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Pion as	a	Quark-antiquark bound state

Most non-perturbative methods are	formulated in	Euclidean space

Wick Rotation:We	have	to be care with the	
presence of	singularities.

Minkowski solutions: Bethe-Salpeter

Our challenge is to work with a non-perturbative framework in
Minkowski Space in order to access hadron structure observables
defined on the light-front.

Tool:	Integral	representation

Bound state: Solve	the Bethe-Salpeter	equation



•Bethe-Salpeter equation(     ) :

Quark-gluon vertex

Quark-antiquark bound	state	- Pion

where we use: i) bare propagators for the quarks and gluons; 
ii) ladder approximation

We consider only one of the Longitudinal components of the QGV

We set the value of the scale parameter (~300 MeV) from the combined analysis of 
Lattice simulations , the Quark-Gap Equation and Slanov-Taylor identity.

Oliveira,  WP,  Frederico, de Melo EPJC 78(7), 553 (2018) & EPJC 79 (2019) 116 & 
Oliveira, Frederico, WP, EPJC 80 (2020) 484 



NIR	for	fermion-antifermion	 Bound	State

Using the Nakanishi Integral Representation for the scalar functions

System of coupled integral equations

BSA for a quark-antiquark bound state



Light-Front variables

LF amplitudes

LF-time

Projecting	BSE	onto	the	LF	hyper-plane	 x+=0

Within the LF framework, the valence wf is obtained by integrating
the BSA on k- (elimination of the relative LF time).

The coupled equation system is (NIR+LF projection, Karmanov & Carbonell 2010) 

The Kernel contains singular contributions



The unpolarized transverve-momentum distribution (uTMD) reads

WP, Ydrefors,	 Nogueira,	 Frederico	 and	 Salmè PRD 105,	 L071505	 (2022).

The PDF is the integral over the squared transversemomentum.

Considering the charge symmetry and Mandelstam framework

Parton	distribution	function



LF	Momentum	Distributions
The fermionic field on the null-plane is given by: 

where

Hence,    and b are the fermion creation/annihilation operators

The LF valence amplitude is the Fock component with the lowest number of constituents

where



LF	Momentum	Distributions

LF valence amplitude in terms of BS amplitude is:

Anti-aligned configuration:

Aligned configuration:

with the LF amplitudes given by 

which can be decomposed into two spin contributions:



Valence	Probability

The probablity of the LF-valence WF reads

We can define the Valence Probability as

where

where we decomposed it in terms of the aligned and anti-aligned LFWF

The contribution to the PDF from the LF-valence WF is



Quantitative results:	Static properties
WP,	 Ydrefors,	 A.	Nogueira,	 Frederico	 and	Salme	PRD	103 014002	 (2021).

The set VIII reproduces the pion decay constant

The contributions beyond the valence component are important, ~30%

The Valence probability has a small variation for the range of parameters



Parton	distribution	function
WP, Ydrefors,	 Nogueira,	 Frederico	 and	 Salmè PRD 105,	 L071505	 (2022).

Solid	 line:	 full	 calculation	 of	the	BSE	at	model	 scale

Dashed	 line:	 The	LF	valence	 contribution

The	symmetry	 of	the	PDFs	 is	 related	to	the	charge	symmetry.	

The	full	 PDF	is	normalized	 to	1,	
while	 the	Valence	 PDF	has	norm	 0.7

The	difference	 of	30%	 is	due	 to	the	presence	 of	higher	 Fock	 components	 in	the	pion	 state.



WP, Ydrefors,	 Nogueira,	 Frederico	 and	 Salmè PRD 105,	 L071505	 (2022).

Low order Mellin moments at scales Q = 2.0 GeV and Q = 5.2 GeV.

Within the error, we choose the Q0 = 0.360 in order to fit the first Mellin moment

Parton	distribution	function

We	used	lowest	order	DGLAP	equations	for	evolution

Hadronic	 scale	and	 effective	 charge	for	DGLAP	
Cui	 et	al	EPJC	 2020	 80	1064



WP, Ydrefors,	 Nogueira,	 Frederico	 and	 Salmè PRD 105,	 L071505	 (2022).

Solid	 line:	 full	 calculation	 of	the	BSE	evolved	 from	the	
initial	 scale	Q0	=	0.360	GeV to	Q =	5.2	GeV

Dashed	 line:	 the	evolved	 LF	valence	 contribution

Full	 dots:	 experimental	 data	from	E615

Full	 squares:	 reanalyzed	 experimental	 data	from	 Aicher,	
et	al	PRL	105,	 252003	 (2010).	 evolved	 to	Q =	5.2	GeV

Parton	distribution	function



WP, Ydrefors,	 Nogueira,	 Frederico	 and	 Salmè PRD 105,	 L071505	 (2022).

Solid	 line:	 full	 calculation	 of	the	BSE	evolved	 from	the	
initial	 scale	Q0	=	0.360	GeV to	Q =	5.2	GeV

Dashed	 line:	DSE	calculation	 (Cui	 et	al	)	

Dash-dotted	 line:	DSE	calculation	 with	 dressed	 quark-
photon	 vertex	 from	Bednar	 et	al	PRL	124,	 042002	 (2020).

Dotted	line:	 BLFQ	 colaboration,	 PLB	825,	 136890	 (2022)

It	is in	 agreement with PQCD,	 exponent greater than 2

Gray	area:	LQCD	 results	

Parton	distribution	function



Pion	image	on	the	null-plane

The probability distribution of the quarks inside the pion, on the light-front, is
evaluated in the space given by the Cartesian product of the Ioffe-time and
the plane spannedby the transversecoordinates.

Our goal is to use the configuration space in order to have a more 
detailed information of the space-time structure of the hadrons.

The Ioffe-time is useful for studying the relative importance of short 
and long light-like distances. It is defined as:



The space-time structure of the pion in terms of Ioffe-time                          and 
the transverse coordinates {bx, by}

We perform a Fourier transform of the valence wf

3D	imaging	of	the	Pion

Pion	image	on	the	null-plane



3D	Pion	image:	Spin	configurations
Anti-aligned Aligned

3D	imaging	of	the	Pion



Pion charge	radius

Pion charge radius and its decomposition in valence and non valence contributions.

where

The set I is in fair agreement with the PDG value: 

Ydrefors,	 WP, Nogueira,	 Frederico	 and	 Salmè PLB 820,	 136494	 (2021).



Electromagnetic Form Factor

Good agreement with experimental data (black curve).
For high Q2 we obtain the valence dominance (dashed black curve)
Our results recover the pQCD for large Q2 – Blue curve vs Black curve

Ydrefors,	 WP, Nogueira,	 Frederico	 and	 Salmè PLB 820,	 136494	 (2021).



• We present a method for solving the fermionic BSE in Minkowski.
• We obtain the Parton Distribution function, charge radius and 

Electromagnetic Form Factor.
• Furthermore, the image of the pion in the configuration space has

been constructed. This 3D imaging is in line with the goal of the 
future Electron Ion Collider.

• The beyond-valence contributions are important. The valence 
probability is of the order of 70%.

• We intend to calculate other Hadronic observables: TMD, GPD.
• Future plan is to include dressing functions for quark and gluon 

propagators and a more realistic quark-gluon vertex.

Conclusions	and	Perspectives



Backup



Covariant	Electromagnetic	 Form	Factor

Adopting the Impulse approximation (bare photon vertex), we have

After using the NIR and computing the traces, one obtains

Among the pion observables, the electromagnetic form factor plays a relevant 
role for accessing the inner pion structure, since it is related to the charge 
density in the so-called impact parameter space.



Valence	Electromagnetic	 Form	Factors
The Valence contribution to the FF is obtained from the matrix elements 
of the component 

where

Total FF (Drell-Yan Frame): 

where represents the contribution of the n-th Fock component 

QCD Asymptotic Formula (Lepage & Brodsky, 1979):

Running coupling constant - PDG



Pion	Decay	Constant

In terms of the BS amplitude, we can write the Pion Decay Constant as:

Contracting with        and using the BSA decomposition we have 

which can be expressed as



• Nakanishi representation: Generalization of the Källén-Lehmman
integral representation (two point functions) for n-point functions. 

Bethe-Salpeter amplitude

BSE in Minkowski space with NIR

Nakanishi	Integral	Representation



Ydrefors,	 WP,	 Nogueira,	 Frederico	 and	 Salmè Preliminary

Transverse Momentum	Distribution



We start from the four-point Green function

which is a solution of the integral equation 

Pion	Bound	State



BSA in configuration space:

Close to the bound-state pole we obtain the BSE

The two-body irreducible Kernel of the four-point Green function

Bethe-Salpeter	 Equation

Challenge: To solve the BSE in Minkowski space



We can single out the singular contributions

For two-fermion BSE

with j=1,2,3 and in the worst case

Then one can not close the arc at the infinity .
The severity of the singularities (power j), does not depend on the Kernel

We calculate the singular contribution using 

Yan PRD 7 (1973) 1780

NIR	for	two-fermions
WP, Frederico, Salmè, Viviani, PRD94 (2016) 071901



Numerical Method
Basis expansion for	the	Nakanishi	weight function

Gegenbauer polynomials

Laguerre	polynomials

We	obtain	a	discrete generalized eigenvalue problem

We	used ~	44	Laguerre	polynomials	and	44	Gegenbauer



Vector	Exchange:	LF	amplitudes
W
ea
k	
Bi
nd

in
g

St
ro
ng
	B
in
di
ng

WdP,	 Frederico,	 Salme,	 Viviani	 and	Pimentel	 – EPJC	 77	(2017)	 764



Normalization
In order to calculate hadronic properties, we need to properly normalize the BSA

Using the BSA expansion and performing the Dirac traces, we have

From the NIR, we obtain



Dressing	the	Quark
Ø Dressed quark propagators defined for time and 

space-like momentum.
Ø Dynamical Chiral Symmetry Breaking

Solution of the Schwinger-Dyson Eq. in Minkowski-Space.

The model:
Rainbow-Ladder, Pauli Villars regularization, 
massive effective gluon.

Also discussed in 
Sauli, Nucl. Phys. 689A, 467 (2001), JHEP 0302, 001 (2003)
Bicudo, Phys. Rev. D 69, 074003 (2004).
Mezrag & Salmè, EPJC 81, 34 (2021).



Schwinger-Dyson equation in Rainbow ladder truncation

Hadron Physics QCD Quark DSE Mesons Form factors Minkowski DSE BSE Conclusion

Nonperturbative methods

I Lattice QCD

I Dyson–Schwinger Equations

I Light-Front QCD

I AdS/QCD holography

I Stochastic quantization

I . . .

= +p -1 -1p

k

p-k

Dirac’s forms of relativistic dynamics [Dirac, Rev.Mod.Phys. ’49]

In relativity, t = x0 is not the only choice of “time”, which dictates the
direction of the dynamical evolution.

instant form front form point form

t = x0 x+ , x0 + x3 ⌧ ,
p
t2 � ~x2 � a2

H = P 0 P� , P 0 � P 3 Pµ

~P , ~J ~P?, P+, ~E?, E+, J
z

~J, ~K

~K,P 0 ~F?, P� ~P , P 0

p0 =
p

~p2 +m2 p� = (~p2? +m2)/p+ pµ = mvµ (v2 = 1)

P± , P 0 ± P 3, ~P? , (P 1, P 2), x± , x0 ± x3, ~x? , (x1, x2), Ei = M+i,
E+ = M+�, F i = M�i, Ki = M0i, J i = 1

2

✏ijkM jk.
7/55

time variable

quantization
surface

Hamiltonian

kinematical

dynamical

dispersion
relation

P. Maris (ISU & ITA) Euclidean and Minkowski DSEs UNICSUL São Paulo, Oct 2018 7 / 49

The rainbow ladder Schwinger-Dyson equation in Minkowski space is

The massive gauge boson is given by

The dressed fermion propagator is 

In	collaboration	with	Duarte,	Frederico,	Ydrefors

Bare vertices, massive vector boson, Pauli-Villars regulator

⇠ = 0 (Landau Gauge)& ⇠ = 1 (Feynman Gauge)
<latexit sha1_base64="rPBjJyXysqyWqJlfSWHvs2p8Fz0="></latexit>



Fermion Schwinger-Dyson equation (Rainbow ladder)

Self-Energies Integral representations

Fermion propagator – Integral representation

1

I. FERMION SELF ENERGY AND PROPAGATOR

We will write the densities related to self energy in terms of the spectral ones. The dressed fermion propagator is

Sf (k) =
1

/k �m0 + /kAf (k2)�Bf (k2) + i✏

(1)

and the self energy are given by the integral representation
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Vector and scalar spectral densities 

Vector and scalar Self-Energy densities 



Fermion Schwinger-Dyson equation (Rainbow ladder)



Fermion Schwinger-Dyson equation (Rainbow ladder)



The integration path in SDE is deformed into the complex plane

In	collaboration	with	Duarte,	Frederico,	Ydrefors,	Maris	and	Jia



Dynamical Chiral Symmetry Breaking

Strong coupling regime

Fit to Lattice Landau Gauge Results 
Oliveira, Silva, Skullerud & Sternbeck, PRD 99 (2019) 094506

Quark propagator



Phenomenological Model

We can calibrate the model to reproduce Lattice Data for M(p2)

In	collaboration	with	Duarte,	Frederico,	Ydrefors

The next step is to use this solution to obtain the 
Fermion-Antifermion bound state

Chiral Symmetry Breaking

mb ~ 5 MeV

Running quark mass



Uniqueness	of	the	Nakanish	Representation
Nakanishi proposed that the	weight function	is unique.	It	means that if both

LHS	and	RHS	have	the	same integral	operator,	they can	be extracted

Stieltjes Transformation

We	can	relate	the	kernel with a	integral	in	the	complex plane

For	Bosons:	Carbonell,	Frederico	and	KarmanovPLB769	(2017)	418



Extreme	Binding	Energy	(B=2m)

The	BSE	in	the	limit of	Extreme	Binding	Energy	(M=0)	is:

with

Example: Fermion-Antifermion Bound	State	with massless	vector	exchange



Extreme	Binding	Energy	(B	=	2m)

Using	Feynman	parametrization,	Dirac	delta	properties	and	Uniqueness	we	have	

Solving	numerically	we	obtain	g2=68	(fundamental	state)	,	which is consistent
with the	solution of	the	BSE	for	B	close	to 2m

Definition of	



Stieltjes Transformation
We	can	compare	with the	Uniqueness	method

The	BSE	is written as

Stieltjes Transformation:

Uniqueness



Stieltjes Transformation
Stieltjes Transformation:

Uniqueness

For	the	following	values

The	Kernels	are



Nakanishi	Integral	Representation

Let’s take a connected Feynman diagram (G) with N
external momenta pi, n internal propagators with 
momenta lj and masses mj and k loops.

The transition amplitude is given by (scalar theory)

Feynman parametrization

We obtain

The denominator is a linear combination of the scalar product of the external 
momenta and the masses. 
The coefficients and the exponent (n-2k) depends on the particular Feynman 
diagram.



Nakanishi	Integral	Representation

After some change of variables we can write

Performing integration by parts, we have the integral 
representation

where

The dependence upon the details of the diagram moves from the denominator to 
the numerator. We obtain the same formal expression for the denominator of any 
diagram.



Spin	configurations	contributions

Within the BSE approach we can calculate the contribution to the valence FF 
from the 2 different spin configurations present in the pion.

For zero momentum transfer, the pure relativistic Spin-aligned configuration
contributes with 20%.

Zero in spin-aligned FF is due to relativistic spin-orbitcoupling that produces 
the term           , wich flips the sign around Q2~8GeV2

For largeQ2 , the difference between the exactformula, the asymptotic
expressionand pQCD becomes small.

Ydrefors,	 WP, Nogueira,	 Frederico	 and	 Salmè PLB 820,	 136494	 (2021).









Pion	Distribution	Amplitude

The spin components of the DA, defined by

Aligned component (blue) more wide than the anti-aligned one (red).



Nakanishi	Integral	Representation
To represent the BSA, we consider the constituent particles with 
momentum p1, p2 and the bound-state with momentum p.

Using the identities

we obtain the NIR

where



Quark-Gluon Vertex




