of any divergences, and also independent of the type of auxiliary
partons used. The third line is also independent, but contains the well-known divergence also
appearing in collinear factorization, in the MS scheme given by

∆coll = −
aϵ

ϵ

∫ 1

x̄ın

dz
[
P

reg
ın (z) + γınδ(1− z)

]1
z
f

(
x̄ın

z

)
(14)
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where, restricting ourselves to a radiative gluon,

Preg
q (z) =

N2
c − 1

2Nc

(
2

[1− z]+
− 1− z− ϵ(1− z)

)
, γq =

3

2

N2
c − 1

2Nc
, (15)

Preg
g (z) = Nc

(
2

[1− z]+
+

2

z
+ 2z(1− z) − 4

)
, γg =

11Nc − 2nf

6
, (16)

depend on the type of on-shell initial-state parton, and

aϵ =
αs

2π

(4π)ϵ

Γ(1− ϵ)
, ϵ =

4− dim
2

. (17)

The symbol nf represents the number of light quark families included, and Nc = 3. Within
collinear factorization, ∆coll is imagined to be absorbed into f(1), or formulated differently, f(1) is
imagined to contain a divergent contribution that cancels against ∆coll.

The second line of Eq. (13) contains divergences that are different than the ones appearing in
collinear factorization. Still similar is

∆⋆
coll = −

aϵ

ϵ

∫ 1

xin

dz

z

(
2Nc

[1− z]+
+ γgδ(1− z)

)
F

(
xin

z
, |k⊥|

)
(18)

where the plus-distribution now only acts on F
(
xin/z, |k⊥|

)
and not on the 1/z in front of it. Also

appearing, however, is

∆unf =
aϵNc

ϵ

(
µ2

|k⊥|2

)ϵ[
Iuniv + Iuniv + Iaux

]
, (19)

where

Iuniv =
11

6
−

nf

3Nc
−

K

Nc
(−ϵ) with K = Nc

(
67

18
−

π2

6

)
−

5nf

9
, (20)

and
Iaux-q =

3

2
−

1

2
(−ϵ) , Iaux-g =

11

6
+

nf

3N3
c
+

nf

6N3
c
(−ϵ) . (21)

As indicated by the label of Iaux, it does depend on the type of auxiliary partons used. It turns out,
however, that Iuniv + Iaux-q and Iuniv + Iaux-g are identical to the expressions in equation (4.9) and
equation (5.11) of [5] for NLO corrections to quark and gluon impact factors. We introduced the
symbol K for the same quantity defined in equation (4.10) of [5]. The remaining Iuniv in Eq. (19),
which is independent of the type of auxiliary partons used, is a correction related to the proper
UV renormalization regarding the space-like gluon.

3 Conclusion

In conclusion, while ∆⋆
coll could still be interpreted like in the collinear case and to be absorbed

by the PDF correction F(1), the appearance of ∆unf goes beyond such an interpretation. The
factorized form can still be maintained at NLO, but not anymore purely into PDFs and partonic
cross section. The auxiliary parton dependent color factor at LO must be interpreted as related
to the target impact factor, and at NLO its non-trivial corrections appear.
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