Pion parton distribution function in Minkowski space.

Wayne de Paula
Instituto Tecnológico de Aeronáutica- Brasil

Collaborators
E. Ydrefors (IMP/Lanzhou), D. Duarte (ITA), JHA Nogueira (ITA)
T. Frederico (ITA) and G. Salmè (INFN/Roma)

XXIX International Workshop on Deep- Inelastic Scattering and Related Subjects

Outline

I. Pion as a fermion-antifermion bound state in Minkowski space.
II. Nakanishi integral representation and LF projection.
III. Pion Distribution function, charge radius and Electromagnetic Form Factor.
IV. Pion image on the null-plane
V. Conclusions and perspectives

Pion as a Quark-antiquark bound state

Bound state: Solve the Bethe-Salpeter equation
Most non-perturbative methods are formulated in Euclidean space

Wick Rotation: We have to be care with the presence of singularities.

Our challenge is to work with a non-perturbative framework in Minkowski Space in order to access hadron structure observables defined on the light-front.

Minkowski solutions: Bethe-Salpeter

Tool: Integral representation

Quark-antiquark bound state - Pion

-Bethe-Salpeter equation $\left(0^{-}\right)$:

$$
\begin{aligned}
\Phi(k ; P) & =S\left(k+\frac{P}{2}\right) \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} S^{\mu \nu}(q) \Gamma_{\mu}(q) \Phi\left(k^{\prime} ; P\right) \widehat{\Gamma}_{\nu}(q) S\left(k-\frac{P}{2}\right) \\
\widehat{\Gamma}_{v}(q) & =C \Gamma_{v}(q) C^{-1}
\end{aligned}
$$

where we use: i) bare propagators for the quarks and gluons;
ii) ladder approximation

$$
S(P)=\frac{i}{\not p-m+i \epsilon} \quad S^{\mu \nu}(q)=-i \frac{g^{\mu \nu}}{q^{2}-\mu^{2}+i \epsilon}
$$

Quark-gluon vertex

$$
\Gamma^{\mu}=i g \frac{\mu^{2}-\Lambda^{2}}{q^{2}-\Lambda^{2}+i \epsilon} \gamma^{\mu}
$$

We consider only one of the Longitudinal components of the QGV
We set the value of the scale parameter ($\sim 300 \mathrm{MeV}$) from the combined analysis of Lattice simulations, the Quark-Gap Equation and Slanov-Taylor identity.

Oliveira, WP, Frederico, de Melo EPJC 78(7), 553 (2018) \& EPJC 79 (2019) 116 \&
Oliveira, Frederico, WP, EPJC 80 (2020) 484

NIR for fermion-antifermion Bound State

$$
\begin{aligned}
& \text { BSA for a quark-antiquark bound state } \\
& \qquad \Phi(k, p)=\sum_{i=1}^{4} S_{i}(k, p) \phi_{i}(k, p) \\
& S_{1}=\gamma_{5} \quad S_{2}=\frac{1}{M} p p \gamma_{5} \quad S_{3}=\frac{k \cdot p}{M^{3}} p p \gamma_{5}-\frac{1}{M} h k \gamma_{5} \quad S_{4}=\frac{i}{M^{2}} \sigma_{\mu \nu} p^{\mu} k^{\nu} \gamma_{5}
\end{aligned}
$$

Using the Nakanishi Integral Representation for the scalar functions

$$
\phi_{i}(k, p)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z^{\prime}\right)}{\left(k^{2}+p \cdot k z^{\prime}+M^{2} / 4-m^{2}-\gamma^{\prime}+i \epsilon\right)^{3}}
$$

System of coupled integral equations

$$
\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z^{\prime}\right)}{\left[k^{2}+z^{\prime} p \cdot k-\gamma^{\prime}-\kappa^{2}+i \epsilon\right]^{3}}=\sum_{j} \int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \mathcal{K}_{i j}\left(k, p ; \gamma^{\prime}, z^{\prime}\right) g_{j}\left(\gamma^{\prime}, z^{\prime}\right)
$$

Projecting BSE onto the LF hyper-plane $\mathrm{x}^{+}=0$

Light-Front variables $\quad x^{\mu}=\left(x^{+}, x^{-}, \mathbf{x}_{\perp}\right)$
LF-time $x^{+}=x^{0}+x^{3}$

$$
\begin{aligned}
& x^{-}=x^{0}-x^{3} \\
& \mathbf{x}_{\perp}=\left(x^{1}, x^{2}\right)
\end{aligned}
$$

Within the LF framework, the valence wf is obtained by integrating the BSA on k (elimination of the relative LF time).

LF amplitudes

$$
\psi_{i}(\gamma, \xi)=\int \frac{d k^{-}}{2 \pi} \phi_{i}(k, p)=-\frac{i}{M} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}
$$

The coupled equation system is (NIR+LF projection, Karmanov \& Carbonell 2010)

$$
\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z^{\prime}\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}=i M g^{2} \sum_{j} \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} \mathcal{L}_{i j}\left(\gamma, z ; \gamma^{\prime} z^{\prime}\right) g_{j}\left(\gamma, z^{\prime}\right)
$$

The Kernel contains singular contributions

Parton distribution function

WP, Ydrefors, Nogueira, Frederico and Salmè PRD 105, L071505 (2022).

The unpolarized transverve-momentum distribution (uTMD) reads

$$
f_{1}(\gamma, \xi)=\left.\frac{N_{c}}{4} \int d \phi_{\hat{\mathbf{k}}_{\perp}} \int \frac{d z^{-} d \mathbf{z}_{\perp}}{2(2 \pi)^{3}} e^{i\left[\xi \xi^{+} z^{-} / 2-\mathbf{k}_{\perp} \cdot \mathbf{z}_{\perp}\right]}\langle P| \bar{\psi}_{q}\left(-\frac{1}{2} z\right) \gamma^{+} \psi_{q}\left(\frac{1}{2} z\right)|P\rangle\right|_{z^{+}=0}
$$

The PDF is the integral over the squared transverse momentum.

$$
u(\xi)=\int_{0}^{\infty} d \gamma f_{1}(\gamma, \xi)
$$

Considering the charge symmetry and Mandelstam framework

$$
\begin{aligned}
f_{1}(\gamma, \xi)= & \frac{1}{(2 \pi)^{4}} \frac{1}{8} \int_{-\infty}^{\infty} d k^{+} \delta\left(k^{+}+P^{+} / 2-\xi P^{+}\right) \int_{-\infty}^{\infty} d k^{-} \int_{0}^{2 \pi} d \phi_{\hat{\mathbf{k}}_{\perp}} \\
& \left\{\operatorname{Tr}\left[S^{-1}(k-P / 2) \bar{\Phi}(k, P) \frac{\gamma^{+}}{2} \Phi(k, P)\right]-\operatorname{Tr}\left[S^{-1}(k+P / 2) \Phi(k, P) \frac{\gamma^{+}}{2} \bar{\Phi}(k, P)\right]\right\}
\end{aligned}
$$

LF Momentum Distributions

The fermionic field on the null-plane is given by:

$$
\begin{aligned}
& \psi^{(+)}\left(\tilde{x}, x^{+}=0^{+}\right)=\int \frac{d \tilde{q}}{(2 \pi)^{3 / 2}} \frac{\theta\left(q^{+}\right)}{\sqrt{2 q^{+}}} \sum_{\sigma} \\
& {\left[U^{(+)}(\tilde{q}, \sigma) b(\tilde{q}, \sigma) e^{i \tilde{q} \cdot \tilde{x}}+V^{(+)}(\tilde{q}, \sigma) d^{\dagger}(\tilde{q}, \sigma) e^{-i \tilde{q} \cdot \tilde{x}}\right]}
\end{aligned}
$$

where

$$
U^{(+)}(\tilde{q}, \sigma)=\Lambda^{+} u(\tilde{q}, \sigma) \quad, \quad V^{(+)}(\tilde{q}, \sigma)=\Lambda^{+} v(\tilde{q}, \sigma) \quad \Lambda^{ \pm}=\frac{1}{4} \gamma^{\mp} \gamma^{ \pm}
$$

Hence d^{\dagger} and b are the fermion creation/annihilation operators
The LF valence amplitude is the Fock component with the lowest number of constituents

$$
\varphi_{2}\left(\xi, \mathbf{k}_{\perp}, \sigma_{\mathbf{i}} ; \mathbf{M}, \mathbf{J}^{\pi}, \mathbf{J}_{\mathbf{z}}\right)=\left(\mathbf{2 \pi) ^ { \mathbf { 3 } }} \sqrt{\mathbf{N}_{\mathbf{c}}} \mathbf{2} \mathbf{p}^{+} \sqrt{\xi(\mathbf{1 - \xi)}}\langle\mathbf{0}| \mathbf{b}\left(\tilde{\mathbf{q}}_{2}, \sigma_{\mathbf{2}}\right) \mathrm{d}\left(\tilde{\mathbf{q}}_{1}, \sigma_{1}\right)\left|\tilde{\mathbf{p}}, \mathbf{M}, \mathbf{J}^{\pi}, \mathbf{J}_{\mathbf{z}}\right\rangle\right.
$$

where

$$
\frac{\tilde{q}_{1} \equiv\left\{q_{1}^{+}=M(1-\xi),-\mathbf{k}_{\perp}\right\}, \tilde{q}_{2} \equiv\left\{q_{2}^{+}=M \xi, \mathbf{k}_{\perp}\right\}}{\operatorname{and} \xi=1 / 2+k^{+} / p^{+}}
$$

LF Momentum Distributions

LF valence amplitude in terms of BS amplitude is:
$\varphi_{2}\left(\xi, \mathbf{k}_{\perp}, \sigma_{\mathbf{i}} ; \mathbf{M}, \mathbf{J}^{\pi}, \mathbf{J}_{\mathbf{z}}\right)=\frac{\sqrt{N_{c}}}{p^{+}} \frac{1}{4} \bar{u}_{\alpha}\left(\tilde{q}_{2}, \sigma_{2}\right) \int \frac{d k^{-}}{2 \pi}\left[\gamma^{+} \Phi(k, p) \gamma^{+}\right]_{\alpha \beta} v_{\beta}\left(\tilde{q}_{1}, \sigma_{1}\right)$.
which can be decomposed into two spin contributions:

Anti-aligned configuration:

$$
\psi_{\uparrow \downarrow}(\gamma, z)=\psi_{2}(\gamma, z)+\frac{z}{2} \psi_{3}(\gamma, z)+\frac{i}{M^{3}} \int_{0}^{\infty} d \gamma^{\prime} \frac{\partial g_{3}\left(\gamma^{\prime}, z\right) / \partial z}{\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}}
$$

Aligned configuration: $\quad \psi_{\uparrow \uparrow}(\gamma, z)=\psi_{\downarrow \downarrow}(\gamma, z)=\frac{\sqrt{\gamma}}{M} \psi_{4}(\gamma, z)$
with the LF amplitudes given by

$$
\psi_{i}(\gamma, z)=-\frac{i}{M} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}
$$

Valence Probability

We can define the ValenceProbability as

$$
\begin{aligned}
P_{\text {val }}=\frac{1}{(2 \pi)^{3}} \sum_{\sigma_{1} \sigma_{2}} \int_{-1}^{1} \frac{d z}{\left(1-z^{2}\right)} \int d \mathbf{k}_{\perp}\left|\varphi_{n=2}\left(\xi, \mathbf{k}_{\perp}, \sigma_{\mathbf{i}} ; \mathbf{M}, \mathbf{J}^{\pi}, \mathbf{J}_{\mathbf{z}}\right)\right|^{\mathbf{2}} \\
\quad \text { where } z=1-2 \xi
\end{aligned}
$$

The probablity of the LF-valence WF reads

$$
P_{v a l}=\int_{-1}^{1} d z \int_{0}^{\infty} \frac{d \gamma}{(4 \pi)^{2}}\left[\left|\psi_{\uparrow \downarrow}(\gamma, z)\right|^{2}+\left|\psi_{\uparrow \uparrow}(\gamma, z)\right|^{2}\right]
$$

where we decomposed it in terms of the aligned and anti-aligned LFWF
The contribution to the PDF from the LF-valence WF is

$$
u_{v a l}(\xi)=\int_{0}^{\infty} \frac{d \gamma}{(4 \pi)^{2}}\left[\left|\psi_{\uparrow \downarrow}(\gamma, z)\right|^{2}+\left|\psi_{\uparrow \uparrow}(\gamma, z)\right|^{2}\right]
$$

Quantitative results: Static properties

WP, Ydrefors, A. Nogueira, Frederico and Salme PRD 103014002 (2021).

Set	$m(\mathrm{MeV})$	B / m	μ / m	Λ / m	$P_{\text {val }}$	$P_{\uparrow \downarrow}$	$P_{\uparrow \uparrow}$	$f_{\pi}(\mathrm{MeV})$
I	187	1.25	0.15	2	0.64	0.55	0.09	77
II	255	1.45	1.5	1	0.65	0.55	0.10	112
III	255	1.45	2	1	0.66	0.56	0.11	117
IV	215	1.35	2	1	0.67	0.57	0.11	98
V	187	1.25	2	1	0.67	0.56	0.11	84
VI	255	1.45	2.5	1	0.68	0.56	0.11	122
VII	255	1.45	2.5	1.1	0.69	0.56	0.12	127
VIII	255	1.45	2.5	1.2	0.70	0.57	0.13	130
IX	255	1.45	1	2	0.70	0.57	0.14	134
X	215	1.35	1	2	0.71	0.57	0.14	112
XI	187	1.25	1	2	0.71	0.58	0.14	96

The set VIII reproduces the pion decay constant

$$
m_{q}=255 \mathrm{MeV}, m_{g}=637.5 \mathrm{MeV} \text { and } \Lambda=306 \mathrm{MeV}
$$

The contributions beyond the valence component are important, $\sim 30 \%$
The Valence probability has a small variation for the range of parameters

Parton distribution function

WP, Ydrefors, Nogueira, Frederico and Salmè PRD 105, L071505 (2022).

Solid line: full calculation of the BSE at model scale Dashed line: The LF valence contribution

The symmetry of the PDFs is related to the charge symmetry.
The full PDF is normalized to 1 ,
while the Valence PDF has norm 0.7

The difference of 30% is due to the presence of higher Fock components in the pion state.

$$
\mid q \bar{q} ; n \text { gluons }\rangle
$$

At the initial scale, for $\xi \rightarrow 1$, the exponent of $(1-\xi)^{\eta_{0}}$ is $\eta_{0}=1.4$

Parton distribution function

WP, Ydrefors, Nogueira, Frederico and Salmè PRD 105, L071505 (2022).
Low order Mellin moments at scales $\mathrm{Q}=2.0 \mathrm{GeV}$ and $\mathrm{Q}=5.2 \mathrm{GeV}$.

	BSE_{2}	LQCD_{2}	BSE_{5}	LQCD_{5}
$\langle x\rangle$	0.259	0.261 ± 0.007	0.221	0.229 ± 0.008
$\left\langle x^{2}\right\rangle$	0.105	0.110 ± 0.014	0.082	0.087 ± 0.009
$\left\langle x^{3}\right\rangle$	0.052	0.024 ± 0.018	0.039	0.042 ± 0.010
$\left\langle x^{4}\right\rangle$	0.029		0.021	0.023 ± 0.009
$\left\langle x^{5}\right\rangle$	0.018		0.012	0.014 ± 0.007
$\left\langle x^{6}\right\rangle$	0.012	0.008	0.009 ± 0.005	

$\mathrm{LQCD}, \mathrm{Q}=2.0 \mathrm{GeV}:$
$<x^{2}>$ and $<x^{3}>$ - Alexandrou et al PRD 104, 054504 (2021).
$\mathrm{LQCD}, \mathrm{Q}=5.2 \mathrm{GeV}:$ Alexandrou et al PRD 104, 054504 (2021)
Hadronic scale and effective charge for DGLAP Cui et al EPJC 2020801064

$$
Q_{0}=0.330 \pm 0.030 \mathrm{GeV}
$$

Within the error, we choose the $Q_{0}=0.360$ in order to fit the first Mellin moment
We used lowest order DGLAP equations for evolution

Parton distribution function

WP, Ydrefors, Nogueira, Frederico and Salmè PRD 105, L071505 (2022).

Solid line: full calculation of the BSE evolved from the initial scale $\mathrm{Q}_{0}=0.360 \mathrm{GeV}$ to $\mathrm{Q}=5.2 \mathrm{GeV}$

Dashed line: the evolved LF valence contribution

Full dots: experimental data from E615
Full squares: reanalyzed experimental data from Aicher, et al PRL 105, 252003 (2010). evolved to $Q=5.2 \mathrm{GeV}$

Parton distribution function

WP, Ydrefors, Nogueira, Frederico and Salmè PRD 105, L071505 (2022).

Solid line: full calculation of the BSE evolved from the initial scale $\mathrm{Q}_{0}=0.360 \mathrm{GeV}$ to $\mathrm{Q}=5.2 \mathrm{GeV}$

Dashed line: DSE calculation (Cui et al)
Dash-dotted line: DSE calculation with dressed quarkphoton vertex from Bednar et al PRL 124, 042002 (2020).

Dotted line: BLFQ colaboration, PLB 825, 136890 (2022)
Gray area: LQCD results
It is in agreement with PQCD, exponent greater than 2

Evolved $\xi u(\xi)$, for $\xi \rightarrow 1$, the exponent of $(1-\xi)^{\eta_{5}}$ is $\eta_{5}=2.94$
LQCD: Alexandrou et al PRD 104, 054504 (2021) obtained 2.20 ± 0.64
Cui et al EPJA 58, 10 (2022) obtained 2.81 ± 0.08

Pion image on the null-plane

The probability distribution of the quarks inside the pion, on the light-front, is evaluated in the space given by the Cartesian product of the loffe-time and the plane spanned by the transverse coordinates.

Our goal is to use the configuration space in order to have a more detailed information of the space-time structure of the hadrons.

The loffe-time is useful for studying the relative importance of short
 and long light-like distances. It is defined as:

$$
\tilde{z}=x \cdot P_{\text {target }}=x^{-} P_{\text {target }}^{+} / 2 \text { on the hyperplane } \mathrm{x}^{+}=0
$$

Pion image on the null-plane

We perform a Fourier transform of the valence wf
The space-time structure of the pion in terms of loffe-time $\tilde{z}=x^{-} p^{+} / 2$ and the transverse coordinates $\left\{b_{x}, b_{y}\right\}$

3D Pion image: Spin configurations

Pion charge radius

Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021).
Pion charge radius and its decomposition in valence and non valence contributions.

Set	m	B / m	μ / m	Λ / m	$P_{\text {val }}$	f_{π}	$r_{\pi}(\mathrm{fm})$	$r_{\text {val }}(\mathrm{fm})$	$r_{\text {rval }}(\mathrm{fm})$
I	255	1.45	2.5	1.2	0.70	130	0.663	0.710	0.538
II	215	1.35	2	1	0.67	98	0.835	0.895	0.703

where

$$
\begin{aligned}
& r_{\pi}^{2}=-6 d F\left(Q^{2}\right) /\left.d Q^{2}\right|_{Q^{2}=0} \\
& P_{\text {val(nval) }} r_{\text {val(nval) }}^{2}=-6 d F_{\text {val(nval) }}\left(Q^{2}\right) /\left.d Q^{2}\right|_{Q^{2}=0}
\end{aligned}
$$

The set I is in fair agreement with the PDG value: $\quad r_{\pi}^{P D G}=0.659 \pm 0.004 \mathrm{fm}$

Electromagnetic Form Factor

Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021).

Good agreement with experimental data (black curve).
For high Q^{2} we obtain the valence dominance (dashed black curve)
Our results recover the pQCD for large Q^{2} - Blue curve vs Black curve

Conclusions and Perspectives

- We present a method for solving the fermionic BSE in Minkowski.
- We obtain the Parton Distribution function, charge radius and Electromagnetic Form Factor.
- Furthermore, the image of the pion in the configuration space has been constructed. This 3D imaging is in line with the goal of the future Electron Ion Collider.
- The beyond-valence contributions are important. The valence probability is of the order of 70%.
- We intend to calculate other Hadronic observables: TMD, GPD.
- Future plan is to include dressing functions for quark and gluon propagators and a more realistic quark-gluon vertex.

Backup

Covariant Electromagnetic Form Factor

Among the pion observables, the electromagnetic form factor plays a relevant role for accessing the inner pion structure, since it is related to the charge density in the so-called impact parameter space.

Adopting the Impulse approximation (bare photon vertex), we have

$$
\left(p+p^{\prime}\right)^{\mu} F\left(Q^{2}\right)=-i \frac{N_{c}}{4 M^{2}+Q^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[(-k-m) \bar{\Phi}_{2}\left(k_{2} ; p^{\prime}\right)\left(p p+\not p^{\prime}\right) \Phi_{1}\left(k_{1} ; p\right)\right]
$$

After using the NIR and computing the traces, one obtains

$$
F\left(Q^{2}\right)=\frac{N_{c}}{32 \pi^{2}} \sum_{i j} \int_{0}^{\infty} d \gamma \int_{-1}^{1} d z g_{j}(\gamma, z) \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} g_{i}\left(\gamma^{\prime}, z^{\prime}\right) \int_{0}^{1} d y y^{2}(1-y)^{2} \frac{c_{i j}}{M_{c o v}^{8}}
$$

Valence Electromagnetic Form Factors

The Valence contribution to the FF is obtained from the matrix elements of the component γ^{+}
$F_{\text {val }}\left(Q^{2}\right)=\frac{N_{c}}{16 \pi^{3}} \int d^{2} k_{\perp} \int_{-1}^{1} d z\left[\psi_{\uparrow \downarrow}^{*}\left(\gamma^{\prime}, z\right) \psi_{\uparrow \downarrow}(\gamma, z)+\frac{\vec{k}_{\perp} \cdot \vec{k}_{\perp}^{\prime}}{\gamma \gamma^{\prime}} \psi_{\uparrow \uparrow}^{*}\left(\gamma^{\prime}, z\right) \psi_{\uparrow \uparrow}(\gamma, z)\right]$
$F_{v a l}(0)=p_{v a l}$.
where $\vec{k}_{\perp}^{\prime}=\vec{k}_{\perp}+\frac{1}{2}(1+z) \vec{q}_{\perp}$
Total FF (Drell-Yan Frame): $F\left(Q^{2}\right)=\sum_{n=2}^{\infty} F_{n}\left(Q^{2}\right)=F_{\mathrm{val}}\left(Q^{2}\right)+F_{\mathrm{nval}}\left(Q^{2}\right)$ where $F_{n}\left(Q^{2}\right)$ represents the contribution of the n-th Fock component

QCD Asymptotic Formula (Lepage \& Brodsky, 1979):

$$
Q^{2} F_{\text {asy }}\left(Q^{2}\right)=8 \pi \alpha_{s}\left(Q^{2}\right) f_{\pi}^{2}
$$

Running coupling constant - PDG

Pion Decay Constant

In terms of the BS amplitude, we can write the Pion Decay Constant as:

$$
i p^{\mu} f_{\pi}=N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{\mu} \gamma^{5} \Phi(p, k)\right]
$$

Contracting with p_{μ} and using the BSA decomposition we have

$$
i M^{2} f_{\pi}=-4 M N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}} \phi_{2}(k, p)
$$

which can be expressed as

$$
f_{\pi}=i \frac{\pi N_{c}}{(2 \pi)^{3}} \int_{0}^{\infty} d \gamma \int_{-1}^{1} d z \psi_{\uparrow \downarrow}(\gamma, z)
$$

Nakanishi Integral Representation

- Nakanishi representation: Generalization of the Källén-Lehmman integral representation (two point functions) for n -point functions. Bethe-Salpeter amplitude

$$
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-p . k z^{\prime}-i \epsilon\right)^{3}}
$$

BSE in Minkowski space with NIR

Transverse Momentum Distribution

Ydrefors, WP, Nogueira, Frederico and Salmè Preliminary

Pion Bound State

We start from the four-point Green function

$$
G\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)=<0\left|T\left\{\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{1}^{+}\left(y_{1}\right) \phi_{2}^{+}\left(y_{2}\right)\right\}\right| 0>
$$

which is a solution of the integral equation

$$
G=G_{0}+G_{0} \mathcal{I} G
$$

I \equiv kernel given by the infinite sum of irreducible Feynmann graphs

Bethe-Salpeter Equation

Close to the bound-state pole we obtain the BSE

$$
\phi\left(k ; p_{B}\right)=G_{0}\left(k ; p_{B}\right) \int d^{4} k^{\prime} \mathcal{I}\left(k, k^{\prime} ; p_{B}\right) \phi\left(k^{\prime} ; p_{B}\right)
$$

BSA in configuration space: $\phi\left(x_{1}, x_{2} ; p_{B}\right)=<0\left|T\left\{\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right\}\right| p_{B}>$

The two-body irreducible Kernel of the four-point Green function

Challenge: To solve the BSE in Minkowski space

NIR for two-fermions

$$
\text { WP, Frederico, Salmè, Viviani, PRD94 (2016) } 071901
$$

We can single out the singular contributions
For two-fermion BSE

$$
\mathcal{C}_{j}=\int_{-\infty}^{\infty} \frac{d k^{-}}{2 \pi}\left(k^{-}\right)^{j} \mathcal{S}\left(k^{-}, v, z, z^{\prime}, \gamma, \gamma^{\prime}\right)
$$

with $j=1,2,3$ and in the worst case

$$
\mathcal{S}\left(k^{-}, v, z, z^{\prime}, \gamma, \gamma^{\prime}\right) \sim \frac{1}{\left[k^{-}\right]^{2}} \quad \text { for } \quad k^{-} \rightarrow \infty
$$

Then one can not close the arc at the infinity .
The severity of the singularities (power j), does not depend on the Kernel
We calculate the singular contribution using

$$
\int_{-\infty}^{\infty} d x \frac{1}{[\beta x-y \mp i \epsilon]^{2}}= \pm(2 \pi) i \frac{\delta(\beta)}{[-y \mp i \epsilon]} \text { Yan PRD } 7(1973) 1780
$$

Numerical Method

Basis expansion for the Nakanishi weight function

$$
g_{i}(\gamma, z)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} w_{m n}^{i} G_{2 m+r_{i}}^{\lambda_{i}}(z) \mathcal{J}_{n}(\gamma)
$$

Gegenbauer polynomials

$$
G_{n}^{\lambda}(z)=\left(1-z^{2}\right)^{q} \Gamma(\lambda) \sqrt{\frac{n!(n+\lambda)}{2^{1-2 \lambda} \pi \Gamma(n+2 \lambda)}} C_{n}^{\lambda}(z)
$$

Laguerre polynomials

$$
\mathcal{J}_{n}(\gamma)=\sqrt{a} L_{n}(a \gamma) e^{-a \gamma / 2}
$$

We obtain a discrete generalized eigenvalue problem

$$
C \mathbf{w}=g^{2} D \mathbf{w}
$$

We used ~ 44 Laguerre polynomials and 44 Gegenbauer

Vector Exchange: LF amplitudes

WdP, Frederico, Salme, Viviani and Pimentel - EPJC 77 (2017) 764

Fig. 3 LF amplitudes for weak $(\mathrm{B} / \mathrm{m}=0.1$) and strong binding $(\mathrm{B} / \mathrm{m}=1.0)$ with mass $\mu / m=0.15$. Solid line: ψ_{1}. Dashed line: ψ_{2}. Dotted line: ψ_{3}. Dot-Dashed line: ψ_{4}.

$$
z=-2 k^{+} / M
$$

$$
0<\xi=(1-z) / 2<1
$$

Normalization

In order to calculate hadronic properties, we need to properly normalize the BSA

$$
\operatorname{Tr}\left[\left.\int \frac{d^{4} k}{(2 \pi)^{4}} \bar{\Phi}(k, p) \frac{\partial}{\partial p^{\prime \mu}}\left\{S^{-1}\left(k+p^{\prime} / 2\right) \Phi(k, p) S^{-1}\left(k-p^{\prime} / 2\right)\right\}\right|_{p^{\prime}=p ; p^{2}=M^{2}}\right]=-i 2 p_{\mu}
$$

Using the BSA expansion and performing the Dirac traces, we have

$$
i \int \frac{d^{4} k}{(2 \pi)^{4}}\left[\phi_{1} \phi_{1}+\phi_{2} \phi_{2}+b \phi_{3} \phi_{3}+b \phi_{4} \phi_{4}-4 b \phi_{1} \phi_{4}-4 \frac{m}{M} \phi_{2} \phi_{1}\right]=1
$$

From the NIR, we obtain

$$
\begin{aligned}
& \frac{3}{32 \pi^{2}} \int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{+1} d z \int_{0}^{\infty} d \gamma \int_{0}^{1} d v \frac{v^{2}(1-v)^{2}}{\left[\kappa^{2}+\frac{M^{2}}{4} \lambda^{2}+\gamma^{\prime} v+\gamma(1-v)\right]^{4}} \\
& \times\left\{g_{1}\left(\gamma^{\prime}, z^{\prime}\right) g_{1}(\gamma, z)+g_{2}\left(\gamma^{\prime}, z^{\prime}\right) g_{2}(\gamma, z)-4 \frac{m}{M} g_{2}\left(\gamma^{\prime}, z^{\prime}\right) g_{1}(\gamma, z)\right. \\
& +\frac{\left[\kappa^{2}+\frac{M^{2}}{4} \lambda^{2}+\gamma^{\prime} v+\gamma(1-v)\right]}{2 M^{2}} \\
& \left.\times\left[g_{3}\left(\gamma^{\prime}, z^{\prime}\right) g_{3}(\gamma, z)+g_{4}\left(\gamma^{\prime}, z^{\prime}\right) g_{4}(\gamma, z)-4 g_{1}\left(\gamma^{\prime}, z^{\prime}\right) g_{4}(\gamma, z)\right]\right\}=-1
\end{aligned}
$$

Dressing the Quark

> Dressed quark propagators defined for time and space-like momentum.
> Dynamical Chiral Symmetry Breaking

Solution of the Schwinger-Dyson Eq. in Minkowski-Space.

```
Also discussed in
Sauli, Nucl. Phys. 689A, }467\mathrm{ (2001), JHEP 0302, 001 (2003)
Bicudo, Phys. Rev. D 69, }074003\mathrm{ (2004).
Mezrag & Salmè, EPJC 81, }34\mathrm{ (2021).
```

The model:
Rainbow-Ladder, Pauli Villars regularization, massive effective gluon.

Schwinger-Dyson equation in Rainbow ladder truncation

In collaboration with Duarte, Frederico, Ydrefors

Bare vertices, massive vector boson, Pauli-Villars regulator

The rainbow ladderSchwinger-Dyson equation in Minkowski space is

$$
S_{f}^{-1}(k)=\not b-\bar{m}_{0}+i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \gamma_{\mu} S_{f}(k-q) \gamma_{\nu} D^{\mu \nu}(q)
$$

The massive gauge boson is given by

$$
\begin{aligned}
D^{\mu \nu}(q)=\frac{1}{q^{2}-m_{\sigma}^{2}+\imath \epsilon} & {\left[g^{\mu \nu}-\frac{(1-\xi) q^{\mu} q^{\nu}}{q^{2}-\xi m_{\sigma}^{2}+\imath \epsilon}\right] } \\
& \xi=0 \text { (Landau Gauge) } \& \xi=1 \text { (Feynman Gauge) }
\end{aligned}
$$

The dressed fermion propagator is

$$
S_{f}(k)=\frac{1}{k-m_{B}+k A_{f}\left(k^{2}\right)-B_{f}\left(k^{2}\right)+i \epsilon}
$$

Fermion Schwinger-Dyson equation (Rainbow ladder)

Self-Energies Integral representations

$$
A_{f}\left(k^{2}\right)=\int_{0}^{\infty} d \gamma \frac{\rho_{A}(\gamma)_{k}}{k^{2}-\gamma+i \epsilon} \quad B_{f}\left(k^{2}\right)=\int_{0}^{\infty} d \gamma \underset{k^{2}-\gamma+i \epsilon}{\rho_{B}(\gamma)}
$$

Fermion propagator - Integral representation

$$
S_{f}=R \frac{\not k+\bar{m}_{0}}{k^{2}-\bar{m}_{0}^{2}+i \epsilon}+\not k \int_{0}^{\infty} d \gamma \frac{\rho_{v}(\gamma)}{k^{2}-\lambda+i \epsilon}+\int_{0}^{\infty} d \gamma \frac{\rho_{s}(\gamma)}{k^{2}-\gamma+i \epsilon}
$$

$$
\begin{aligned}
\nvdash A\left(k^{2}\right)-B\left(k^{2}\right) & =i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\gamma_{\mu} S(k-q) \gamma_{\nu}}{q^{2}-m_{\sigma}^{2}+i \epsilon}\left[g^{\mu \nu}-\frac{(1-\xi) q^{\mu} q^{\nu}}{q^{2}-\xi m_{\sigma}^{2}+i \epsilon}\right] \\
& -i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\gamma_{\mu} S(k-q) \gamma_{\nu}}{q^{2}-\Lambda^{2}+i \epsilon}\left[g^{\mu \nu}-\frac{(1-\xi) q^{\mu} q^{\nu}}{q^{2}-\xi \Lambda^{2}+i \epsilon}\right] \longleftarrow \begin{array}{c}
\text { Pauli-Villars } \\
\text { regulator }
\end{array}
\end{aligned}
$$

Fermion Schwinger-Dyson equation (Rainbow ladder)

- Parameters: $\alpha=\frac{g^{2}}{4 \pi}, \Lambda, m_{\sigma}, \bar{m}_{0}$.
- Self energy densities: $\rho_{A}(\gamma)=-\operatorname{Im}[\mathrm{A}(\boldsymbol{\gamma})] / \pi$ and $\rho_{B}(\gamma)=-\operatorname{Im}[\mathrm{B}(\gamma)] / \pi$.
- Solutions of DSE obtained writing the trivial relation $S_{f}^{-1} S_{f}=1$ in a suitable form:

$$
\begin{aligned}
& \frac{R}{k^{2}-\bar{m}_{0}^{2}+\imath \epsilon}+\int_{0}^{\infty} d \gamma \frac{\rho_{v}(\gamma)}{k^{2}-\gamma+i \epsilon}=\frac{1+A_{f}\left(k^{2}\right)}{k^{2}\left(1+A_{f}\left(k^{2}\right)\right)^{2}-\left(m_{B}+B_{f}\left(k^{2}\right)\right)^{2}+i \epsilon} \\
& \frac{R \bar{m}_{0}}{k^{2}-\bar{m}_{0}^{2}+i \epsilon}+\int_{0}^{\infty} d \gamma \frac{\rho_{s}(\gamma)}{k^{2}-\gamma+i \epsilon}=\frac{m_{B}+B_{f}\left(k^{2}\right)}{k^{2}\left(1+A_{f}\left(k^{2}\right)\right)^{2}-\left(m_{B}+B_{f}\left(k^{2}\right)\right)^{2}+i \epsilon}
\end{aligned}
$$

Fermion Schwinger-Dyson equation (Rainbow ladder)

Fermion DSE solution

$$
\begin{aligned}
& \rho_{A}\left(p^{2}\right)=R\left[\mathcal{K}_{A}^{\xi=1}\left(p^{2}, \bar{m}_{0}^{2} ; m_{\sigma}^{2}\right)+\frac{1}{m_{\sigma}^{2}} \mathcal{K}_{A}^{\xi}\left(p^{2}, \bar{m}_{0}^{2} ; m_{\sigma}^{2}\right)\right] \\
& +\int_{s_{\xi}^{\text {thres }}}^{\infty} d s \rho_{v}(s)\left[\mathcal{K}_{A}^{\xi=1}\left(p^{2}, s ; m_{\sigma}^{2}\right)+\frac{1}{m_{\sigma}^{2}} \mathcal{K}_{A}^{\xi}\left(p^{2}, s ; m_{\sigma}^{2}\right)\right] \\
& -\left[m_{\sigma} \rightarrow \Lambda\right] \\
& \rho_{B}\left(p^{2}\right)=R \bar{m}_{0}\left[\mathcal{K}_{B}^{\xi=1}\left(p^{2}, \bar{m}_{0}^{2} ; m_{\sigma}^{2}\right)+\frac{1}{m_{\sigma}^{2}} \mathcal{K}_{B}^{\xi}\left(p^{2}, \bar{m}_{0}^{2} ; m_{\sigma}^{2}\right)\right] \\
& +\int_{s_{\xi}^{\mathrm{thres}}}^{\infty} d s \rho_{v}(s)\left[\mathcal{K}_{B}^{\xi=1}\left(p^{2}, s ; m_{\sigma}^{2}\right)+\frac{1}{m_{\sigma}^{2}} \mathcal{K}_{B}^{\xi}\left(p^{2}, s ; m_{\sigma}^{2}\right)\right] \\
& -\left[m_{\sigma} \rightarrow \Lambda\right] \\
& f_{A}\left(p^{2}\right)=1+P \int_{s^{\text {threres }}}^{\infty} d s \frac{\rho_{A}(s)}{p^{2}-s} \\
& f_{B}\left(p^{2}\right)=m_{B}+P \int_{s^{\text {thres }}}^{\infty} d s \frac{\rho_{B}(s)}{p^{2}-s} \\
& d\left(p^{2}\right)=\left[p^{2} f_{A}^{2}\left(p^{2}\right)-\pi^{2} p^{2} \rho_{A}^{2}\left(p^{2}\right)-f_{B}^{2}\left(p^{2}\right)+\pi^{2} \rho_{B}^{2}\left(p^{2}\right)\right]^{2} \\
& +4 \pi^{2}\left[p^{2} \rho_{A}\left(p^{2}\right) f_{A}\left(p^{2}\right)-\rho_{B}\left(p^{2}\right) f_{B}\left(p^{2}\right)\right]^{2} \\
& \text { Connection Formulas } \\
& \rho_{v}\left(p^{2}\right)=-2 \frac{f_{A}\left(p^{2}\right)}{d\left(p^{2}\right)}\left[p^{2} \rho_{A}\left(p^{2}\right) f_{A}\left(p^{2}\right)-\rho_{B}\left(p^{2}\right) f_{B}\left(p^{2}\right)\right] \\
& +\frac{\rho_{A}\left(p^{2}\right)}{d\left(p^{2}\right)}\left[p^{2} f_{A}^{2}\left(p^{2}\right)-\pi^{2} p^{2} \rho_{A}^{2}\left(p^{2}\right)-f_{B}^{2}\left(p^{2}\right)+\pi^{2} \rho_{B}^{2}\left(p^{2}\right)\right] \\
& \rho_{s}\left(p^{2}\right)=-2 \frac{f_{B}\left(p^{2}\right)}{d\left(p^{2}\right)}\left[p^{2} \rho_{A}\left(p^{2}\right) f_{A}\left(p^{2}\right)-\rho_{B}\left(p^{2}\right) f_{B}\left(p^{2}\right)\right] \\
& +\frac{\rho_{B}\left(p^{2}\right)}{d\left(p^{2}\right)}\left[p^{2} f_{A}^{2}\left(p^{2}\right)-\pi^{2} p^{2} \rho_{A}^{2}\left(p^{2}\right)-f_{B}^{2}\left(p^{2}\right)+\pi^{2} \rho_{B}^{2}\left(p^{2}\right)\right]
\end{aligned}
$$

Comparison with Un-Wick rotated results

In collaboration with Duarte, Frederico, Ydrefors, Maris and Jia

- From Euclidean space formulation, in increments of $\delta: p \rightarrow \mathrm{e}^{-i \delta} p$

The integration path in SDE is deformed into the complex plane

- Minkowski space: $\delta=\pi / 2$, or in a more conveninent notation $\Theta=\pi / 2-\delta$.

$$
\theta=0,\left\{\begin{array}{lll}
p_{0}^{2}=0, & \vec{p}^{2}>0 & \text { spacelike region } \\
p_{0}^{2}>0, & \vec{p}^{2}=0 & \text { timelike region }
\end{array}\right.
$$

*S. Jia et al., Proceedings of HADRON-2019, arXiv:1912.00063, T. Frederico et al., Proceedings of NTSE-2018, arXiv:1905.00703.

$$
m_{0}=0.5, \mu=1.0, \Lambda=10.0, \text { and } \alpha=0.5
$$

Dynamical Chiral Symmetry Breaking

Strong coupling regime

Fit to Lattice Landau Gauge Results
Oliveira, Silva, Skullerud \& Sternbeck, PRD 99 (2019) 094506
Quark propagator

Phenomenological Model

In collaboration with Duarte, Frederico, Ydrefors

We can calibrate the model to reproduce Lattice Data for $M\left(p^{2}\right)$

$$
\begin{aligned}
M^{2}\left(p^{2}\right) & =\frac{B^{2}\left(p^{2}\right)}{A^{2}\left(p^{2}\right)} \\
Z\left(p^{2}\right) & =\frac{1}{A\left(p^{2}\right)}
\end{aligned}
$$

Running quark mass

The next step is to use this solution to obtain the Fermion-Antifermion bound state

Uniqueness of the Nakanish Representation

Nakanishi proposed that the weight function is unique. It means that if both LHS and RHS have the same integral operator, they can be extracted

$$
\begin{aligned}
\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{1}\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}\right)^{2}} & =\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{2}\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}\right)^{2}} \\
\Rightarrow g_{1}\left(\gamma^{\prime}, z^{\prime}\right) & =g_{2}\left(\gamma^{\prime}, z^{\prime}\right)
\end{aligned}
$$

Stieltjes Transformation

$$
G(x)=\int_{0}^{\infty} \frac{F(y)}{(y+x)^{2}} d y
$$

We can relate the kernel with a integral in the complex plane

$$
F(y)=\frac{y}{2 \pi} \int_{-\pi}^{+\pi} d \phi e^{i \phi} G\left(y e^{i \phi}\right)
$$

For Bosons: Carbonell, Frederico and Karmanov PLB769 (2017) 418

Extreme Binding Energy ($\mathrm{B}=2 \mathrm{~m}$)

Example: Fermion-Antifermion Bound State with massless vector exchange

The BSE in the limit of Extreme Binding Energy ($\mathrm{M}=0$) is:

$$
\begin{aligned}
& \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{1}\left(\gamma^{\prime}, z\right)}{\left(\gamma^{\prime}+\gamma+m^{2}\right)^{2}}=\frac{\left(\mu^{2}-\Lambda^{2}\right)^{2}}{8 \pi^{2}} g^{2} \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{+1} d z^{\prime} \int_{0}^{1} d v v^{2}(1-v)^{2} g_{1}\left(\gamma^{\prime}, z^{\prime}\right) \times \\
& \times \frac{\theta\left(k_{D}^{+}\right)}{(1+z)} \frac{\left[3 D_{2}\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right)+(1-v)\left(\mu^{2}-\Lambda^{2}\right)\right]}{\left[D_{2}\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right)+(1-v)\left(\mu^{2}-\Lambda^{2}\right)\right]^{3}\left[D_{2}\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right)\right]^{2}}+\left[z \rightarrow-z ; z^{\prime} \rightarrow-z^{\prime}\right], \\
& \quad \text { with } \\
& D_{2}\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right)= \\
& -\frac{v}{(1+z)} m^{2}+m^{2} v z+m^{2} z^{\prime}(1-v)+(1-v)\left(1+z^{\prime}\right) \gamma+(1+z) \gamma^{\prime}+(1-v)(1+z) \mu^{2}
\end{aligned}
$$

Extreme Binding Energy ($\mathrm{B}=2 \mathrm{~m}$)

Using Feynman parametrization, Dirac delta properties and Uniqueness we have

$$
\begin{aligned}
& g_{1}\left(\gamma^{\prime \prime}, z\right)=3 \frac{\left(\mu^{2}-\Lambda^{2}\right)^{2}}{2 \pi^{2}} g^{2} \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{+1} d z^{\prime} \int_{0}^{1} d v v^{2}(1-v)^{2} g_{1}\left(\gamma^{\prime}, z^{\prime}\right) \frac{1}{(1+z)} \times \\
& {\left[\theta\left(k_{D}^{+}\right) \int_{0}^{1} d \xi \xi^{2}(1-\xi)\left(\frac{4}{6} \delta^{\prime}\left(\gamma^{\prime \prime}-\alpha_{3}+m^{2}\right)+\frac{\alpha_{5}}{24} \delta^{\prime \prime \prime}\left(\gamma^{\prime \prime}-\alpha_{3}+m^{2}\right)\right)+\left[z \rightarrow-z, z^{\prime} \rightarrow-z^{\prime}\right]\right] .}
\end{aligned}
$$

Solving numerically we obtain $\mathrm{g}^{2}=68$ (fundamental state), which is consistent with the solution of the BSE for B close to $2 m$

$$
g(\gamma, z)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} W\left(\gamma, z, \gamma^{\prime}, z^{\prime}, v\right) g\left(\gamma^{\prime}, z^{\prime}\right)
$$

Definition of $W\left(\gamma, z ; \gamma^{\prime}, z^{\prime} ; v\right)$

Stieltjes Transformation

We can compare with the Uniqueness method
The BSE is written as

$$
\int_{0}^{\infty} \frac{g\left(\gamma^{\prime}, z\right) d \gamma^{\prime}}{\left[\gamma^{\prime}+\gamma+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} V\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right) g\left(\gamma^{\prime}, z^{\prime}\right)
$$

Stieltjes Transformation:

$$
\begin{gathered}
g(\gamma, z)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} N\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right) g\left(\gamma^{\prime}, z^{\prime}\right) \\
N\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right)=\frac{\gamma}{2 \pi} \int_{-\pi}^{+\pi} d \phi e^{i \phi} V\left(\gamma e^{i \phi}-m^{2} z^{2}-\left(1-z^{2}\right) \kappa^{2}, z ; \gamma^{\prime}, z^{\prime}\right)
\end{gathered}
$$

Uniqueness

$$
g(\gamma, z)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} W\left(\gamma, z, \gamma^{\prime}, z^{\prime}, v\right) g\left(\gamma^{\prime}, z^{\prime}\right)
$$

Stieltjes Transformation

Stieltjes Transformation:

$$
\begin{gathered}
g(\gamma, z)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} N\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right) g\left(\gamma^{\prime}, z^{\prime}\right) \\
N\left(\gamma, z ; \gamma^{\prime}, z^{\prime}, v\right)=\frac{\gamma}{2 \pi} \int_{-\pi}^{+\pi} d \phi e^{i \phi} V\left(\gamma e^{i \phi}-m^{2} z^{2}-\left(1-z^{2}\right) \kappa^{2}, z ; \gamma^{\prime}, z^{\prime}\right)
\end{gathered}
$$

Uniqueness

$$
g(\gamma, z)=\int_{-1}^{+1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} W\left(\gamma, z, \gamma^{\prime}, z^{\prime}, v\right) g\left(\gamma^{\prime}, z^{\prime}\right)
$$

For the following values

$$
g^{2}=68, \gamma=6, \gamma^{\prime}=0.4, z=0.6, z^{\prime}=0.7, m=1
$$

The Kernels are

$$
N\left(\gamma, z ; \gamma^{\prime}, z^{\prime} ; v\right)=0.361861 \quad W\left(\gamma, z ; \gamma^{\prime}, z^{\prime} ; v\right)=0.361861
$$

Nakanishi Integral Representation

Let's take a connected Feynman diagram (G) with N external momenta p_{i}, n internal propagators with momenta l_{j} and masses m_{j} and k loops.

The transition amplitude is given by (scalar theory)

$$
f_{G}\left(p_{i}\right)=\prod_{r=1}^{k} \int d^{4} q_{r} \frac{1}{\left(l_{1}^{2}-m_{1}^{2}+i \epsilon\right) \cdots\left(l_{n}^{2}-m_{n}^{2}+i \epsilon\right)}
$$

Feynman parametrization $\frac{1}{A_{1} \ldots A_{n}}=(n-1)!\prod_{i=1}^{n} \int_{0}^{1} d \alpha_{i} \frac{\delta\left(1-\sum \alpha_{i}\right)}{\sum_{i=1}^{n} \alpha_{i} A_{i}}$

$$
l_{j}=\sum_{r=1}^{k} b_{j r} q_{r}+\sum_{i=1}^{N} c_{j i} p_{i}
$$

We obtain

$$
f_{G}\left(p_{i}\right)=\frac{(i \pi)^{k}(n-2 k-1)!}{(n-1)!} \prod_{i=1}^{n} \int_{0}^{1} d \alpha_{i} \frac{\delta\left(\sum \alpha_{i}-1\right)}{U^{2}\left(\sum_{i i^{\prime}} e_{i i^{\prime}} p_{i} p_{i}^{\prime}-\sum_{i=1}^{n} \alpha_{i} m_{j}^{2}+i \epsilon\right)^{n-2 k}}
$$

The denominator is a linear combination of the scalar product of the external momenta and the masses.
The coefficients and the exponent ($n-2 k$) depends on the particular Feynman diagram.

Nakanishi Integral Representation

After some change of variables we can write

$$
f_{G}\left(p_{i}\right)=\prod_{h} \int_{0}^{1} d z_{h} \int_{0}^{\infty} d \chi \frac{\delta\left(1-\sum_{i} z_{i}\right) \phi_{G}^{(n-2 k)}(z, \chi)}{\left(\sum_{i} z_{i} s_{i}-\chi+i \epsilon\right)^{n-2 k}}
$$

Performing integration by parts, we have the integral representation

$$
f_{G}\left(p_{i}\right)=\prod_{h} \int_{0}^{1} d z_{h} \int_{0}^{\infty} d \chi \frac{\delta\left(1-\sum_{i} z_{i}\right) \phi_{G}^{(1)}(z, \chi)}{\left(\sum_{i} z_{i} s_{i}-\chi+i \epsilon\right)}
$$

where

$$
\phi_{G}^{(1)}\left(\chi, z_{h}\right)=(-1)^{n-2 k-1} \frac{\partial^{n-2 k-1}}{\partial \chi^{n-2 k-1}} \phi_{G}^{(n-2 k)}\left(\chi, z_{h}\right)
$$

The dependence upon the details of the diagram moves from the denominator to the numerator. We obtain the same formal expression for the denominator of any diagram.

Spin configurations contributions

Within the BSE approach we can calculate the contribution to the valence FF from the 2 different spin configurations present in the pion.

For zero momentum transfer, the pure relativistic Spin-aligned configuration contributes with 20%.

Zero in spin-aligned FF is due to relativistic spin-orbit coupling that produces the term $\boldsymbol{\kappa} \cdot \boldsymbol{\kappa}^{\prime}$, wich flips the sign around $\mathrm{Q}^{2} \sim 8 \mathrm{GeV}^{2}$
For large Q^{2}, the difference between the exact formula, the asymptotic expression and pQCD becomes small.

Kernels

$$
\begin{aligned}
& \mathcal{K}_{A}^{\xi=1}\left(a, m_{\sigma}, \gamma\right)=\frac{2 g^{2}}{(4 \pi)^{2}} \frac{\Theta\left[\gamma-\left(a+m_{\sigma}\right)^{2}\right]}{\gamma} \sqrt{m_{\sigma}^{4}-2 m_{\sigma}^{2}\left(\gamma+a^{2}\right)+\left(\gamma-a^{2}\right)^{2}} \\
& -\frac{g^{2}}{(4 \pi)^{2}}(1+\xi) \int_{0}^{1} d \alpha \alpha \Theta\left[\alpha_{1}\left(1-\alpha_{1}\right) \gamma-\alpha_{1} a^{2}-m_{\sigma}^{2}\left(1-\alpha_{1}\right)\right] \\
& \mathcal{K}_{A}^{\xi}\left(a, m_{\sigma}, \gamma\right)=\frac{g^{2}}{(4 \pi)^{2} m_{\sigma}^{2}} \int_{0}^{1} d \alpha_{1}\left[3 \gamma \alpha_{1}^{2}+\alpha_{1}\left(a^{2}-\xi m_{\sigma}^{2}-\gamma\right)-\xi m_{\sigma}^{2}\right] \\
& \times \Theta\left[\alpha_{1}\left(1-\alpha_{1}\right) \gamma-\alpha_{1} a^{2}-\xi m_{\sigma}^{2}\left(1-\alpha_{1}\right)\right] \Theta\left[m_{\sigma}^{2}\left(1-\alpha_{1}\right)+\alpha_{1} a^{2}-\alpha_{1}\left(1-\alpha_{1}\right) \gamma\right] \\
& \mathcal{K}_{B}^{\xi=1}\left(a, m_{\sigma}, \gamma\right)=\frac{(3+\xi) g^{2} \Theta\left[\gamma-\left(a+m_{\sigma}\right)^{2}\right]}{(4 \pi)^{2}} \frac{{ }^{4}-2 a^{2}\left(\gamma+m_{\sigma}^{2}\right)+\left(\gamma-m_{\sigma}^{2}\right)^{2}}{\gamma} \\
& \mathcal{K}_{B}^{\xi}\left(a, m_{\sigma}, \gamma\right)=\frac{g^{2} \xi}{(4 \pi)^{2}} \int_{0}^{1} d \alpha_{1}\left[m_{\sigma}^{2}\left(1-\alpha_{1}\right)-\gamma\left(1-\alpha_{1}\right) \alpha_{1}+\alpha_{1} a^{2}\right] \\
& \quad \times \Theta\left[\gamma\left(1-\alpha_{1}\right) \alpha_{1}-\alpha_{1}\left(a^{2}-\xi m_{\sigma}^{2}\right)-\xi m_{\sigma}^{2}\right]
\end{aligned}
$$

$$
R^{-1}=1+\int_{\gamma^{\text {thres }}}^{\infty} d \gamma \frac{\rho_{A}(\gamma)}{\bar{m}_{0}^{2}-\gamma}-2 \bar{m}_{0}^{2} P \int_{\gamma^{\text {thres }}}^{\infty} d \gamma^{\prime} \frac{\rho_{A}\left(\gamma^{\prime}\right)}{\left(\bar{m}_{0}^{2}-\gamma^{\prime}\right)^{2}}+2 \bar{m}_{0} P \int_{\gamma^{\text {thres }}}^{\infty} d \gamma^{\prime} \frac{\rho_{B}\left(\gamma^{\prime}\right)}{\left(\bar{m}_{0}^{2}-\gamma^{\prime}\right)^{2}} \quad \gamma^{\text {thres }}=\left(\bar{m}_{0}+\xi m_{\sigma}\right)^{2}
$$

Common parameters: $\Lambda=10, m_{\sigma}=1, \alpha=0.5$.

ξ	R	m_{0}	m_{B}
1(Feynman)	0.884	0.759	0.5
0(Landau)	1.05	0.797	0.5

Pion Distribution Amplitude

The spin components of the DA, defined by

$$
\phi_{\uparrow \downarrow(\uparrow \uparrow)}(\xi)=\frac{\int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow(\uparrow \uparrow)}(\gamma, z)}{\int_{0}^{1} d \xi \int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow(\uparrow \uparrow)}(\gamma, z)}
$$

Aligned component (blue) more wide than the anti-aligned one (red).

Nakanishi Integral Representation

To represent the BSA, we consider the constituent particles with momentum p_{1}, p_{2} and the bound-state with momentum p.

$$
p=p_{1}+p_{2} \quad k=\left(p_{1}-p_{2}\right) / 2
$$

$$
\left.f_{3}\left(p_{i}\right)=\prod_{h} \int_{0}^{1} d z_{h} \delta\left(\sum_{h} z_{h}-1\right) \int_{0^{-}}^{\infty} d \chi \frac{\phi_{3}^{(1)}\left(\chi, z_{h}\right) /\left(z_{1}+z_{2}\right)}{\left(k^{2}+p \cdot k \frac{\left(z_{1}-z_{2}\right)}{\left(z_{1}+z_{2}\right)}+\frac{M^{2}}{4}\left(z_{1}+z_{2}+4 z_{3}\right)-\chi\right.}\left(z_{1}+z_{2}\right) \quad+i \epsilon\right)
$$

Using the identities

$$
1=\int d \gamma^{\prime} \delta\left(\gamma^{\prime}+\left(\frac{\frac{M^{2}}{4}\left(z_{1}+z_{2}+4 z_{3}\right)-\chi}{\left(z_{1}+z_{2}\right)}\right)\right) \quad 1=\int_{-1}^{1} d z^{\prime} \delta\left(z^{\prime}-\left(\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right)\right)
$$

we obtain the NIR

$$
f_{3}(p, k)=\int d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} \frac{g^{(1)}\left(\gamma^{\prime}, z^{\prime}\right)}{k^{2}+z^{\prime} p \cdot k-\gamma^{\prime}+i \epsilon}
$$

where

$$
\begin{aligned}
g^{(1)}\left(\gamma^{\prime}, z^{\prime}\right) & =\prod_{h} \int_{0}^{1} d z_{h} \delta\left(\sum_{h} z_{h}-1\right) \int_{0^{-}}^{\infty} d \chi \\
& \times \frac{\phi_{3}^{(1)}\left(\chi, z_{h}\right)}{\left(z_{1}+z_{2}\right)} \delta\left(z^{\prime}-\left(\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right)\right) \delta\left(\gamma^{\prime}+\left(\frac{\frac{M^{2}}{4}\left(z_{1}+z_{2}+4 z_{3}\right)-\chi}{\left(z_{1}+z_{2}\right)}\right)\right)
\end{aligned}
$$

Quark-Gluon Vertex

Schwinger-Dyson eq. Quark propagator

-1	-1

Quark-gluon vertex

$$
\Gamma_{\mu}^{a}\left(p_{1}, p_{2}, p_{3}\right)=g t^{a} \Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)
$$

$$
\Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)=\Gamma_{\mu}^{(L)}\left(p_{1}, p_{2}, p_{3}\right)+\Gamma_{\mu}^{(T)}\left(p_{1}, p_{2}, p_{3}\right)
$$

Longitudinal component

$$
\begin{aligned}
\Gamma_{\mu}^{\mathrm{L}}\left(p_{1}, p_{2}, p_{3}\right)= & -i\left(\lambda_{1} \gamma_{\mu}+\lambda_{2}\left(\not p_{1}-\not p_{2}\right)\left(p_{1}-p_{2}\right)_{\mu}\right. \\
& \left.+\lambda_{3}\left(p_{1}-p_{2}\right)_{\mu}+\lambda_{4} \sigma_{\mu \nu}\left(p_{1}-p_{2}\right)^{\nu}\right)
\end{aligned}
$$

quark-gluon vertex from factors

> Slanov-Taylor identity \& Quark-Ghost Kernel
> Padé approximants
$>$ Error minimization $\sim 2-4 \%$
$>$ simulating annealing

$$
\alpha_{s}=0.22 \text { and all propagators renormalised at } \mu=4.3 \mathrm{GeV}
$$

Oliveira, Frederico, de Paula, EPJC 80 (2020) 484

