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Lipaftov's effective action sefup

Consider generating functional with Lipatov’s effective action written in the form of
interacting Wilson lines:

1 ?
7 = ?/DVexp (ZSO[V] — 20(R)/d4w7-+83‘7~_)

here SV is the QCD gluon’s action on which the averaging is performed, C(R) is an
eigenvalue of the Casimir operator for the corresponding gluons representation and in
the simplest case (eikonal approximation)

1 T 4+ +
Ti(vi) = =0+ 0(va) = va O(vi), O(ve) = Pe? oo &7 V2T20) 1y = e vg
g

Infroducing auxiliary currents and applying the light-cone gauge, we obtain:

Z[J] = %/DVGXP (ZSO[V] - ZCZ(R) / dtz (T+ —J+(:c+,au)8j_2) J_(a:_,xL)>

For the shock wave approximation we define also:

/dw Jt(xT,x) — /dwié )J+ (x )

Lipatov-Balitsky —p. 2



Correlators of Wilson lines

The construction above allows to define and calculate the correlators of Wilson lines,
taking two derivatives of log Z[J] with respect fo the currents we have:

52 o o
—C(R)?(29)? <5Jf15J§‘2 logZ[J]>J:0 - /dw o(z )/dy 6(y~)

< T (O1(Vi) gt —oo — O1(Vi )t —00) @ T2 (O2(V4 )yt oo — O2(V4 )yt — o) >=
_ /dx— 5(x7) /dy— §(y~) < (T Vi(vy)) ® (T Va(vy)) >
The correlator is defined through the usual Wilson lines:
V(ve) = Pe? Jo dofvi(@®, 0T oar)

Y %1

As usual, the gluon field is taken as background field (not Reggeon) plus the quantum
fluctuation around:

Vi = Bi(zh,zy) + ey
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Hierarchy of correlators of Wilson lines

¢ An expansion of the Wilson lines around the background field:

o0

Vvy) = V(Biato) +g [ dat (07(Br(at,00) 24 (@) OB (o 21)) ) +

— o0

2 o0
+%/ dzt O (By(a,21)) e (2) /d4pG+ (x,p) e4(p) OB+ (p",p1)) +

2 oo
+ % [ det [ d'p0T By p1)) e ()G (p2) 4 () OBy (o 21)) + -

Here we defined:

0
G;:i_y — G:—J:—yo + gGi_Z V42 G+

+ _ <4
2y 9 D+CByGyz — 5acz

GL) =0t —y")ées,, 94.GE) = oz,

OT(vy) = Pef [2% daF vi(a®, )

with D as a covariant derivative operator.
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Hierarchy of correlators of Wilson lines

¢ Finally we can define the correlator of interest:

< V(z)@V(y) >= Vig(zL) Vij(yr) + g Vik(zL) /_oo dy™ (05 (ZTC)Oy)lj <el(y)> +

+g /OO dxt (O;{ (zTc)Ow). <ef(x)> Vi(yr)+

— 00 1k

%/ dot / (0T (T G* (2,p) 4T O, )k < e (2)ed(p) > Vijlyi) +

2 oo
_|_% /_OO dx™ /d4p (Og (T°) GT(p,x) (. T?) Ow)ik < 53_(]?)51(37) > Vij(yl) +

2 (e%e)
+LVien) [ art [d' (05 (TG ) (THO,) <5t (1)> +

2 oo
+ 0 Vilwr) [ dyt [d'p (O (TG 0p) (THO,) <5 w)etv) > +

oo lj

—|—92/ dx™ (03; (2 T°) Og )zk / dy™ (OyT (2 T%) Oy)lj < sﬁ_(x)sjl_(y) > 4+ -

it is similar (almost) to the Balitsky hierarchy of the correlators. Lipatov-Balitsky - p. 5



Correlator (propagator) of gluon’s fluctuations

¢ An expansion of the gluon field around classical solution read as:

l
vei = v 4 el =Bz, 3, )+l

i = vl =tr[fO 0@ P OT @) pui (v w0) el pb = (070 (a:BL))

¢ QCD Lagrangian with respect to the fluctuations, we obtain the following expression:

S = —%/d4az (28 (Bae (650 +0:0;) -
— 2gfane (85 V0, — 2510, + 20, — 655 A0 ) —
— 0 faber Ferve (S opet et = rehel) ) e
+ e (~20°°0-0; = 2gfare (VlO- = (0-V21))) &5 + £ dac 02 e5) =

1 a ac ac ac C
=~ e (M), + (M, + (M), ) <
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Correlator (propagator) of gluon’s fluctuations

¢ The full gluon propagator:

Gas = [ (Mo)se, + (M), + (M) |
or
Gii(e,y) = G¥iuey) — [ d'2Geh, (@) (L@ + (Ma(2)i2) Gz )
For our purposes we need:

G (2y) = G (z,y) — / 412 GEb, (2, 2) (Mi(2) G (2,p)

G5@y) = G5y - [ A2 ML) Gl
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Correlator (propagator) of gluon’s fluctuations

We reproduce the Balitsky-Belitsky result (I. |. Balitsky and A. V. Belitsky, Nucl. Phys. B 629
(2002)) performing the full re-summation over fransverse vertex Mj ;;

d*p d*k 1 pik;
c : — 4 —1px rky (G
14 (z,y) GGy (z,y) — 4ma / (27)3 e / (277)46 212 po

Sp- — k) [da e 0k (6po) ves(vel) - o(-p) Vo))

with
VﬂC:Lb(VZE) — (Peg f(—xjoo dmj: V:I:(J?:t,gc:F,x_L) B 1)ab

for the case of adjoint representation of the gluon field. The second part of the
propagator is called “shock wave” propagator, usually the Wilson line correlaros are

accounted in respect fo the inferactions provided by this part of the full G 4.

Lipatov-Balitsky —p. 8



Balitsky hierarchy (BK equaftion)

In order to obtain now the familiar form of Balitsky hierarchy expression we apply the
shock wave approximation and using

< €HJ(:B) ey(y) > = —ZG,uV(way)

we obtain after some calculations

Vi) @ V(y) >= Vir(z1) Vij(y1) —
dp_—

_ :S (((ZTC)U(w))zk (U(y)(sz)>lj + (U@)(0T)) <(2Td)U(y)>lj> p——
/dQZ ((wz_zl)(yz_ zi) Ucd( ) +

'_fcz) (yz_z’b)
b8 (erw@oer) Vi) [P [ veim) +
Qs °z
+ ﬁvm(xﬁ (('LTd)U(B+)(ZTC / / d_; U(By)

the expression is LO Balitsky’s hierarchy for the correlators of Wilson lines in the
background field with

U — P Y ffooo daxt V_|_(a:+, x| )
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Where the formalism can be used

In an exploration of the BK equation structure, including any kind of corrections to LO BK
and in an clarification (calculation) of the NNLO (three loops) BFKL kernel. The Balitsky
hierarchy reproduces the BFKL equation:

1. Tree re-summated propagator — LO (one loop) BFKL kernel );

2. One loop propagator — NLO (two loops) BFKL kernel (mostly important
confrinutions);

3. Two loops propagator — NNLO (three loops) BFKL kernel (mostly important
contrinutions)?;

Ways of calculations of the two loops propagator:
1. The first (hard one): in the framework of QFT calculate the propagator as is it.

2. The second (can be much easiern): the propagator of gluon’s fluctuations is related
tfo the propagator of the reggeized gluons. If it can be clarified how, the answer for
the two loops G+ can be extracted from the NLO propagator of the reggeized
gluons. In some extend, Balitsky hierarchy generates the next order kernel on the

base of the lower order propagator, which in turn, can be related to the lower order
kernel of the color propagator.
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What do we calculate or about non-eikonal corrections

In the action the Wilson line appears:

© gzt V:t(a;i,ac:F,a:J_) .

V(ve) = Ped 1o 1

Where it comes from? Consider the following S-matrix element for the general case of
quark’s propagation in an external field:

Spi = — / dtz; d4a:f Jr(xyg)S(Ty, i) Ji(xi),

with the processes of creation and absorption of the quark in y and = correspondingly
and S(x,y) as quark’s propagator in the external field. For example, for the quark
asymptotically free at x,y — + co we have:

A <
Ji(es) = @(p)e?=s (1 - m)xf , Jiz) = (za + m) e 1% u(q)
Integration by parts provides in furn:
Syi = ulp) (p —m) / d*aydie; e PTF S(wy, xi)e 1T (g — m) u(q) =

= ulp) (p—m) Sp, q (¢g —m) u(qg) Lipatov-Balitsky —p. 11



What do we calculate or about non-eikonal corrections

¢ Make the calculations easier-use the two component spinors:

u(q) =

(G + m)ulg) = vim ( ! ) ¥, (q)

1
m

e — Y vy = Y sy [ Y@ ) [ Ye()
@e =5 = )ule) = 50 7)<\11R(q)> \/_< )

with the chiral basis for the gamma matrices used:

0 1% . : —I 0
= T et =l = (1,—0h), 47 = .
ok 0 0 I

Similarly a right-hnanded spinor can be infroduced:

_ 1 _Vm Yr(q) B 0
u(@r = 51+ ) ulg) = -1 +19°) ( ol ) = Vm ( )
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What do we calculate or about non-eikonal corrections

Write the quarks propagator in the two component form as well;

S(p. @) = Gr(p,q) Gi(p,q)
’ G2(p,q) Gr(p,q) |

for the case of the propagation of a quark with chirality preservation the only G, or G
component will be requested, the change of chirality is provided by matrix element of
the Vg -+ W r.,r With more complicated propagator. The T-matrix element
correspondingly:

Ty = %WR(p) (p? — m?) (Gr(p,q) — Gro(p,q)) (¢*> —m?)VRr(q).

or when the quark is created at some y and asymptotically free at x:

Ty = — %TR(p) (p* — m?) / d*q (Gr(p,q) — Gro(p,q)) Ji(q)
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What do we calculate or about non-eikonal corrections

¢ The expression for G r(x,y) component of S(x, y) can be found from

. . G G
(zD—|—V—m) ( GL Gl ) :I45iy7
2 R

with v as an external gluon field. Resolving the equation we obtain:
2 1 2 2
((@L—VM) —I—EO‘“ Fuv +m )GR=—5

with

oMtV =

(ot ¥ — o at)

N | —

and with final standard expression
Gr(zf,z;) =

%S xp=z(T) T -2 2 1
= —1/ dT/ Da:PE:cp[z/ dt (:c - —i—a?uV“—l——G’WF;w)}
2 To x;=2z(To) To 2 2 4

i—=
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What do we calculate or about non-eikonal corrections

¢ Now, assume straight line (high energy) of the trajectory
L = Tstraight _'_f(t) = C + pt + &, C =0

and extracting the bare propagator from the expression we obtain:;

é (CnyiC@) = — = /oo dTe%(pQ—m2)(T_TO) /Dﬁe% f%;) dt £2

To

( Ewp[ ((p’“ré“) Vu(z) + ia“” Fuu(w)” - 1) =

— __/ dT€2(p —m)(T To) /Dg qu:) dtéQ
2 Jry

z(T)=z ¢ T ) 1
PEzxp z/ dzt v, (x) + z/ dt (5“ Viu(x) + —ot” Fﬂy(a:)> —1
:13‘(’1—’0):$Z To 4
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What do we calculate or about non-eikonal corrections

For the T matrix element of interest we need isolate one pole (cut one free propagator
fro the general expression):

Ty = — (p* —m?) (p> —m?)~1 /oo dT <i o5 (p?—m?) (T—To)>
To

2 T t2 T .
/Dge_%g(T_T0)+§ fTO dt & (PECE]? |:’L/ dt ((pﬂ+§ﬂ) V,u + iO.,UJVFMV>:| . 1) —
To

_ _/‘OO . (diTe%(meQ)(TTo)> e—%E(T—To) f(TO, T) —

T0

= — (— f(To, To) — /TOO dT e3 (P*—m?) (T—To) df_(?TTO)> .

taking p? — m? limit in the exponential in the integral obtain finally

sz — f(OO, TO)

see details also in V. N. Pervushin, Teor. Mat. Fiz. 4 (1970), 22-32; B. M. Barbashov and
V. V. Nesterenko, Teor. Mat. Fiz. 10 (1972), 196-203; B. M. Barbashov and V. V. Nesterenko,
Teor. Mat. Fiz. 14 (1973), 27-35. E. Laenen, G. Stavenga and C. D. White, JHEP 03 (2009),
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What do we calculate or about non-eikonal corrections

¢ Here
1 [OoO dtéQ o0 . 1
f(oo,Tp) = | Dée? 7o (PEa:p {z/ dt ((pﬂ 4 ,SM) vV, + ZO-MVF,W/)} _ 1) _
To
_ [ peez 1o dté? o - n 1w
— £e2 'To PEzp | dx"v,(x) +1 . dt | & VM(LE)—FZO' Fu(z) )| —1
xT; 0

is a “phase”operator which includes all kind of the non-eikonal corrections. Going
beyond the eikonal approximation, we have instead usual Wilson line:

V(V) = f(oo,—00) = N
1 [OO 12 T (OO) o0 .
/D§e§ JZo dtg (PEa:p [z/ ! dztv,(z) + z/ dt (gﬂvu(a:) + ia“”ij(w))]

i (—0o0) — 00

with
N (oo, —0) = /DﬁE:{;p{%/ dt£.2}
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What do we calculate or about non-eikonal corrections

¢ In the case of Regge kinematics:

- \/gnLCt L = %nw 1 £, €(00) = E(—00) = 0, n¥p, = (1,0,0.)

V(v) = P

o’} w g o’} w v
(eg [0 dat v+ 5= [ dAo F,W) S() — 1] |
£=0

The variable £ in the expressions is a fluctuation of the trajectory around the straight line
and

5(5) — N_l /DfECUp [Z/d)\ <§§:2—zg§:“ ZC(n) Vi, p1pn gpl...gpn_
n=1

19 5 o )
— 2\/50-,11 ;C(n)FN%m---pngm---gp )]

is a factor which accounts non-eikonal corrections related with deviation of the Wislon
line from the straight one (segmentation).
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Conclusion:

Lipatov’s effective action in combination with Balitsky approach to the calculation of
correlators of Wilson lines can provide systematical calculations of different types of
corrections to the scaftering amplitudes at high energies and can be served as possible
tool for the calculation and clarification of the NNLO BFKL kernel.

The calculation of the NNLO BFKL kernel (mostly important part) requires a knowledge of
only two-loops propagator of gluon field in an background shock wave instead direct
three-loops calculation of the kernel in the BFKL approach.

It will be inferesting to understand whether there is a connection between the
propagator that we need in the approach and the reggeized gluons propagator in the
usual BFKL scheme, if there is, then the calculation of the kernel can be drastically
simplified.
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