NLO QCD corrections to inclusive J/ψ and Y photoproduction cross sections at Lepton-Hadron colliders

Maxim Nefedov

on behalf of Y.Yedelkina C. Flore, J.P. Lansberg, H.S. Shao, A. Colpani Serri, Y. Feng, M.A. Ozcelik

May 3, 2022

DIS2022, Santiago de Compostela, Spain May 2-6, 2022

This project is supported by the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 824093

Introduction: inclusive $J/\psi(Y)$ photoproduction

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

We will discuss **inclusive** J/ψ **(**Y**) photoproduction**:

- J/ψ (Y) is a $c\bar{c}$ ($b\bar{b}$) bound state with $J=1,\ L=0,\ S=1;$ vector particle
- inclusive photoproduction:

$$\gamma(Q^2 \simeq 0) + \rho \to J/\psi + X;$$

We will discuss the photoproduction at NLO;

Introduction: inclusive $J/\psi(Y)$ photoproduction

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

We will discuss **inclusive** J/ψ **(**Y**) photoproduction**:

- J/ψ (Y) is a $c\bar{c}$ ($b\bar{b}$) bound state with $J=1,\ L=0,\ S=1;$ vector particle
- inclusive photoproduction:

$$\gamma(Q^2 \simeq 0) + p \rightarrow J/\psi + X;$$

- We will discuss the photoproduction at NLO;
- 3 common models (differences in the treatment of the hadronisation):
 - Colour Singlet Model;
 - NRQCD and Colour Octet Mechanism;
 - Colour Evaporation Model;

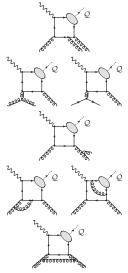
Introduction: inclusive $J/\psi(Y)$ photoproduction

C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

We will discuss **inclusive** J/ψ **(**Y**) photoproduction**:

- J/ψ (Y) is a $c\bar{c}$ ($b\bar{b}$) bound state with $J=1,\ L=0,\ S=1;$ vector particle
- inclusive photoproduction:

$$\gamma(Q^2 \simeq 0) + \rho \rightarrow J/\psi + X;$$


- We will discuss the photoproduction at NLO;
- 3 common models (differences in the treatment of the hadronisation):
 - Colour Singlet Model;
 - NRQCD and Colour Octet Mechanism;
 - Colour Evaporation Model;
- We do not discuss large z and exclusive reactions

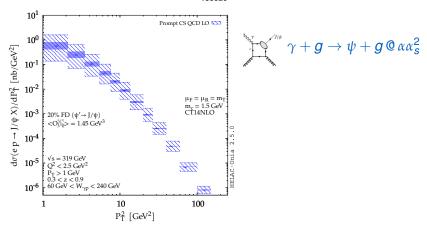
General structure of NLO corrections

M. Krämer, Nucl.Phys., B459, 3 (96')

Singularities at NLO [and how they are removed]:

- Real emission
 - Infrared divergences: Soft [cancelled by loop IR contr.]
 - Infrared divergences: Collinear
 - initial state [subtracted via "renormalisation" of collinear PDFs (Altarelli-Parisi counter-terms)]
 - ★ final state [cancelled by loop IR contr.]
- Virtual (loop) contribution
 - Ultraviolet divergences: [removed by renormalisation]
 - Infrared divergences: [cancelled by real Infrared contribution]
- We use the FDC code [J.-X. Wang Nucl.Instrum.Meth. A534(2004)241-245] to produce NLO results

[The quark and antiquark attached to the blob are taken as on-shell and their relative velocity v is set to zero.]

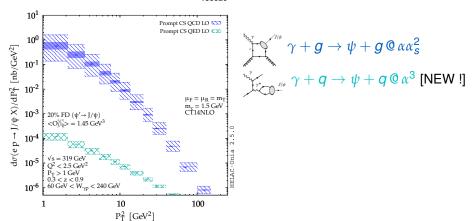


Part I

Photoproduction at mid and high P_T at HERA

NLO*: C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

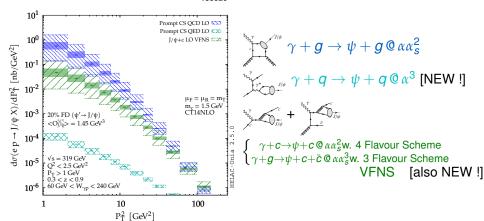
NLO*: C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926


Notes:

The computations were done with HELAC-ONIA and FDC. The scale and mass uncertainties are shown by the hatched and solid bands.

HELAC-Onia: H.S. Shao, CPC198 (2016) 238; FDC: J.-X. Wang Nucl.Instrum.Meth.

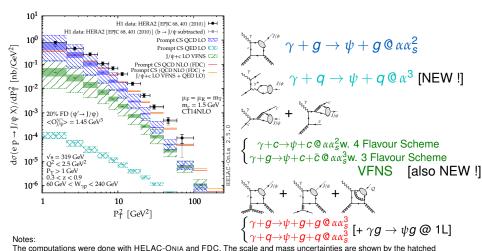
NLO*: C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926


Notes:

The computations were done with HELAC-ONIA and FDC. The scale and mass uncertainties are shown by the hatched and solid bands.

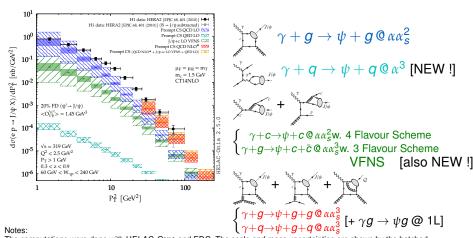
HELAC-Onia: H.S. Shao, CPC198 (2016) 238; FDC: J.-X. Wang Nucl.Instrum.Meth.

NLO*: C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926


Notes:

The computations were done with HELAC-ONIA and FDC. The scale and mass uncertainties are shown by the hatched and solid bands.

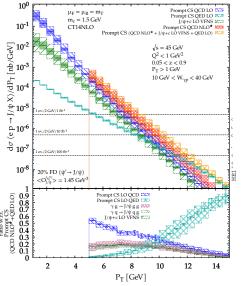
HELAC-Onia: H.S. Shao, CPC198 (2016) 238; FDC: J.-X. Wang Nucl.Instrum.Meth.



NLO*; C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

and solid bands. HELAC-Onia: H.S. Shao, CPC198 (2016) 238; FDC: J.-X. Wang Nucl.Instrum.Meth. A534(2004)241-245; See also https://nloaccess.in2p3.fr

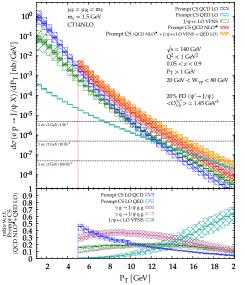
NLO*; C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926


The computations were done with HELAC-ONIA and FDC. The scale and mass uncertainties are shown by the hatched and solid bands. HELAC-Onia: H.S. Shao, CPC198 (2016) 238; FDC: J.-X. Wang Nucl.Instrum.Meth.

Part II

Photoproduction at mid and high P_T at the Electron-Ion Collider

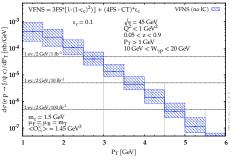
Predictions for the EIC : $J/\psi + X$ ($\sqrt{s_{ep}} = 45$ GeV)


C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region
- Yield steeply falling with P_T
- Yield can be measured up to $P_T \sim 11~{
 m GeV}$ with ${\cal L}=100~{
 m fb}^{-1}$ [using both ee and $\mu\mu$ decay channels and $\epsilon_{J/\psi} \simeq 80\%$]
- QED contribution leading at the largest reachable P_T
- photon-quark fusion contributes more than 30 % for P_T > 8 GeV

Predictions for the EIC : $J/\psi + X$ ($\sqrt{s_{ep}} = 140 \text{ GeV}$)

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

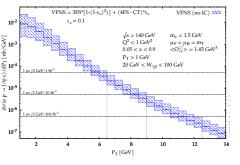


- At $\sqrt{s_{ep}} = 140$ GeV, larger P_T range up to approx. 18 GeV
- QED contribution also leading at the largest reachable P_T
- photon-gluon fusion contributions dominant up to approx. 15 GeV
- $J/\psi+2$ hard partons [i.e. $J/\psi+\{gg,qg,c\bar{c}\}$] dominant for $P_T\sim 8-15$ GeV
- It could lead to the observation of J/ψ + 2 jets with moderate P_T^{jet}
- with a specific topology where the leading jet₁ recoils on the J/ψ+ jet₂ pair
- We expect the $d\sigma$ to vanish when $E_{\mathrm{into}}^{J/\psi}$ rest fr. $\to 0$

Part III

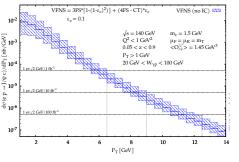
 $J/\psi+$ charm associated production at the EIC

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

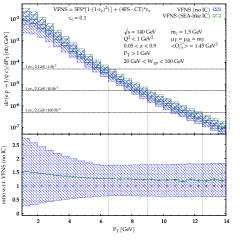


 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =

$$\sigma^{3FS} \times (1 - (1 - \epsilon)^2) + (\sigma^{4FS} - \sigma^{CT}) \times \epsilon$$

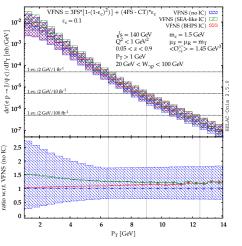

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926


- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =
- $\sigma^{3FS} \times (1 (1 \epsilon)^2) + (\sigma^{4FS} \sigma^{CT}) \times \epsilon$ At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet

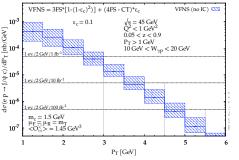
C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =
- $\sigma^{3FS} \times (1 (1 \epsilon)^2) + (\sigma^{4FS} \sigma^{CT}) \times \epsilon$ At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c o J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm


C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =
- $\sigma^{3FS} \times (1 (1 \epsilon)^2) + (\sigma^{4FS} \sigma^{CT}) \times \epsilon$ At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- 4FS $\gamma c \to J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

[We used IC c(x) encoded in CT14NNLO]

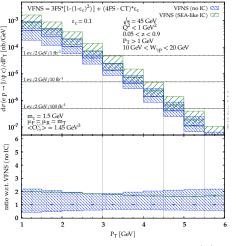

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_C: σ^{VFNS} =
- $\sigma^{3FS} \times (1 (1 \epsilon)^2) + (\sigma^{4FS} \sigma^{CT}) \times \epsilon$ At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c o J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

[We used IC c(x) encoded in CT14NNLO]

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

 Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =

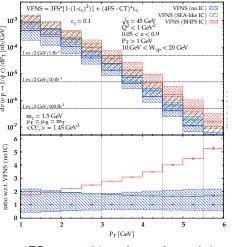

$$\epsilon_{c}$$
: $\sigma^{VFNS} = \sigma^{3FS} \times (1 - (1 - \epsilon)^{2}) + (\sigma^{4FS} - \sigma^{CT}) \times \epsilon$

- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- 4FS $\gamma c \to J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

[We used IC c(x) encoded in CT14NNLO]

• Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

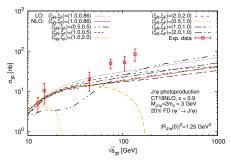


- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =
- $\sigma^{3FS} \times (1 (1 \epsilon)^2) + (\sigma^{4FS} \sigma^{CT}) \times \epsilon$ At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

[We used IC c(x) encoded in CT14NNLO]

• Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

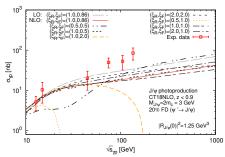

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ε_c: σ^{VFNS} =
- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹

 $\sigma^{3FS} \times (1 - (1 - \epsilon)^2) + (\sigma^{4FS} - \sigma^{CT}) \times \epsilon$

- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$ [We used IC c(x) encoded in CT14NNLO]
- Measurable effect at $\sqrt{s_{ep}} = 45$ GeV: BHPS valence-like peak visible!

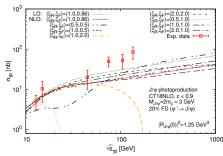
Part IV

Study of the impact of the NLO corrections to P_T -integrated photoproduction cross section



Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI - NA14Collaboration, R.Barate et al.: Z.Phys.C 33(1987)505

• NLO cross section for J/ψ photoproduction becomes negative for large μ_F when $\sqrt{s_{\gamma p}}$ increases

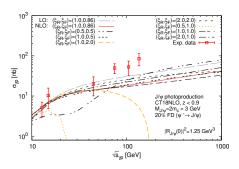

Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI - NA14Collaboration, R.Barate et al.:Z.Phys.C 33(1987)505

- NLO cross section for J/ψ photoproduction becomes negative for large μ_F when $\sqrt{s_{\gamma p}}$ increases
- For $\mu_F = 2M$, $\sigma < 0$ as in case of η_c hadroproduction

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI - NA14Collaboration, R.Barate et al.: Z.Phys. C 33(1987)505

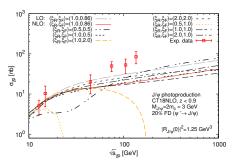
- NLO cross section for J/ψ photoproduction becomes negative for large μ_F when $\sqrt{s_{\gamma p}}$ increases
- For $\mu_F = 2M$, $\sigma < 0$ as in case of η_c hadroproduction


J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

 2 possible sources of negative partonic cross sections: loop corrections (interference) and from real emission (subtraction of IR poles)

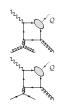
Exp. data: H1 - M.Kraemer: NPB 459(1996)3-50, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI - NA14Collaboration, R.Barate et al.: Z.Phys.C 33(1987)505

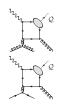
Negative cross-section values

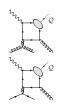

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

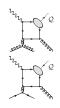
 Initial state collinear divergences are removed via the subtraction into the PDFs via AP-CT

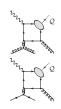
Negative cross-section values


A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

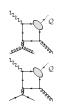

- Initial state collinear divergences are removed via the subtraction into the PDFs via AP-CT
- $\hat{s} \to \infty$: $\hat{\sigma}_{\gamma i}^{NLO} \propto \alpha_s(\mu_R) \left(\bar{c}_1^{(\gamma i)} \log \frac{M_Q^2}{\mu_F^2} + c_1^{(\gamma i)} \right), A_{\gamma i} = \frac{c_1^{(\gamma i)}}{\bar{c}_1^{(\gamma i)}},$ $A_{\gamma g} = A_{\gamma g}$


J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497


 In principle, such negative terms should be compensated by the evolution of the PDFs governed by the DGLAP equations;


- In principle, such negative terms should be compensated by the evolution of the PDFs governed by the DGLAP equations;
- A_{γg}, A_{γq} are process-dependent, while the DGLAP equations are process-independent, which makes the compensation imperfect;

- In principle, such negative terms should be compensated by the evolution of the PDFs governed by the DGLAP equations;
- A_{γg}, A_{γq} are process-dependent, while the DGLAP equations are process-independent, which makes the compensation imperfect;
- But as $A_{\gamma g}=A_{\gamma q}$, we can choose μ_F such that $\lim_{\hat{\mathbb{S}}\to\infty}\hat{\sigma}_{\gamma j}^{NLO}=0$


- In principle, such negative terms should be compensated by the evolution of the PDFs governed by the DGLAP equations;
- A_{γg}, A_{γq} are process-dependent, while the DGLAP equations are process-independent, which makes the compensation imperfect;
- But as $A_{\gamma g}=A_{\gamma q}$, we can choose μ_F such that $\lim_{\hat{\mathbb{S}}\to\infty}\hat{\sigma}_{\gamma j}^{NLO}=0$
- This amounts to consider that all the QCD corrections are in the PDFs

- In principle, such negative terms should be compensated by the evolution of the PDFs governed by the DGLAP equations;
- A_{γg}, A_{γq} are process-dependent, while the DGLAP equations are process-independent, which makes the compensation imperfect;
- But as $A_{\gamma g}=A_{\gamma q}$, we can choose μ_F such that $\lim_{\hat{\mathbb{S}}\to\infty}\hat{\sigma}_{\gamma j}^{NLO}=0$
- This amounts to consider that all the QCD corrections are in the PDFs
- The choice of factorisation scale to avoid possible negative hadronic cross-section: (for $\eta_Q: A_{gi} = -1$) $\mu_F = \hat{\mu}_F = Me^{A_{\gamma i}/2}$;

A scale prescription for μ_F

J.P. Lansberg, M.A. Ozcelik: Eur.Phys.J.C 81 (2021) 6, 497

- In principle, such negative terms should be compensated by the evolution of the PDFs governed by the DGLAP equations;
- $A_{\gamma g}$, $A_{\gamma q}$ are process-dependent, while the DGLAP equations are process-independent, which makes the compensation imperfect;
- But as $A_{\gamma g}=A_{\gamma q}$, we can choose μ_F such that $\lim_{\hat{\mathbb{S}}\to\infty}\hat{\sigma}_{\gamma i}^{NLO}=0$
- This amounts to consider that all the QCD corrections are in the PDFs
- The choice of factorisation scale to avoid possible negative hadronic cross-section: (for η_Q : $A_{gi} = -1$) $\mu_F = \hat{\mu}_F = Me^{A_{\gamma i}/2}$;
- For J/ψ (Y) photoproduction: $\hat{\mu}_F = 0.86M$ ($P_T \in [0, \infty], z < 0.9$)

$\hat{\mu}_F$ -prescription as $\ln 1/z$ resummation

J.P. Lansberg, M.N., M.A. Ozcelik: 2112.06789 [hep-ph]; More info in my talk on Thursday!

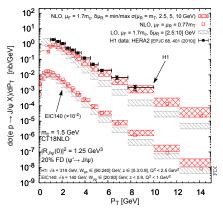
- Mellin transform: $f(N) = \int_0^1 dx \ x^{N-1} f(x)$ maps $\ln 1/x$ to the 1/N poles: $\alpha_S^n \ln^{n-1} \frac{1}{2} \to \frac{\alpha_S^n}{Nn}$
- LO DGLAP splitting at $z \rightarrow 0$:

$$\frac{\alpha_s}{2\pi} z P_{gg}(z) \simeq \frac{\alpha_s C_A}{\pi} \to \gamma_{gg}(N) \simeq \frac{\alpha_s C_A}{\pi N}$$

 \Rightarrow solution of DGLAP equation in *N*-space $(\frac{\partial f_g(N,\mu_F)}{\partial \ln \mu_F^2} = \gamma_{gg}(N) f_g(N,\mu_F^2))$ in the DLA $([\alpha_s/N \ln \mu_F]^n)$ with $\hat{\mu}_F = \mu_0 e^{A/2}$ is:

$$f(\emph{N},\hat{\mu}_\emph{F}) pprox f(\emph{N},\mu_0) exp\left(rac{2\emph{A}lpha_\emph{s}(\mu_0)\emph{C}_\emph{A}}{\pi\emph{N}}
ight)$$
 ,

 \Rightarrow the exponent resums In 1/z-enhanced corrections.


Results with $\hat{\mu}_F = 0.85M$

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

Exp. data: H1 - M.Kraemer: Nucl.Phys.B 459(1996)3-50, FTPS - B.H.Denbyet al.: Phys.Rev.Lett. 52(1984)795-798, NAI - NA14Collaboration, R.Barateet al.:Z.Phys.C 33(1987)505

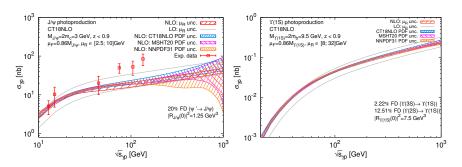
P_T -differential cross sections

- If p_T-dependence is taken into account, for ŝ → ∞:
 c₁^(γi)(p_T)/c̄₁^(γi)(p_T) ∝ (P_T/M_O)²
- $\Rightarrow \hat{\mu}_F = Me^{c_{\gamma i}^{(1)}/2\overline{c}_{\gamma i}^{(1)}} \propto Me^{P_T^2/M^2}$, which is weird
- Full matched calculation between NLO and In ŝ/M²-resummation is needed
- Common dynamical scale choice: $\mu_F = (0.5, 1, 2)m_T$

• one can use
$$\mu_F = \alpha \sqrt{M^2 + P_T^2}$$
 or $\mu_F = \sqrt{(\beta M)^2 + P_T^2}$

• if P_T is large, then $\mu_F \propto P_T$

• For $\mu_F = \hat{\mu}_F$ with $\langle P_T^2 \rangle = 2.5 \text{GeV}^2$ (for J/ψ at HERA energies), we get $\alpha = 0.77$ and $\beta = 0.7$

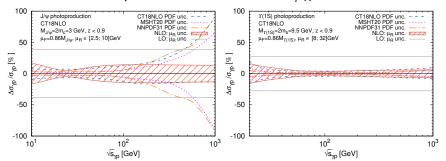

Part V

Can J/ψ & Y allow us to probe PDFs? : PDF vs scale uncertainties

J/ψ &Y: PDF uncertainties of $\sigma(\sqrt{s_{\gamma p}})$

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

- PDF uncertainties increase at large \sqrt{s} (i.e. small x)
- The μ_B unc. are reduced at NLO in comparison with LO



Exp. data: H1 - Nucl.Phys.B 472(1996)3-31, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI - NA14Collaboration, R.Barate et al.: Z.Phys.C 33(1987)505

J/ψ &Y: PDF uncertainties of $\sigma(\sqrt{s_{\gamma\rho}})$

A. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

- PDF uncertainties increase at large \sqrt{s} (i.e. small x)
- ullet The μ_R unc. are reduced at NLO in comparison with LO
- Increase of μ_R unc. from $\sqrt{s_{\gamma p}} \gtrsim 50$ GeV from the loop corr.
- At NNLO we expect a further reduction of μ_B uncertainties

Exp. data: H1 - Nucl.Phys.B 472(1996)3-31, FTPS - B.H.Denby et al.: PRL 52(1984)795-798, NAI - NA14Collaboration, R.Barate et al.: Z.Phys.C 33(1987)505

 $\sigma_{ep}(\sqrt{s})$

Å. Colpani Serri, Y. Feng, C. Flore, J.P. Lansberg, M.A. Ozcelik, H.S. Shao, Y. Yedelkina: arXiv:2112.05060 [hep-ph]

Exp.	$\sqrt{s_{ep}}$	${\cal L}$ (fb $^{-1}$)	$N_{J/\psi}$	$N_{\mathrm{Y}(1S)}$
EicC	16.7	100	$1.5^{+0.3}_{-0.2} \cdot 10^6$	$2.3^{+1.1}_{-1.4} \cdot 10^{0}$
AMBER	17.3	1	$1.6^{+0.3}_{-0.3} \cdot 10^4$	< 1
EIC	45	100	$8.5^{+0.5}_{-1.0} \cdot 10^{6}$	$6.1^{+0.7}_{-0.8} \cdot 10^2$
EIC	140	100	$2.5^{+0.1}_{-0.4} \cdot 10^7$	$7.6^{+0.3}_{-0.7} \cdot 10^3$
LheC	1183	100	$9.3^{+2.9}_{-2.9} \cdot 10^7$	$8.1^{+0.4}_{-0.7} \cdot 10^4$
FCC-eh	3464	100	$1.6^{+0.2}_{-1.0} \cdot 10^8$	$1.8^{+0.1}_{-0.2} \cdot 10^5$

We expect μ_R unc. to shrink at NNLO: Possibility to constrain PDF with differential measurements

Rem. $N_{\psi'} \simeq 0.08 \times N_{J/\psi}$, $N_{Y(2S)} \simeq 0.4 \times N_{Y(1S)}$, $N_{Y(3S)} \simeq 0.35 \times N_{Y(1S)}$

Part VI

Conclusions

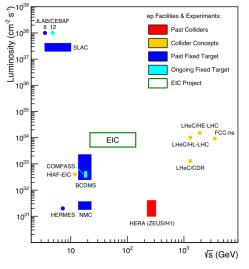
Conclusions

- The CSM up to $\alpha\alpha_s^3$ reproduces photoproduction at HERA up to scale-uncertainty
- The estimations for EIC can rely on CSM only

Conclusions

- The CSM up to $\alpha \alpha_s^3$ reproduces photoproduction at HERA up to scale-uncertainty
- The estimations for EIC can rely on CSM only
- NLO QCD corrections are important for P_T-integrated σ
- A specific μ_F choice can be employed to avoid a possible over subtraction of collinear divergences which lead to negative NLO σ values at large $\sqrt{s_{\gamma p}}$
- Loop correction matter and significant NNLO corrections (likely positive) are expected as well as a further reduction of the μ_R unc., esp. around 100 GeV
- This would likely allow one to better probe gluon PDFs at small-x and $\mu_F \sim M$.

Backup

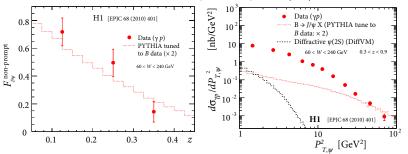

Resolved-photon contributions

J.P. Lansberg, Phys.Rept. 889 (2020)

- At high energies, the hadronic content of the photon can be 'resolved' during the collisions
- Are very similar to those for hadroproduction
- At low z they can appear as important where only a small fraction of the photon energy is involved in the quarkonium production (limited impact at HERA)
- At lower energies, like at the EIC, their impact should be further reduced
- Can be avoided by a simple kinematical cut on low elasticity values, z
- It will be needed to re-evaluate its impact

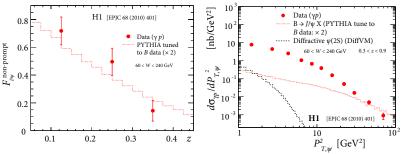
The Electron Ion Collider at BNL

Abhay Deshpande EIC @ BNL, HiX at Kolympari

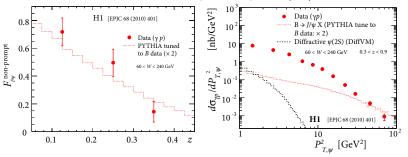

- Hadrons up to 275 GeV
 - Electrons up to 5-10(20) GeV
 - CoM √s: 20-100 (140) GeV
- High luminosity $L_{ep} \propto 10^{33-34} cm^{-2} sec^{-1}$ (100-1000 times HERA)
- World's first:
 - collider with polarized (min 70%) lepton & proton/light-ion beams
 - electron-Nucleus collider

C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- b FD (5% on the P_T -integrated yields and is significant around $P_T = 10$ GeV): we do not include it as it can be experimentally removed.
- Tune Pythia 8.2 using a b analysis by H1 using di-electrons events which extends to large P_T
 - Compute the corresponding LO+PS cross section using Pythia 8.2
 - Perform a χ^2 -minimisation to compute a tuning factor (absorbs the theory uncertainties), such that the obtained LO+PS Pythia spectrum reproduces best the H1 b data
 - ▶ Again use Pythia 8.2 to compute the $b \to J/\psi$ cross section in the H1 kinematics.
 - ▶ Subtract this $b \to J/\psi$ yield from the inclusive one
- χ_c FD: no theory or experimental indication that it could be relevant
- 20% ψ' FD: follows from the ratio of the wave functions at the origin and from the $\psi' \to J/\psi$ branching: $FD_{\psi' \to J/\psi} = |R_{\psi'}(0)|^2/|R_{J/\psi}(0)|^2 \ Br(\psi' \to J/\psi)$



J.P. Lansberg, Phys.Rept. 889 (2020); C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926


• b FD (5% on the P_T -integrated yields and can go up to $\approx 50\%$ at $P_T = 10$ GeV): we do not include it as it can be experimentally removed.

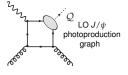
J.P. Lansberg, Phys.Rept. 889 (2020); C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

- b FD (5% on the P_T -integrated yields and can go up to $\approx 50\%$ at $P_T = 10$ GeV): we do not include it as it can be experimentally removed.
- χ_c FD: no theory or experimental indication that it could be relevant

J.P. Lansberg, Phys.Rept. 889 (2020); C.Flore, J.-P. Lansberg, H.S. Shao, Y. Yedelkina, PLB 811 (2020) 135926

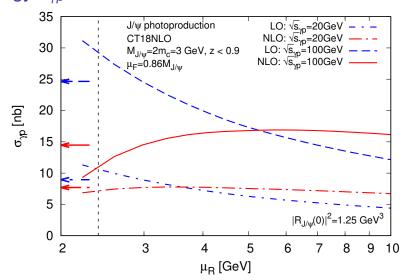
- b FD (5% on the P_T -integrated yields and can go up to $\approx 50\%$ at $P_T = 10$ GeV): we do not include it as it can be experimentally removed.
- χ_c FD: no theory or experimental indication that it could be relevant
- 20% ψ' FD: follows from the ratio of the wave functions at the origin and from the $\psi' \to J/\psi$ branching:

$$FD_{\psi' \to J/\psi} = |R_{\psi'}(0)|^2 / |R_{J/\psi}(0)|^2 Br(\psi' \to J/\psi)$$

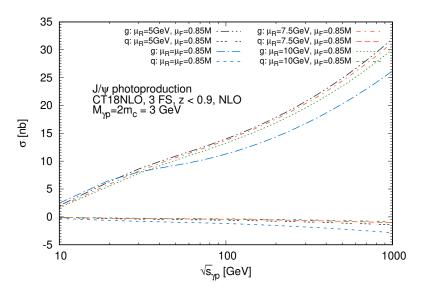


Basic pQCD approach: the Colour Singlet Model (CSM)

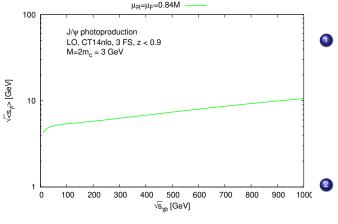
C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);


One supposes two factorisations:

- collinear, in which the hadronic cross section can be written as the convolution of the PDFs with the partonic cross section;
- **2** between the hard part (a perturbative amplitude, which describes the $Q\bar{Q}$ pair production) and the soft part (a non-perturbative matrix element, which describes **hadronisation**):
 - ullet Perturbative creation of 2 quarks, Q and $ar{Q}$
 - on-shell
 - in a colour singlet state
 - with a vanishing relative momentum
 - in a 3S_1 state (for J/ψ , ψ' and Y)
 - Non-perturbative binding of quarks
 - \rightarrow Schrödinger wave function at r = 0



CSM: the Taylor series expansion of the amplitude in the $Q\overline{Q}$ relative momentum (ν) to the first non-vanishing (Leading- ν NRQCD) term.


Dependence of $\sigma_{\gamma p}$ on the μ_R at an initial photon energy $s_{\gamma p}$

q& g contributions

μ_R choice

- the natural scale choice in case of J/ψ photoproduction is not a mass of c-quark, becase of some loop corrections.
 - For J/ψ : $\mu_{Rmin} = 1.6 m_c$ $(\sqrt{s_{\gamma p}} = 10 \text{GeV})$