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Motivation for resummation
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• Strong coupling is not a naturally small parameter in the Regge limit. Regge limit is nonperturbative. 

• Compare DGLAP where the large scale implies small coupling. 

• No momentum sum rule, since the evolution is local in x. In DGLAP: momentum sum rule satisfied at 
each order due to the non-locality of the evolution in x. 

• Approximations in the phase space (multi-Regge kinematics, etc..) cannot/are only  slowly recovered  
by the (fixed number of) the higher orders of expansion in the coupling constant.

Why?
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Representation of the kernel

Mellin variables: � � ln k2
T � � ln 1/x
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LLx kernel in Mellin space

BFKL kernel eigenvalue [4, 5] which has the following form

χ1(γ) = −
b

2
[χ2

0(γ) + χ′
0(γ)] −

1

4
χ′′

0(γ) −
1

4

(
π

sinπγ

)2 cos πγ

3(1 − 2γ)

(
11 +

γ(1 − γ)

(1 + 2γ)(3 − 2γ)

)

+

(
67

36
−
π2

12

)
χ0(γ) +

3

2
ζ(3) +

π3

4 sin πγ

−
∞∑

n=0

(−1)n
[
ψ(n + 1 + γ) − ψ(1)

(n + γ)2
+
ψ(n + 2 − γ) − ψ(1)

(n + 1 − γ)2

]
. (19)

It turns out that the collinear approximation (18) above reproduces the exact eigenvalue
(19) up to 7% [11,35] accuracy when γ ∈]0, 1[. This suggests that the collinear terms are the
dominant contributions in the NLL kernel.

In the following, we shall normally incorporate the shift of γ-poles in the form

χω
n(γ) = χω

nL(γ + ω
2 ) + χω

nR(1 − γ + ω
2 ) , (20)

where χω
nL (χω

nR) have only γ → −ω
2 (γ → 1+ ω

2 ) singularities of the type in Eq. (16). In this
way the collinear singularities are single logarithmic in both limits k $ k0 and k0 $ k, and
the energy scale dependent terms are automatically resummed. The modified leading-order
eigenvalue that we adopt has the following structure (compare (17)):

χω
0 = 2ψ(1) − ψ(γ + ω

2 ) − ψ(1 − γ + ω
2 ) , (21)

in the case of symmetric choice of energy scale ν0 = kk0. This form of the kernel was
considered previously in [39, 40]. It is obtained from the leading order BFKL kernel by
imposing the so-called kinematical (or consistency) constraint [41, 42, 43] which limits the
virtualities of the transverse momenta of the gluons in the real emission part of the kernel. The
origin of this constraint is the requirement that in the multi-Regge kinematics the virtualities
of the exchanged gluons be dominated by their transverse parts. The NLL contribution of
the resummed kernel, χω

1 was then [11] constructed by the requirement that the collinear
limit in Eq. (17) should be correctly reproduced, and the exact form of the NL kernel (19)
should be obtained also.

The final NLL eigenvalue function proposed in [10,11] reads

χω
1 (γ) = χ1(γ) +

1

2
χ0(γ)

π2

sin2 πγ

−A1(0)ψ
′(γ) − [A1(0) − b]ψ′(1 − γ)

+A1(ω)ψ′(γ + ω
2 ) + [A1(ω) − b]ψ′(1 − γ + ω

2 )

−
π2

6
[χ0(γ) − χω

0 (γ)] . (22)

The first line is the original NLL term χ1(γ) with the subtraction of the cubic poles which
come from the changes of the energy scale and which are resummed by the leading order
ω-dependent kernel (21). The second and third lines contain shifted collinear double poles,
and finally the last line contains the shifted single poles which additionally appear as an
artefact of the resummation procedure.
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NLLx kernel in Mellin space

running coupling
triple poles
double poles

NLLx BFKL kernel
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Origin of triple poles: kinematical constraint
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Imposed  on the transverse momenta in the ladder

x(1z − z), qT

x, kT

x
z , k

′
T

There is a stronger constraint arising however from the requirement that in the low x for-
malism the exchanged gluons have off-shellness dominated by the transverse components, i.e.
one keeps terms that obey |k2| ! k2T . The derivation of the kinematical constraint here follows
[19].

The gluon four momentum is as usual decomposed into light cone and transverse components

k = (k+, k−,kT ) , (3)

where k± = k0 ± k3. Now the exchanged gluon virtuality in these variables is equal to

k2 = k+k− − k2T . (4)

The condition |k2| ! k2T translates approximately to

k2T > k+k− . (5)

The emitted gluon is on-shell q2 = q+q− − q2T = 0, and therefore we can express this fact as

q− = q2T/q
+ . (6)

On the other hand in the multi-Regge kinematics there is a strong ordering of longitudinal
momenta so

k− = k
′− − q− ! q− . (7)

Using the condition (6) and inserting it into (5) one finally obtains

k2T > k+
q2T
q+

=
z

1− z
q2T , (8)

or as limit on q2T integration

q2T <
1− z

z
k2T . (9)

Now there are several approximations that can be made to this constraint. In the small z limit
(9) can be approximated to

q2T <
k2T
z

. (10)

This form of the approximation was used in [17] and also studied in the context of small x
approximation to the CCFM evolution in [19]. The lower bound on z, i.e. z > x results in the
upper bound on q2T < k2T/x providing local condition for energy-momentum conservation.

Finally, (9) can be further rewritten as a condition on the transverse momentum of the
exchanged gluon k′T . For a given value of kT a high value of k′T means also high value of qT .
Rewriting it as

k′2T − 2k′T · kT + k2T <
1− z

z
k2T , (11)

and averaging over angle between kT and k′T and taking large k′T limit we get:

k′2T <
k2T
z

. (12)

This form of the constraint was used for example in [18] and in [20, 46, 29, 47, 48]. The nice
feature of (12) is the fact that the kernel with kinematical constraint has a Mellin representation
which results in a simple shift of poles in the Mellin space. In the rest of the paper we shall
analyze in detail all the forms of the constraints and quantify the differences between them both
in Mellin space and through direct numerical solution ot the BFKL equation in momentum
space.
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Virtualities dominated by transverse  components
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Kinematical constraint

Leads to the shift of the poles in the kernel 

Ciafaloni
Kwiecinski, Martin, Sutton;

Anderson,  Gustafson, Kharazziha, Samuelson

Kinematical constraint can generate the triple poles when truncated to NLLs

asymmetric case (eg. DIS)

symmetric case (eg.Mueller-
Navelet jets,  γ*γ*)

3 Comparison of improved kernel with results in N = 4 sYM

Since the works of [18, 19] it is known that the kinematical constraint provides very important
contribution to the NLL order and beyond in BFKL. Even though formally of subleading or-
der, numerically this correction is very large and leads to the strong reduction of the intercept,
aligning the BFKL equation more with phenomenology, for selected early works which imple-
ment kinematical corrections in BFKL see for example [20, 49, 50, 51]. At the NLL order the
kinematical constraint, when viewed as a correction in the Mellin space gives rise to the cubic
poles in the Mellin conjugated variable to the transverse momentum in the BFKL eigenvalue.
The N = 4 sYM eigenvalue at LL is identical to the QCD case, and at NLL the same leading
cubic poles appear in both theories [52]. Since the constraint is originating from the kinematics
specific to the Regge limit of the cascade, one could expect it to be universal in both theories.
It is useful to explore whether or not the kinematical constraint correctly reproduces the terms
in the higher order NNLL known only in the supersymmetric case [14, 15, 16] and what are the
differences between the different forms of the kinematical constraint discussed in the literature.

In this section we shall perform a detailed comparison of leading and subleading poles in the
Mellin space originating from the kinematical constraint with the results in N = 4 sYM case up
to NNLL. First, we shall perform the comparison on the example of the constraint (12). Later
on, in Sec. 4, we shall check that the results are consistent for different forms of the kinematical
constraints up to certain order of poles, and we shall identify this order. In that way we can
quantify the level of differences between different forms of the constraints.

3.1 NLL and NNLL of N=4 sYM and ω expansion

Let us begin with recalling the definition of the BFKL eigenvalue and the Mellin transform.
The Mellin transformation into the ω space is defined as

F(ω, k2T ) =

∫ 1

0

dz

z
zω F(z, k2T ) , (13)

and into the γ space as

F̃(ω, γ) =

∫

∞

0
dk2T

(

k′2T
)−γ F(ω, k2T ) , (14)

Applying it to the BFKL equation we get the algebraic form of the BFKL equation

F̃(ω, γ) = F̃ (0)(ω, γ) +
ᾱs

ω
χ(γ,ω)F̃(ω, γ) , (15)

where χ(γ,ω) is the kernel transformed to the double Mellin space. The ω dependence stems
from the z dependence of the kernel K due to the kinematical constraint. Of course the fixed
order LL and NLL kernels do not have the ω dependence, it is only the resummed kernel, in
this case the kernel with the kinematical constraint that obtains this additional dependence. As
is well known, see for example [19, 20, 21, 46, 29], such dependence in turn generates the series
in αs and therefore resums the contributions from all orders in the strong coupling. The result
with the constraint (12) is well known [18]

χ(γ,ω) = 2ψ(1) − ψ(γ)− ψ(1 − γ + ω) . (16)

where ψ is a polygamma function. When ω = 0 the above result coincides with the LL BFKL
eigenvalue in QCD and in N=4 sYM

χ0(γ) = 2ψ(1) − ψ(γ)− ψ(1 − γ) . (17)

5

We shall investigate Mellin forms of the kernels with other constraints (9) and (10) later on in
Sec.4. In order to compare the results with NLL and NNLL calculations one needs to specify
the correct scale choice. The above result leads to an asymmetric kernel which is valid in the
so-called asymmetric scale choice. That means it is valid when considering the DIS process,
in which the x Bjorken is defined as x = Q2/s with Q2 the (minus) virtuality of the photon.
For the case of the different process, like for example Mueller-Navelet jets with comparable
transverse momenta, the appropriate variable would be QQ0/s, where Q ! Q0 are the scales of
the order of transverse momenta of the jets. The eigenvalue in this case would be different from
(16) as it should correspond to the symmetric choice of scales. Therefore one needs to perform
the scale changing transformation which generates terms starting at an appropriate order. Up
to NLL order this was discussed in [13, 12, 21]. We shall recall in detail the scale changing
transformation, and what terms it generates up to NNLL in the next subsection, here we shall
directly start from the symmetric counterpart of the eigenvalue (16) which has the following
form

χ(γ,ω) = 2ψ(1) − ψ(γ +
ω

2
)− ψ(1− γ +

ω

2
) . (18)

The result for the NNLL eigenvalue in the case of the N = 4 sYM was derived originally in
[14, 15] for the symmetric case. It was later on rederived in [16] by exploiting the correspondence
between the soft-gluon wide-angle radiation in jet physics and the BFKL physics. To have direct
relation to these results we will focus below on the symmetric case. The poles around γ = 0 of
NLL [52] and NNLL kernel in N=4 sYM are given by [14, 15, 16]

χsYM
1 = − 1

2γ3
− 1.79 +O(γ) , (19)

χsYM
2 =

1

2γ5
− ζ(2)

γ3
− 9ζ(3)

4γ2
− 29ζ(4)

8γ
+O(1) . (20)

Since it is symmetric case the coefficients of the poles around γ = 0 and γ = 1 are identical.
For the purpose of simplification therefore we only focus on the expansion around γ = 0. We
can retrieve the leading and the vanishing subleading poles of the N = 4 sYM case by doing ω
expansion of the shifted eigenvalue (18)

χ(γ,ω) = 2ψ(1) − ψ(γ +
ω

2
)− ψ(1− γ +

ω

2
) = χ0 + χ(1)ω

2
+

1

2!
χ(2)

(ω

2

)2
+ . . . , (21)

where the χ(i) is the i-th derivative of χω with respect to ω. The term lowest in order in ᾱs

in the expansion is simply χ0 which is the LL eigenvalue (17). In order to retrieve the term
contributing to the NLL order we use the solution to the equation for the intercept in the lowest
order of the coupling, i.e. ω0 = ᾱsχ0, and substitute it into (21) and keep terms up to first
power in ᾱs. One obtains

χ(γ) = χ0 +
1

2
ᾱsχ

(1)χ0 . (22)

This gives the contribution to the NLL order

χ1(γ) =
1

2
χ(1)χ0 =

1

2

[

ψ(1)(γ) + ψ(1)(1− γ)
]

[2ψ(1) − ψ(γ) − ψ(1− γ)] . (23)

Expanding around γ = 0 one obtains the following pole structure

χ1(γ) = − 1

2γ3
− ζ(2)

γ
+O(1) . (24)

6

Related to the scale choice
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Shifts of poles

6

BFKL kernel eigenvalue [4, 5] which has the following form

χ1(γ) = −
b

2
[χ2

0(γ) + χ′
0(γ)] −

1

4
χ′′

0(γ) −
1

4

(
π

sinπγ

)2 cos πγ

3(1 − 2γ)

(
11 +

γ(1 − γ)

(1 + 2γ)(3 − 2γ)

)

+

(
67

36
−
π2

12

)
χ0(γ) +

3

2
ζ(3) +

π3

4 sin πγ

−
∞∑

n=0

(−1)n
[
ψ(n + 1 + γ) − ψ(1)

(n + γ)2
+
ψ(n + 2 − γ) − ψ(1)

(n + 1 − γ)2

]
. (19)

It turns out that the collinear approximation (18) above reproduces the exact eigenvalue
(19) up to 7% [11,35] accuracy when γ ∈]0, 1[. This suggests that the collinear terms are the
dominant contributions in the NLL kernel.

In the following, we shall normally incorporate the shift of γ-poles in the form

χω
n(γ) = χω

nL(γ + ω
2 ) + χω

nR(1 − γ + ω
2 ) , (20)

where χω
nL (χω

nR) have only γ → −ω
2 (γ → 1+ ω

2 ) singularities of the type in Eq. (16). In this
way the collinear singularities are single logarithmic in both limits k $ k0 and k0 $ k, and
the energy scale dependent terms are automatically resummed. The modified leading-order
eigenvalue that we adopt has the following structure (compare (17)):

χω
0 = 2ψ(1) − ψ(γ + ω

2 ) − ψ(1 − γ + ω
2 ) , (21)

in the case of symmetric choice of energy scale ν0 = kk0. This form of the kernel was
considered previously in [39, 40]. It is obtained from the leading order BFKL kernel by
imposing the so-called kinematical (or consistency) constraint [41, 42, 43] which limits the
virtualities of the transverse momenta of the gluons in the real emission part of the kernel. The
origin of this constraint is the requirement that in the multi-Regge kinematics the virtualities
of the exchanged gluons be dominated by their transverse parts. The NLL contribution of
the resummed kernel, χω

1 was then [11] constructed by the requirement that the collinear
limit in Eq. (17) should be correctly reproduced, and the exact form of the NL kernel (19)
should be obtained also.

The final NLL eigenvalue function proposed in [10,11] reads

χω
1 (γ) = χ1(γ) +

1

2
χ0(γ)

π2

sin2 πγ

−A1(0)ψ
′(γ) − [A1(0) − b]ψ′(1 − γ)

+A1(ω)ψ′(γ + ω
2 ) + [A1(ω) − b]ψ′(1 − γ + ω

2 )

−
π2

6
[χ0(γ) − χω

0 (γ)] . (22)

The first line is the original NLL term χ1(γ) with the subtraction of the cubic poles which
come from the changes of the energy scale and which are resummed by the leading order
ω-dependent kernel (21). The second and third lines contain shifted collinear double poles,
and finally the last line contains the shifted single poles which additionally appear as an
artefact of the resummation procedure.
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imposing the so-called kinematical (or consistency) constraint [41, 42, 43] which limits the
virtualities of the transverse momenta of the gluons in the real emission part of the kernel. The
origin of this constraint is the requirement that in the multi-Regge kinematics the virtualities
of the exchanged gluons be dominated by their transverse parts. The NLL contribution of
the resummed kernel, χω

1 was then [11] constructed by the requirement that the collinear
limit in Eq. (17) should be correctly reproduced, and the exact form of the NL kernel (19)
should be obtained also.

The final NLL eigenvalue function proposed in [10,11] reads

χω
1 (γ) = χ1(γ) +

1

2
χ0(γ)

π2

sin2 πγ

−A1(0)ψ
′(γ) − [A1(0) − b]ψ′(1 − γ)

+A1(ω)ψ′(γ + ω
2 ) + [A1(ω) − b]ψ′(1 − γ + ω

2 )

−
π2

6
[χ0(γ) − χω

0 (γ)] . (22)

The first line is the original NLL term χ1(γ) with the subtraction of the cubic poles which
come from the changes of the energy scale and which are resummed by the leading order
ω-dependent kernel (21). The second and third lines contain shifted collinear double poles,
and finally the last line contains the shifted single poles which additionally appear as an
artefact of the resummation procedure.
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Shift of poles (symmetric case)

LL case with shifts

Shift of poles reproduces highest poles up to NNLO in sYM (highest poles the same in QCD)

We shall investigate Mellin forms of the kernels with other constraints (9) and (10) later on in
Sec.4. In order to compare the results with NLL and NNLL calculations one needs to specify
the correct scale choice. The above result leads to an asymmetric kernel which is valid in the
so-called asymmetric scale choice. That means it is valid when considering the DIS process,
in which the x Bjorken is defined as x = Q2/s with Q2 the (minus) virtuality of the photon.
For the case of the different process, like for example Mueller-Navelet jets with comparable
transverse momenta, the appropriate variable would be QQ0/s, where Q ! Q0 are the scales of
the order of transverse momenta of the jets. The eigenvalue in this case would be different from
(16) as it should correspond to the symmetric choice of scales. Therefore one needs to perform
the scale changing transformation which generates terms starting at an appropriate order. Up
to NLL order this was discussed in [13, 12, 21]. We shall recall in detail the scale changing
transformation, and what terms it generates up to NNLL in the next subsection, here we shall
directly start from the symmetric counterpart of the eigenvalue (16) which has the following
form

χ(γ,ω) = 2ψ(1) − ψ(γ +
ω

2
)− ψ(1− γ +

ω

2
) . (18)

The result for the NNLL eigenvalue in the case of the N = 4 sYM was derived originally in
[14, 15] for the symmetric case. It was later on rederived in [16] by exploiting the correspondence
between the soft-gluon wide-angle radiation in jet physics and the BFKL physics. To have direct
relation to these results we will focus below on the symmetric case. The poles around γ = 0 of
NLL [52] and NNLL kernel in N=4 sYM are given by [14, 15, 16]

χsYM
1 = − 1

2γ3
− 1.79 +O(γ) , (19)

χsYM
2 =

1

2γ5
− ζ(2)

γ3
− 9ζ(3)

4γ2
− 29ζ(4)

8γ
+O(1) . (20)

Since it is symmetric case the coefficients of the poles around γ = 0 and γ = 1 are identical.
For the purpose of simplification therefore we only focus on the expansion around γ = 0. We
can retrieve the leading and the vanishing subleading poles of the N = 4 sYM case by doing ω
expansion of the shifted eigenvalue (18)

χ(γ,ω) = 2ψ(1) − ψ(γ +
ω

2
)− ψ(1− γ +

ω

2
) = χ0 + χ(1)ω

2
+

1

2!
χ(2)

(ω

2

)2
+ . . . , (21)

where the χ(i) is the i-th derivative of χω with respect to ω. The term lowest in order in ᾱs

in the expansion is simply χ0 which is the LL eigenvalue (17). In order to retrieve the term
contributing to the NLL order we use the solution to the equation for the intercept in the lowest
order of the coupling, i.e. ω0 = ᾱsχ0, and substitute it into (21) and keep terms up to first
power in ᾱs. One obtains

χ(γ) = χ0 +
1

2
ᾱsχ

(1)χ0 . (22)

This gives the contribution to the NLL order

χ1(γ) =
1

2
χ(1)χ0 =

1

2

[

ψ(1)(γ) + ψ(1)(1− γ)
]

[2ψ(1) − ψ(γ) − ψ(1− γ)] . (23)

Expanding around γ = 0 one obtains the following pole structure

χ1(γ) = − 1

2γ3
− ζ(2)

γ
+O(1) . (24)
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Resummation setup
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In fact, the resolvent of the latter is given by

G̃ω ≡ [ω − K̃ω]−1 # (1 − ᾱsK
ω
c )−1

[
ω − ᾱsK

ω
0 (1 − ᾱsK

ω
c )−1

]−1
, (30)

and is then proportional to the Green’s function of the resummed kernel (28).
In other words, leading-log collinear singularities are equivalently incorporated by a string

of subleading kernels (as in Eq. (28)), or by a NL contribution of order ᾱsω (as in Eq. (29)) —
apart from a redefinition of the impact factors. In the realistic case with running coupling it is
straightforward to check that b-dependence only remains in the first term of the ω-expansion
(26)

χω(γ) # χω
0 + ω

(
A1

γ + ω
2

+
A1 − b

1 − γ + ω
2

)
+ . . . , (31)

whereas it cancels out in all remaining subleading terms. Therefore, in order to incorporate
the leading log collinear behavior in the form (31) we can set, for instance,

K̃ω = ᾱs(q
2)Kω

0 + ωᾱs(k
2
>)Kω

c + NLL , (32)

as an improved leading kernel. Here we assume that the scale for ᾱs in the leading BFKL part
is provided by the momentum of the emitted gluon q = k−k′, as suggested by the b-dependent

part of the NLL eigenvalue in Eq. (19), which corresponds to the kernel b 1
q2 log q2

k2

∣∣
Reg

(see [5]),

and — via ω-expansion — to the b-term in Eq. (31). A simplified version of Eq. (32) without
the NLL term and with one collinear term (for γ → 0) was used in [43] for a phenomenological
analysis of the structure functions.

Note that, if we take literally the ω-expansion (26) with the choice of NLL term (22),
then χω

1 /χω
0 would coincide with χω

c close to the collinear poles, but would be different in
detail away from them, and would actually contain spurious poles at complex values of γ due
to the zeroes of χω

0 (γ). Such poles cancel out if the full ω-expansion series (26) is summed
up, but are present at any finite truncation of the series, thus implying poor convergence of
the solution whenever γ-values close to the spurious poles become important. For this reason
in this paper we prefer to resum collinear singularities by the improved kernel (32), which
contains only collinear poles. Furthermore, the NLL term needed to complete Eq. (32) —
to be detailed in the next section — turns out to have only simple (leading) collinear poles,
because the running coupling terms have been already included in the q2-scale dependence
of the running coupling. Therefore, the full kernel has the same virtues as Eq. (26) in the
collinear limit and, lacking spurious poles, is more suitable for numerical iteration.

3 Form of the resummed kernel

3.1 Next-to-leading coefficient kernel

We have still to incorporate in our improved kernel the exact form of the NLL result [4, 5]
in the scheme of the ᾱs expansion, i.e. (32). We choose to start from the leading kernel in
Eq. (32) which incorporates both the collinear resummation and the running coupling effects
due to the choice of scale q2. The full improved kernel then has the form

K̃ω = ᾱs(q
2)Kω

0 + ωᾱs(k
2
>)Kω

c + ᾱ2
s(k

2
>)K̃ω

1 , (33)

where k> = max(k, k′), k< = min(k, k′), and K̃ω
1 is determined below.
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LL with shifts
non-singular DGLAP

NLL with subtractions

We recall that the Mellin transform of the collinear part Kω
c , defined by

χω
c (γ) =

A1(ω)

γ + ω
2

+
A1(ω)

1 − γ + ω
2

, (34)

leads to the expression

Kω
c (k, k′) =

A1(ω)

k2
>

(
k<

k>

)ω

. (35)

One can match the above prescription to the standard kernel at NLL order by expanding in
ω and in bᾱs to first order

K̃ω " ᾱs(k
2)(K0

0 + ωK1
0 + ωK0

c ) + ᾱ2
s(K̃

0
1 + Krun

0 ), (36)

where we have defined

K0
c ≡ Kω=0

c , K0
j ≡ Kω=0

j , K1
j ≡

∂Kω
j

∂ω

∣∣∣∣
ω=0

, χrun
0 (γ) = −

b

2
(χ′

0 + χ2
0) , (37)

by noting that the running coupling term has the form [see Eqs. (88,89) and App. A]

Krun
0 (k, k′) = −b

[
log

q2

k2 K0(k,k′)

]

Reg

. (38)

By replacing the expression (36) into Eq. (1) we obtain the relationship with the customary
BFKL Green’s function

[ω − K̃ω]−1 =
(
1 − ᾱs(K

1
0 + K0

c )
)−1 [

ω − ᾱs
(
K0 + ᾱsK1 + O(ᾱ2

s)
)]−1

, (39)

where K0 and K1 are LL and NLL ω-independent kernels. The two expressions will match
provided we identify

K0 = K0
0

K̃0
1 = K1 − K0

0 (K1
0 + K0

c ) − Krun
0 , (40)

and we properly redefine the (so far unspecified) impact factors (see Sec. 6). Thus the term
K̃0

1 in (40) corresponds to the customary NLL expression (19) with subtractions.
In γ-space the subtracted NLL eigenvalue function which corresponds to the K̃ω

1 has the
following form:

χ̃1(γ) = χ1(γ) − χ0
0(γ)[χ

1
0(γ) + χ0

c(γ)] − χrun
0 (γ)

= χ1(γ) +
1

2
χ0(γ)

π2

sin2(πγ)
− χ0(γ)

A1(0)

γ(1 − γ)
+

b

2
(χ′

0 + χ2
0) . (41)

The subtractions cancel the triple poles (due to change of energy scales) and the double poles
(from the non-singular part of the anomalous dimension). Therefore the resulting kernel χ̃1

contains at most single poles at γ = 0, 1. Eq. (32) together with the eigenvalues (21), (34)
and (41) gives a complete prescription for the resummed model. This new formulation is
identical to the previous ω-expansion [10, 11] near the collinear poles. It has the advantage
that it can be easily transformed into the (x, k2) space (it is free of ratios in γ-space, such as
χ1/χ0) and avoids the spurious poles that were present in (26).
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BFKL kernel eigenvalue [4, 5] which has the following form

χ1(γ) = −
b

2
[χ2

0(γ) + χ′
0(γ)] −

1

4
χ′′

0(γ) −
1

4

(
π

sinπγ

)2 cos πγ

3(1 − 2γ)

(
11 +

γ(1 − γ)

(1 + 2γ)(3 − 2γ)

)

+

(
67

36
−
π2

12

)
χ0(γ) +

3

2
ζ(3) +

π3

4 sin πγ

−
∞∑

n=0

(−1)n
[
ψ(n + 1 + γ) − ψ(1)

(n + γ)2
+
ψ(n + 2 − γ) − ψ(1)

(n + 1 − γ)2

]
. (19)

It turns out that the collinear approximation (18) above reproduces the exact eigenvalue
(19) up to 7% [11,35] accuracy when γ ∈]0, 1[. This suggests that the collinear terms are the
dominant contributions in the NLL kernel.

In the following, we shall normally incorporate the shift of γ-poles in the form

χω
n(γ) = χω

nL(γ + ω
2 ) + χω

nR(1 − γ + ω
2 ) , (20)

where χω
nL (χω

nR) have only γ → −ω
2 (γ → 1+ ω

2 ) singularities of the type in Eq. (16). In this
way the collinear singularities are single logarithmic in both limits k $ k0 and k0 $ k, and
the energy scale dependent terms are automatically resummed. The modified leading-order
eigenvalue that we adopt has the following structure (compare (17)):

χω
0 = 2ψ(1) − ψ(γ + ω

2 ) − ψ(1 − γ + ω
2 ) , (21)

in the case of symmetric choice of energy scale ν0 = kk0. This form of the kernel was
considered previously in [39, 40]. It is obtained from the leading order BFKL kernel by
imposing the so-called kinematical (or consistency) constraint [41, 42, 43] which limits the
virtualities of the transverse momenta of the gluons in the real emission part of the kernel. The
origin of this constraint is the requirement that in the multi-Regge kinematics the virtualities
of the exchanged gluons be dominated by their transverse parts. The NLL contribution of
the resummed kernel, χω

1 was then [11] constructed by the requirement that the collinear
limit in Eq. (17) should be correctly reproduced, and the exact form of the NL kernel (19)
should be obtained also.

The final NLL eigenvalue function proposed in [10,11] reads

χω
1 (γ) = χ1(γ) +

1

2
χ0(γ)

π2

sin2 πγ

−A1(0)ψ
′(γ) − [A1(0) − b]ψ′(1 − γ)

+A1(ω)ψ′(γ + ω
2 ) + [A1(ω) − b]ψ′(1 − γ + ω

2 )

−
π2

6
[χ0(γ) − χω

0 (γ)] . (22)

The first line is the original NLL term χ1(γ) with the subtraction of the cubic poles which
come from the changes of the energy scale and which are resummed by the leading order
ω-dependent kernel (21). The second and third lines contain shifted collinear double poles,
and finally the last line contains the shifted single poles which additionally appear as an
artefact of the resummation procedure.
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We recall that the Mellin transform of the collinear part Kω
c , defined by

χω
c (γ) =

A1(ω)

γ + ω
2

+
A1(ω)

1 − γ + ω
2

, (34)

leads to the expression

Kω
c (k, k′) =

A1(ω)

k2
>

(
k<

k>

)ω

. (35)

One can match the above prescription to the standard kernel at NLL order by expanding in
ω and in bᾱs to first order

K̃ω " ᾱs(k
2)(K0

0 + ωK1
0 + ωK0

c ) + ᾱ2
s(K̃

0
1 + Krun

0 ), (36)

where we have defined

K0
c ≡ Kω=0

c , K0
j ≡ Kω=0

j , K1
j ≡

∂Kω
j

∂ω

∣∣∣∣
ω=0

, χrun
0 (γ) = −

b

2
(χ′

0 + χ2
0) , (37)

by noting that the running coupling term has the form [see Eqs. (88,89) and App. A]

Krun
0 (k, k′) = −b

[
log

q2

k2 K0(k,k′)

]

Reg

. (38)

By replacing the expression (36) into Eq. (1) we obtain the relationship with the customary
BFKL Green’s function

[ω − K̃ω]−1 =
(
1 − ᾱs(K

1
0 + K0

c )
)−1 [

ω − ᾱs
(
K0 + ᾱsK1 + O(ᾱ2

s)
)]−1

, (39)

where K0 and K1 are LL and NLL ω-independent kernels. The two expressions will match
provided we identify

K0 = K0
0

K̃0
1 = K1 − K0

0 (K1
0 + K0

c ) − Krun
0 , (40)

and we properly redefine the (so far unspecified) impact factors (see Sec. 6). Thus the term
K̃0

1 in (40) corresponds to the customary NLL expression (19) with subtractions.
In γ-space the subtracted NLL eigenvalue function which corresponds to the K̃ω

1 has the
following form:

χ̃1(γ) = χ1(γ) − χ0
0(γ)[χ

1
0(γ) + χ0

c(γ)] − χrun
0 (γ)

= χ1(γ) +
1

2
χ0(γ)

π2

sin2(πγ)
− χ0(γ)

A1(0)

γ(1 − γ)
+

b

2
(χ′

0 + χ2
0) . (41)

The subtractions cancel the triple poles (due to change of energy scales) and the double poles
(from the non-singular part of the anomalous dimension). Therefore the resulting kernel χ̃1

contains at most single poles at γ = 0, 1. Eq. (32) together with the eigenvalues (21), (34)
and (41) gives a complete prescription for the resummed model. This new formulation is
identical to the previous ω-expansion [10, 11] near the collinear poles. It has the advantage
that it can be easily transformed into the (x, k2) space (it is free of ratios in γ-space, such as
χ1/χ0) and avoids the spurious poles that were present in (26).
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Additional subtraction needed to satisfy the momentum sum rule.

Solution to the evolution equation done in momentum space

Resummed kernel
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The final result of the CCSS resummation was formulated directly in the momentum
space through integral equation. As mentioned above, this allows for more control over
the implementation of the running coupling corrections. Together with the DGLAP split-
ting functions this equation becomes an integral equation in both the longitudinal z and
transverse momentum components k. The three main contributions
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⌦ f(
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z
, k0) , (13)

are coming from the leading logarithmic kernel with kinematical constraint, the so-called
collinear (DGLAP) part and the NLL part with subtractions.

The first term in Eq. (13) is

Kkc
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z
, k0)

=

Z 1

x

dz

z
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d2q
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2)


f(

x

z
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z
� k02)�⇥(k � q)f(

x

z
, k)

�
, (14)

where q = k � k0 corresponds to the transverse momentum of the emitted gluon. This
choice of a scale in the running coupling is convenient since in this case the b dependent
terms in the NLL part of the kernel are exactly zero. The kinematical (or consistency)
constraint is implemented onto the real emissions only (see discussion in [66] and [67]).
It is here asymmetric, which corresponds to the asymmetric scale choice suitable for the
DIS problem we are considering. It is implemented as

k02  k2

z
. (15)

To be precise, there are different versions of this constraint which appear in the literature,
see [64–66]. Detailed analysis (see [62]) showed that all versions are generating the same
leading 1/�3 poles in the Mellin space at NLL, 1/�5 poles in NNLL level (for supersym-
metric case) and they do not generate any double poles, and with the difference starting
to appear in the single pole level.
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Kcoll
0 (z; k, k0)

z,k0
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+
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)f(

x

z
, k0) . (16)

It is the sum of the collinear and anticollinear parts with the non-singular part of the
splitting function

P̃ (0)
gg = P (0)

gg � 1

z
, (17)

where the P (0)
gg is the DGLAP gluon-gluon splitting function in LO.
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LLx with kinematical constraint

The final result of the CCSS resummation was formulated directly in the momentum
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DGLAP evolution with non-singular part of the splitting function

The final result of the CCSS resummation was formulated directly in the momentum
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terms in the NLL part of the kernel are exactly zero. The kinematical (or consistency)
constraint is implemented onto the real emissions only (see discussion in [66] and [67]).
It is here asymmetric, which corresponds to the asymmetric scale choice suitable for the
DIS problem we are considering. It is implemented as

k02  k2

z
. (15)

To be precise, there are different versions of this constraint which appear in the literature,
see [64–66]. Detailed analysis (see [62]) showed that all versions are generating the same
leading 1/�3 poles in the Mellin space at NLL, 1/�5 poles in NNLL level (for supersym-
metric case) and they do not generate any double poles, and with the difference starting
to appear in the single pole level.

The second contribution in (13) is
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Finally, the last term in Eq.(13) is the NLL part of the BFKL with appropriate
subtractions (corresponding to expression in Eq. (12)) transformed into momentum space

Z 1

x

dz

z

Z
dk02 ↵̄2

s(k
2
>)K̃1(k, k

0)f(
x

z
, k0) =

1

4

Z 1

x

dz

z

Z
dk02 ↵̄2

s(k
2
>)

⇢

✓
67

9
� ⇡2

3

◆
1

|k02 � k2|


f(

x

z
, k02)� 2k2

<

(k02 + k2)
f(

x

z
, k2)

�
+


� 1

32

✓
2

k02 +
2

k2
+

✓
1

k02 � 1

k2

◆
log

✓
k2

k02

◆◆
+

4Li2(1� k2
</k

2
>)

|k02 � k2|

�4A1(0)sgn(k
2 � k02)

✓
1

k2
log

|k02 � k2|
k02 � 1

k02 log
|k02 � k2|

k2

◆

�
✓
3 +

✓
3

4
� (k02 + k2)2

32k02k2

◆◆Z 1

0

dy

k2 + y2k02 log |
1 + y

1� y
|

+
1

k02 + k2

✓
⇡2

3
+ 4Li2(

k2
<

k2
>

)

◆�
f(

x

z
, k0)

�

+
1

4
6⇣(3)

Z 1

x

dz

z
↵̄2
s(k

2)f(
x

z
, k) . (18)

The above construction for the resummed kernel needs to be supplemented by ad-
ditional subtractions. It turns out, [40] that there are terms which are giving spurious
DGLAP anomalous dimension at NLO. This needs to be canceled by appropriate subtrac-
tion and it was achieved by adding extra terms to the kernel. Obviously, there is some
ambiguity in this procedure, since one is working with the information up to a fixed order
in perturbation theory. Therefore two different schemes were proposed A,B in [40]. In
the following, we shall utilize scheme B from that work.

3 Contributions to structure function
The structure function F2 can be evaluated by the kT factorization theorem, which involves
an off-shell matrix element and the unintegrated gluon density. The structure function F2

receives however large contributions from the non-perturbative, or soft, regime. This is
parametrized in our description as the contribution coming from the low momenta of the
gluon k2 and with the addition of the soft Pomeron contribution. The setup is similar to
the one presented in [66], without however the matrix formulation which would involve
the evolution of quarks.

3.1 Perturbative contribution
The perturbative contribution to the structure function is based on the kT factorization
theorem, together with the unintegrated gluon density obtained from the CCSS resummed
evolution equation discussed in the previous section. The expression for the structure

8
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+ additional subtractions to guarantee consistency with NLO DGLAP and momentum sum rule

subtractions
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function F2 from the kT factorization is given by

F2(x,Q
2) =

X

q

e2q Sq(x,Q
2) , (19)

where the sum is over the quark flavors and general expression for Sq(x,Q2) is

Sq(x,Q
2) =

Z 1

x

dz

z

Z
dk2

k2
Sq
box (z,m

2
q, k

2, Q2) f
⇣x
z
, k2

⌘
. (20)

The explicit expression for the convolution of the matrix element with the unintegrated
gluon density is given by [58,68]

Sq(x,Q
2) =

Q2

4⇡2

Z
dk2

k4

Z 1

0

d�

Z
d0↵s

(
⇥
�2 + (1� �2)

⇤✓ 

D1q
� � k

D2q

◆2

+
⇥
m2

q + 4Q2�2(1� �)2
⇤✓ 1

D1q
� 1

D2q

◆2
)
f
⇣x
z
, k2

⌘
⇥
⇣
1� x

z

⌘
. (21)

In the above,  and k are quark and gluon transverse momenta respectively, and � is
the variable defined in the Sudakov decomposition of the quark momentum (longitudinal
momentum fraction of the photon carried by the quark, for details see Ref. [68]). In
addition it is useful to defined the shifted quark transverse momentum is 0 = �(1��)k.
The energy denominators are

D1q = 2 + �(1� �)Q2 +m2
q , (22)

D2q = (� k)2 + �(1� �)Q2 +m2
q . (23)

The argument of the unintegrated gluon density is equal to x/z with

z =


1 +

02 +m2
q

�(1� �)Q2
+

k2

Q2

��1

. (24)

This stems from the exact kinematics in the photon-gluon fusion process, see [68]. As
analyzed in detail in [69, 70] the exact kinematics in the impact factor, goes beyond the
leading order approximation in high energy. It has been demonstrated that it leads to
large effect numerically and is important for phenomenology [71].

The argument of the strong coupling ↵s is taken to be (k2 + 2 +m2
q) in this analysis.

The masses of quarks are taken to be mu = md = ms = 0 and mc = 1.4 GeV. The
integration over the transverse momenta in the kT factorization formula formally extends
down to zero into the non-perturbative region. We assume the validity of the formula
(20) and (21) only for the transverse momenta k2,2 > k2

0 where cutoff k2
0 parametrizes

the boundary between the perturbative and non-perturbative regions of the transverse
momentum. We took the value of k2

0 = 1.GeV2 for the cutoff.
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Evaluate structure function from kT  factorization
Photon-gluon impact factor

function F2 from the kT factorization is given by

F2(x,Q
2) =

X
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In the above,  and k are quark and gluon transverse momenta respectively, and � is
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momentum fraction of the photon carried by the quark, for details see Ref. [68]). In
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Higher order terms in impact factor 

Beyond the dipole model
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Three contributions: depending on the ordering of quark and gluon momenta. 

Introduce a cutoff parameter:

Soft Pomeron

Collinear contribution with the input gluon

Perturbative contribution

Total contribution

3.2 Non-perturbative contribution
The structure function F2 receives large soft contribution. For example in the approach
of [72], it has been simply parametrized as the constant background term in addition
to the perturbative small x part. In the approaches within the dipole model, the non-
perturbative contribution is usually taken automatically into account by integration over
the large dipole sizes with the flat dipole cross section, see for example discussion in
[73, 74]. Here we follow the approach of [58] where the non-perturbative contribution
from the low gluon and quark transverse momenta can be parametrized as follows. In
the non-perturbative region, where both quark momenta and gluon momenta are small
k2,02 < k2

0, we assume that light quark contribution is phenomenologically evaluated
as the soft Pomeron exchange [75]. That is we assume the soft Pomeron form for u, d, s
contributions

S(a) = SIP
u + SIP

d + SIP
s , (25)

and
SIP
u = SIP

d = 2SIP
s = CIP x�� (1� x)8, (26)

where coefficient CIP is a free parameter independent of Q2. Here, 0 . � . 0.1 is the
soft-Pomeron power.

In the region where the quark momenta are higher but the gluon momenta are very
low, i.e. k2 < k2

0 < 02, we assume the strong-ordered approximation at quark-gluon
vertex and used the the collinear approximation

Sbox ! S(b)
box (z, k

2 = 0, Q2), (27)

and thus we have

S(b) =

Z 1

x

dz

z
S(b)
box (z, k

2 = 0, Q2)

Z k20

0

dk2

k2
f
⇣x
z
, k2

⌘

=

Z 1

x

dz

z
S(b)
box (z, k

2 = 0, Q2)
x

z
g
⇣x
z
, k2

0

⌘
, (28)

where xg (x, k2
0) is the non-perturbative input collinear gluon density at scale k2

0, and the
form of its parametrization will be specified in Sec. 4.

Thus the complete contribution from the light quarks is simply the sum of

S(a)
q + S(b)

q + S(c)
q , (29)

where the last, perturbative contribution is computed from Eq. (21) with the lower bound
on the transverse momentum integration given by the cutoff k2

0.

3.3 Charm quark contribution
In addition to the light quarks, one needs to include the charm quark contribution, which
is also evaluated from the kT factorization. The mass of the charm quark has been taken
to be mc = 1.4 GeV.
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function F2 from the kT factorization is given by

F2(x,Q
2) =

X

q

e2q Sq(x,Q
2) , (19)

where the sum is over the quark flavors and general expression for Sq(x,Q2) is

Sq(x,Q
2) =

Z 1

x

dz

z

Z
dk2

k2
Sq
box (z,m

2
q, k

2, Q2) f
⇣x
z
, k2

⌘
. (20)

The explicit expression for the convolution of the matrix element with the unintegrated
gluon density is given by [58,68]

Sq(x,Q
2) =

Q2

4⇡2

Z
dk2

k4

Z 1

0

d�

Z
d0↵s

(
⇥
�2 + (1� �2)

⇤✓ 

D1q
� � k

D2q

◆2

+
⇥
m2

q + 4Q2�2(1� �)2
⇤✓ 1

D1q
� 1

D2q

◆2
)
f
⇣x
z
, k2

⌘
⇥
⇣
1� x

z

⌘
. (21)

In the above,  and k are quark and gluon transverse momenta respectively, and � is
the variable defined in the Sudakov decomposition of the quark momentum (longitudinal
momentum fraction of the photon carried by the quark, for details see Ref. [68]). In
addition it is useful to defined the shifted quark transverse momentum is 0 = �(1��)k.
The energy denominators are

D1q = 2 + �(1� �)Q2 +m2
q , (22)

D2q = (� k)2 + �(1� �)Q2 +m2
q . (23)

The argument of the unintegrated gluon density is equal to x/z with

z =


1 +

02 +m2
q

�(1� �)Q2
+

k2

Q2

��1

. (24)

This stems from the exact kinematics in the photon-gluon fusion process, see [68]. As
analyzed in detail in [69, 70] the exact kinematics in the impact factor, goes beyond the
leading order approximation in high energy. It has been demonstrated that it leads to
large effect numerically and is important for phenomenology [71].

The argument of the strong coupling ↵s is taken to be (k2 + 2 +m2
q) in this analysis.

The masses of quarks are taken to be mu = md = ms = 0 and mc = 1.4 GeV. The
integration over the transverse momenta in the kT factorization formula formally extends
down to zero into the non-perturbative region. We assume the validity of the formula
(20) and (21) only for the transverse momenta k2,2 > k2

0 where cutoff k2
0 parametrizes

the boundary between the perturbative and non-perturbative regions of the transverse
momentum. We took the value of k2

0 = 1.GeV2 for the cutoff.
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Results: F2 and F2c

12

Inclusive Charm structure function Figure 1: Structure function F2(x,Q2) as a function of x for fixed values of Q2 =
2, 15, 35, 90, 150, 250GeV2, indicated next to the curves. Solid red lines correspond to
a fit with the CCSS resummed scheme. Experimental data are from Ref. [77].

20

Figure 2: Charm structure function F c
2 (x,Q

2) as a function of x for fixed values of
Q2 = 6.5, 12, 20, 35, 60GeV2, indicated next to the curves. Solid blue curves indicates
a fit using the CCSS resummed scheme. The experimental data using different phase
space extrapolations based on theoretical calculations CASCADE and HVQDIS are from
Ref. [78].
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Excellent description of the data on structure functions F2    and F2c 
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Structure function F2   : contributions

13

Figure 3: Structure function F2(x,Q2) as a function of x for fixed value of Q2 = 150GeV2

broken down into various contributions. Red dashed: F (a)
2 , Eq. (25); pink dotted F (b)

2 ,
Eq. (28); blue dashed-dotted F (c)

2 , Eq. (20). Finally, black solid indicates the sum of all
contributions.
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Figure 5: Structure function F2(x,Q2) as a function of x for fixed value of Q2 = 5GeV2

broken down into various contributions. Red dashed: F (a)
2 , Eq. (25); pink dotted F (b)

2 ,
Eq. (28); blue dashed-dotted F (c)

2 , Eq. (20). Finally, black solid indicates the sum of all
contributions.
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Breakdown of contributions (a) soft pomeron 
(b) collinear contribution with initial gluon 
(c) perturbative kT factorization 

As expected : dominance of perturbative only at  large Q2.  

Still, non-perturbative background at significant level:  at x=10-3 , Q2=150 GeV2  pert. / total = 70% 
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Extracted unintegrated  gluon density f(x,k2)

14

Figure 8: Unintegrated gluon distribution function extracted from the fit as a function
of x for fixed value of the transverse momentum squared k2 = 10GeV2. Unintegrated
gluon from this work based on CCSS resummation (red solid) is compared with the other
two models, from Ref. [59], KS linear (dashed orange) and KS non-linear (dashed-dotted
blue).
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Figure 10: Unintegrated gluon distribution function extracted from the fit as a function
of x for fixed value of the transverse momentum squared k2 = 1000GeV2. Unintegrated
gluon from this work based on CCSS resummation (red solid) is compared with the other
two models, from Ref. [59], KS linear (dashed orange) and KS non-linear (dashed-dotted
blue).
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CCSS 
KS linear 
KS nonlinear

Extracted unintegrated gluon density compared with Kutak-Sapeta (KS) model (LL BFKL+kinemaical 
constraint +DGLAP, with and without saturation) 

Consistent results with KS linear, somewhat steeper. 

Expected deviation between the linear and nonlinear at small x and k2
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Ratio of CCSS/KS

15

Figure 11: Ratios of unintegrated gluon distributions as a function of x for fixed value of
the transverse momentum k2 = 10 GeV2. Red solid: ratio of the gluon extracted in this
work to the KS linear; blue dashed, ratio of the gluon extracted in this work to the KS
non-linear.
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Figure 13: Ratios of unintegrated gluon distributions as a function of x for fixed value
of the transverse momentum k2 = 1000 GeV2. Red solid: ratio of the gluon extracted in
this work to the KS linear; blue dashed, ratio of the gluon extracted in this work to the
KS non-linear.
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ratio: CCSS to KS linear
ratio: CCSS to KS nonlinear

Ratio of extracted unintegrated gluon density to KS model, with and without saturation 

Slightly steeper behavior for CCSS 

Expected deviation between the linear and nonlinear at small x and k2
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Effective intercept
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Figure 14: Effective power �e↵ from Eq. (34) of unintegrated gluon distribution as a
function of x for fixed value of the transverse momentum squared k2 = 10 GeV2. Solid
red, this work; orange dashed, KS linear; blue dashed-dotted KS non-linear.
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Figure 16: Effective power �e↵ from Eq. (34) of unintegrated gluon distribution as a
function of x for fixed value of the transverse momentum squared k2 = 1000 GeV2. Solid
red, this work; orange dashed, KS linear; blue dashed-dotted KS non-linear.
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performed. The overall shape in k2 is similar for the CCSS and KS calculation.
In Figs. 8-10 the unintegrated gluon density is shown as a function of x for fixed values

of k2 = 10, 100, 1000 GeV2, again compared with the KS-linear and KS-nonlinear calcu-
lation. Unsurprisingly, the small x behavior of the CCSS calculation is very close to the
KS-linear, whereas both calculations differ substantially from the nonlinear calculation
at low x and low Q2 where the saturation corrections are the strongest. There are how-
ever some subtle differences between the KS-linear and CCSS calculations which indicate
somewhat stronger small x behavior in the CCSS scenario.

The differences between linear and non-linear scenarios are also visualised by taking
the ratios between the calculations shown in Fig. 11, 12, 13. To be precise the ratios
CCSS/KS-linear and CCSS/KS-nonlinear are shown as a function of x for three different
values of the momentum squared k2 = 10, 100, 1000 GeV2. We see that the CCSS/KS-
linear ratio is close to unity, for most values of x, whereas the ratio to the calculation
which includes the nonlinear effects deviates substantially from unity at low x and low k2.
Still we see again marked difference, the CCSS calculation tends to have slightly faster
rise towards small x. The small x behavior is also illustrated in Figs. 14, 15 and 16, where
the effective Pomeron intercept is shown by performing the logarithmic derivative of the
unintegrated gluon distribution

�e↵ =
@ ln f(x, k2)

@ ln 1/x
. (34)

It is seen from all plots that the effective power is very close, especially at low x to the
linear KS calculation, which is expected, and differs from the non-linear KS, for low x and
lowest value of k2. We also see that the power is larger for CCSS calculation than for the
linear KS calculation, which is consistent with previous observations. Asymptotically, for
low x and low to moderate k2 the value of the power approaches about 0.3 which is the
power observed in HERA data.

Conclusions and outlook
In this work we have used the renormalization group improved small x evolution equation,
which resums important terms in the low x region, and used it for the first time to describe
the structure function F2 in DIS. Very good description of the experimental data in the low
x < 0.01 region was obtained, with small number of parameters. In addition, the charm
structure function was calculated, in two scenarios, where the charm data were used for the
fit, and in the second scenario where the structure function F c

2 was not fitted but obtained
instead as a prediction. In both cases the description of the experimental data was very
good and the values of the parameters were very similar. The fit was based on the kT
factorization formula with the decomposition of the integral in transverse momenta into
soft and hard regimes. The unintegrated gluon distribution extracted from this analysis
was compared with the previous calculations, based on the similar approach and it was
found to be consistent, though with some marked differences. The unintegrated gluon
density has somewhat higher power which governs the low x growth as compared to the
resummed schemes, which were based on the LL BFKL with kinematical constraint and
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Effective intercept of the unintegrated gluon density

About 0.3-0.4 depending on the value of x and k2 

Clear difference with respect to the nonlinear case
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Summary and outlook
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• Small x evolution requires resummation. 

• Used CCSS framework to evaluate the unintegrated gluon density 

• The solution to the integral equation in momentum space with LLx + NLLx BFKL + 
resummation+ subtractions 

• Use exact kinematics in the high energy factorization formula: higher order terms from 
kinematics 

• Three component model for the fitting of structure function. Charm treated perturbatively. 

• Very good description of structure function inclusive and charm 

• Unintegrated gluon consistent with other extractions, slightly higher intercept, interesting for 
studies  with saturation

Next directions: 

• Impact factors: NLO + resummation and matching with CCSS (in progress) 

• Including quarks through the matrix formulation (needs numerical implementation) 


