Drell-Yan cross-sections with fiducial cuts

_

Impact of linear power corrections and q_T -resummation in PDF determinations

Alessandro Guida, A. Glazov, L. Aperio Bella, M. Boonekamp, R. Sadykov, S. Amoroso, S. Camarda, Y. Yermolchyk

DIS 2022 Santiago de Compostela May22

Drell-Yan process and PDF

- Vector boson creation in hadron collisions
- Drell-Yan is the prime process for precision benchmark
- DY is predicted with high precision
 - NNLO fully differential result
 - N3LO [e.g. arXiv 2007.13313, arXiv 2107.09085, arXiv 2111.10379]
 - NLO EW
 - NNLO mixed QCDxEW
 - (E.g in arXiv:2106.11953, arXiv:2201.01754 arXiv:2203.11237)
- DY contribute to PDF knowledge
 - Accurate knowledge of PDF is fundamental part of LHC program
- Important for PDF evaluation
 - *u d* valence quark PDFs
 - $R_s = (s + \bar{s})/(\bar{u} + \bar{d})$

DY measurements at the LHC

- High precision ATLAS 7TeV W/Z cross section
 - Challenges the accuracy of theoretical predictions
 - Z peak accuracy at 0.5% (excluding luminosity)
 - high experimental precision requires equally high theory accuracy for inclusion in QCD fits
 - Difficult to describe in modern PDF fit

Ultimate goal – understand the effects of the mismatch:

- PDF fit at fixed order
- But PDF used in parton shower MC e.g. [arXiv:1406.7693]

Effort for ATLAS 7TeV started in [ATL-PHYS-PUB-2018-004]

ATLAS 7TeV W/Z measurement

Fiducial volume for Z cross section

High Mass

- Central Channel
 - $p_T^{\ell} > 20 \text{GeV}$
 - $\eta < 2.5$

- Forward Channel
 - $p_T^{\ell} > 20 \text{GeV}$
 - $|\eta^1| < 2.5, 2.5 < |\eta_2| < 4.9$

Z-Mass Peak

- Symmetric p_T^ℓ cuts
- $|y_{\ell\ell}|$ differential measurement in each mass bin
- Cross section extracted at Born level (prior final state QED radiation)

Low Mass

ATLAS 7TeV W/Z measurement

• Fiducial volume for $W^{+/-}$ cross section

- $p_{T,\ell} > 25 {
 m GeV}$
- $|\eta_{\ell}| < 2.5$
- $p_{T,\nu} > 25 \text{ GeV}$
- $m_T > 40 \text{ GeV}$
- Symmetric p_T^ℓ cut
- $|\eta_{\ell}|$ differential cross section
- Cross section extracted at Born level (prior final state QED radiation)

Drell-Yan at NNLO (QCD) - Fiducial Power Correction

NNLO (QCD) calculations (from different programs) differ at % level [arXiv 2104.02400]

- → this spoils the nominal accuracy of the calculations
- The difference is shown to be connected to the subtraction scheme...
 - Local subtraction scheme
 - Non-local subtraction scheme (e.g. q_T -subtraction
- ...and due to the symmetric lepton fiducial cuts [arXiv:2006.11382]
 - These induce a Linear q_T dependence of the acceptance
 - $\Phi(q_T) \Phi^{BORN} \sim q_T$
 - \rightarrow linear bias in q_T sub. Scheme

Including boson q_T recoil prescription the nominal accuracy is recovered [arXiv:2102.08039]

- Recoil prescription from resummation results
- Implemented in codes SCETlib, MATRIX [arXiv2111.1366], DYTurbo [arXiv2111.14509]

Non-local/local sub. Scheme. q_T recoil allows us to recover $O(q_T^2)$ accuracy

Drell-Yan at NNLO (QCD) - q_T Resummation

Acceptance depend on small q_T values

- \rightarrow Enhanced q_T/Q logarithms affect the calculation regardless of the subtraction scheme used
- Need to resum fiducial power correction to obtain a meaningful prediction
 - We explore the differences in the predictions using DYTurbo

Other approaches to the problem

- Asymmetric or Staggered cut [2106.08329] (avoid the linear power corrections)
- Defiducialization [2001.02933]

DYTurbo

- Fast Drell-Yan predictions with q_T subtraction [arXiv 1910.07049]
 - Improved reimplementation of DYNNLO + DYqT + DYRes
 - Fully differential up to N3LL' QCD [2103.0497]
 - Implements q_T recoil prescription in Fixed order prediction

We produce NNLO DY prediction with DYTurbo for the ATLAS measurement

Our setup:

q_T subtr				
q_T^{cut}/Q 0.008				
EW				
$G_{\!\mu}$ scheme				
m_W	80.385 GeV			
m_Z	91.187 GeV			
G_F	$1.167 \cdot 10^{-5} \text{ GeV}^{-2}$			

QCD	
PDF set	NNPDF31nnlo
μ_R	$m_{\ell\ell}$
μ_F	$m_{\ell\ell}$

Resummation			
μ_{Res}	$m_{\ell\ell}$		
Sudakov form factor	$\exp(-g_1b^2)$, $g_1=0.8$		
Resummation damping	$\exp(-(k \cdot m_{\ell\ell} - q_T)^2/(\delta \cdot m_{\ell\ell})^2)$, $k = 0.75$, $\delta = 0.5$		

ŏ

NNLO QCD Predictions with DYTurbo

Prediction for Z mass peak (other bins in backup) cross section

- q_T subtraction result
- Include linear power corrections with q_T recoil
- Include q_T resummation

NNLO QCD Predictions with DYTurbo

Prediction for $W^{+/-}$ cross section

- q_T subtraction result
- Include linear power corrections with q_T recoil
- Include q_T resummation

Comparison with data

Include NLO EW corrections from ReneSANCe [arXiv:1310.3644] NLO QED

- pure Weak
- Initial State Radiation
- Initial Final Interference

Use Kfactor applied multiplicatively

• $kF_{NLO(EW)} = \sigma_{NLO(EW)}^{LO(QCD)} / \sigma_{LO(EW)}^{LO(QCD)}$

• We observe: $\Delta \chi^2_{NLO(EW)} \simeq 20$

Quantitative comparison with data

 χ^2 data theory comparison

- Study performed with **xFitter** framework
- Include PDF uncertainties
- Theo. & exp. correlated uncertainty accounted with nuisance parameters b^{th} , b^{data}

$$\chi^{2}(\boldsymbol{b^{data}},\boldsymbol{b^{th}}) = \sum_{i} \frac{\left[D_{i} - T_{i}\left(1 - \sum \gamma_{ij}^{th}b_{j}^{th} - \sum \gamma_{ij}^{data}b_{j}^{data}\right)\right]^{2}}{\Delta_{i}^{2}} + \sum_{j} b_{j,\,data}^{2} + \sum_{k} b_{k,th}^{2} \qquad \text{Correlated } \chi^{2}$$

We test different PDFs

- Theory points T_i obtained with PDF and NLO APPLgrid (generated with MCFM)
- NNLO QCD + NLO EW accuracy reached with kFactors
- NNLO QCD from DYTurbo

$$kF = \frac{\sigma_i^{NNLO(QCD) + NLO EW}}{\sigma_i^{NLO(QCD)}}$$

Reproduce ATLAS paper results
Slightly better result \rightarrow better stat of new predictions

	CT14nnlo 68%CL		
Dataset	DYNNLO	DYTurbo	
	ATL. paper	q_T -subtr.	
ATLAS W+ $ \eta_{\ell} $	10 / 11	9.4 / 11	
ATLAS W- $ \eta_\ell $	9.0 / 11	8.2 / 11	
ATLAS low mass $Z y_{\ell\ell} $	11 / 6	11/6	
ATLAS peak CC $Z y_{\ell\ell} $	15 / 12	15 / 12	
ATLAS peak CF $Z y_{\ell\ell} $	10/9	9.6 / 9	
ATLAS high mass CC $Z y_{\ell\ell} $	6.3 / 6	6.0 / 6	
ATLAS high mass CF $Z y_{\ell\ell} $	5.1 / 6	5.2 / 6	
Correlated χ^2	39	39	
Log penalty χ^2	-4.09	-4.33	
Total χ^2 / dof	102 / 61	99 / 61	
χ^2 p-value	0.00	0.00	

Quantitative comparison with data

Use CT14 NNLO PDF rescaled at 68%CL

- Used in the ATLAS paper
- Does not include these data set

	CT14nnlo	68%CL	
Dataset	NNLO q_T -subtr.	NNLO recoil q_T -subtr.	NNLO+ NNLL
ATLAS W+ lepton rapidity	9.4 / 11	8.8 / 11	8.8 / 11
ATLAS W- lepton rapidity	8.2 / 11	8.7 / 11	8.2 / 11
ATLAS low mass Z rapidity	11/6	7.2 / 6	7.5 / 6
ATLAS peak CC Z rapidity	15 / 12	10 / 12	7.7 / 12
ATLAS peak CF Z rapidity	9.6 / 9	5.3 / 9	6.4/9
ATLAS high mass CC Z rapidity	6.0 / 6	6.5 / 6	5.8 / 6
ATLAS high mass CF Z rapidity	5.2 / 6	5.6 / 6	5.3 / 6
Correlated χ^2	39	40	32
Log penalty χ^2	-4.33	-3.39	-4.20
Total χ^2 / dof	99 / 61	88 / 61	77 / 61
χ^2 p-value	0.00	0.01	0.08

Improvement of single data set χ^2

Including resummation effects reduce the total χ^2 of 10(20) points

Compare to other PDF sets

		•.			
		PDF	Total χ^2 (ndf=61)		
	_		NNLO	NNLO	NNLO+NLL
			q_T subtr.	recoil q_T -subtr	
	_	CT10nnlo $68%CL$	100	85	76
PDFs NOT include	_	CT14nnlo68%CL	99	88	77
ATLAS 7TeV data		CT18NNLO68%CL	102	90	79
sets	_	MMHT14nnlo68%CL	124	99	94
	_	NNPDF30nnlo	139	133	111
	_	ABMP16_5_NNLO	124	106	92
		HERAII PDF	199	201	160
		PDF	Total χ^2 (ndf=61)		
			NNLO	NNLO	NNLO+NLL
PDFs include ATLAS			q_T subtr.	recoil q_T -subtr	
7TeV data sets	CT18ANNLO68	96	84	74	
		MSHT20nnlo	111	87	79
		NNPDF31	91	84	71
		NNPDF40nnlo	89	83	69

We always observe a reduction of the χ^2 when including q_T resummation $\rightarrow \Delta \chi^2 \sim 20(10)$

PDF profiling

Quantify the impact of new data in PDF determination

Use the shift b_{th} to update the PDF

- Uncertainty reduction
- Shift of the central value

Profiled PDF

$$f_0' = f_0 + \sum_{k} \beta_{k, \text{th}}^{\min} \left(\frac{f_k^+ - f_k^-}{2} - \beta_{k, \text{th}}^{\min} \frac{f_k^+ + f_k^- - 2f_0}{2} \right)$$

- ATLAS data give strong constrain on strange PDF
 - What changes with new predictions?

Conclusion and Outlook

- We looked at the effects of linear power corrections and resummation in the ATLAS 7TeV data set
 - Resummation improves the data-MC agreement
 - Improvement in χ^2 with all the PDF sets
 - The impact of ATLAS data don't change much when using different theories
- It is interesting to check the effect of fiducial cuts in other measurement phase space, (LHCb)
- Perform a PDF fit to wide DY datasets with coherent theory predictions
 - NNLO + EW Corrections fit
 - NNLO+NNLL + EW Corrections fit
- The paper with these results is in preparation
 - All of our kFactor will be public available for PDF fitters

Thanks for the attention!

BACKUP

All Z cross sections

All W cross section

Impact of EW corrections

NO EW Corrections

Dataset	FO	FPC	Res
ATLAS W- lepton rapidity 2011	9.4 / 11	9.8 / 11	9.2 / 11
ATLAS W+ lepton rapidity 2011	9.3 / 11	8.7 / 11	8.8 / 11
ATLAS peak CC Z rapidity 2011	15 / 12	11 / 12	8.2 / 12
ATLAS high mass CF Z rapidity 2011	4.4 / 6	4.7 / 6	4.5 / 6
ATLAS peak CF Z rapidity 2011	8.9 / 9	4.7 / 9	5.6 / 9
ATLAS high mass CC Z rapidity 2011	6.1 / 6	5.8 / 6	6.0 / 6
ATLAS low mass Z rapidity 2011	15 / 6	9.4 / 6	11 / 6
Correlated χ^2	52	46	44
Log penalty χ^2	-4.23	-3.28	-4.09
Total χ^2 / dof	116 / 61	96 / 61	93 / 61
χ^2 p-value	0.00	0.00	0.00

With EW Corrections

FO	FPC	Res
12 / 6	7.1 / 6	7.3 / 6
9.5 / 11	8.9 / 11	8.8 / 11
6.0 / 6	6.8 / 6	5.9 / 6
9.6 / 9	5.4 / 9	6.4 / 9
8.3 / 11	8.8 / 11	8.2 / 11
5.1 / 6	5.5 / 6	5.2 / 6
16 / 12	12 / 12	8.0 / 12
40	40	32
-4.33	-3.39	-4.20
102 / 61	91 / 61	78 / 61
0.00	0.01	0.07

CT14 data-theorv

CT14 data-theory

CT14 data-theory

CT14 data-theory

CT14prof Q=Q0

CT14 Prof. Q=mZ

NNPDF30prof Q=Q0

NNPDF30prof Q=mZ

Cuts & linear power correction

- Symmetric p_T cut configuration induces linear q_T on the acceptance f
 - $p_T^{\ell_1}, p_T^{\ell_2} > p_T^{\text{cut}}$

- $\Phi^{\text{sym}}(q_T) = \Phi_0 + \Phi_1^{\text{sym}} \cdot \frac{q_T}{M} + O(q_T^2/M^2)$
- · Great interest recently on this effect
- [Ebert, Tackmann, 2019], [Ebert, Michel, Stewart, Tackmann, 2020], [Alekhin, Kardos, Moch, Trocsanyi, 2021], [Salam, Slade, 2021], [Buonocore, Kallweit, Rottoli, Wiesemann, 2021], [Camarda, Cieri, Ferrera, 2021]
]

LHCb Z

LHCb Zmumu 7TeV

(a) NNLO comparison.