First measurement of the $\mathrm{K}^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{\ddagger} \vee\left(\mathrm{K}_{\mu 4}^{00}\right)$ decay with the NA48/2 experiment at CERN

R. Fantechi

CERN and INFN - Sezione di Pisa on behalf of the NA48/2 Collaboration

The NA48/2 Collaboration

DIS 2022 - Santiago de Compostela May $2^{\text {nd }}-6^{\text {th }}, 2022$

Outline

- The NA48/2 beam and detector
- The measurement of $K^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} v$
- Prospects and conclusions

Kaons at CERN: NA48 and NA62

Kaon decay in flight experiments. NA48/2: ~120 participants, 15 institutes

Earlier: NA31

2014: pilot run
2015: commissioning run
NA62
2016-18: $\mathrm{K}^{+} \rightarrow \pi^{+} v \nu$ run
2021 -: $\mathrm{K}^{+} \rightarrow \pi^{+}$vv run

$K^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{\ddagger} \nu\left(\mathrm{K}^{00}{ }_{\mu 4}\right)$

The decay is characterized using the 5
Cabibbo-Maksymowicz variables:
S_{π} (dipion mass squared), S_{1} (dilepton mass squared) and the angles θ_{π} (in the dipion frame, $\theta_{\text {l }}$ (in the dilepton frame) and ϕ

The amplitude depends on 4 form factors, named F, G, R, H

- With the two π^{0} in s-wave, no dependence on $\cos \theta_{\pi}, \phi$. Only F and R contribute
- Unlike $\mathrm{K}^{00}{ }_{e 4,} \mathrm{R}$ plays some role due to the non-negligible μ mass
- Use the $F\left(S_{\pi}, S_{1}\right)$ experimental parametrization from $\mathrm{K}^{00}{ }_{\text {e4 }}$, according to lepton universality.
- NA48/2 JHEP 08 (2014) 159
- For $R\left(S_{\pi}, S_{\mid}\right)$use ChPT calculation
- Bijnens, Colangelo, Gasser, Nucl.Phys.B 427(1994) 427

Current status

K_{14} mode	$\mathrm{BR}\left[10^{-5}\right]$	$N_{\text {cand }}$	
$K_{e 4} \pm$	4.26 ± 0.04	1108941	NA48/2 (2012)
$K_{e 4}{ }^{00}$	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu 4} \pm$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu 4}{ }^{00}$	$?$	0	

- Goals: first observation and check of the ChPT prediction
- Analysis challenge: suppression of the huge background from $\mathrm{K}^{ \pm} \rightarrow \pi^{0} \pi^{0} \pi^{ \pm}\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu\right)$

The NA48/2 Beam

NA48/2 beam (2003-2004): simultaneous K^{+} / K^{-}
$N\left(K^{+}\right) / N\left(K^{-}\right)=1.8$

K decays in the vacuum tank: 22%
Beam size: $4 \times 4 \mathrm{~mm}^{2}, 10 \times 10 \mu \mathrm{r}$

The NA48/2 Detector

LKr Calorimeter:
 $\sigma(E) / E \cong 3.2 \% / J E \oplus 9 \% / E \oplus 0.42 \%$
 $\sigma(x)=\sigma(y) \cong(4.2 /$ SE $\oplus 0.6) \mathrm{mm} \cong$ $1.5 \mathrm{mm@} 10 \mathrm{GeV}$

Spectrometer:
$\sigma(P) / P \cong 1.02 \% \oplus 0.044 \mathrm{P}[\mathrm{GeV} / \mathrm{c}] \%$

Scintillator hodoscope: fast trigger and good time resolution (150 ps)

Efficient trigger chain using the hodoscope hits and LKr energy deposits at L1 and 1 DCH track consistent with a kaon decay in the FV at L2

Event selection - Common selection

- The normalization channel is $K^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \pi^{0}$
- First set of common cuts for signal and normalization
- First-order cancellations in BR computation
- Kaon track selected using the KABES beam spectrometer
- Triggered using HOD and LKr at L1, momentum calculation with DCH at L2
- Event selection: 4 isolated photons consistent with $2 \pi^{0}$ in time with a beam track and a DCH one, spatial matching between the $2 \pi^{0}$ vertex and the kaon-DCH track vertex

Normalization selection: ellipse cut
Center: $M\left(K_{3 \pi}\right)=M_{k}, P_{\dagger}=5 \mathrm{MeV} / \mathrm{c}$
Semi-axes: $\Delta M\left(K_{3 \pi}\right)=10 \mathrm{MeV} / \mathrm{c}^{2}, \Delta \mathrm{P}_{+}=20 \mathrm{MeV} / \mathrm{c}$
Selection of 72.99* $10^{6} K_{3 \pi}$ events

Event selection - signal

- Events outside the $K_{3 \pi}$ ellipse
- Association of the charged track with MUV response
- Define two invariant masses
- Selection cut: $M_{\text {miss }}^{2}\left(\pi^{ \pm}\right)<0.5 \cdot M_{\text {miss }}^{2}-0.0008 \frac{\mathrm{GeV}^{2}}{\mathrm{c}^{4}}$

Event selection - signal

Cut on $\cos \left(\theta_{1}\right)<0.6$

Event selection - signal

- Rejection of $\pi^{ \pm \rightarrow} \mu^{ \pm} v$ with a cut on $S_{I}=M\left(\mu^{ \pm} v\right)^{2}: S_{\mid}>0.03 \mathrm{GeV}^{2} / c^{4}$
- $3718 \mathrm{~K}_{\mu 4}$ candidates selected
- 2437 events in the $M_{\text {miss }}^{2}$ signal region $[-0.002,0.002] \mathrm{GeV}^{2} / \mathrm{c}^{4}$

Acceptances

- $\mathrm{K}^{00}{ }_{\mu 4}$ signal acceptance (full phase space)
- $A_{S}=(0.651 \pm 0.001) \%$
- Restricted phase space $\left(S_{\mid}{ }^{\text {true }}>0.03 \mathrm{GeV}^{2} / \mathrm{c}^{4}\right)$
- $A_{s}=(3.453 \pm 0.007) \%$
- Normalization acceptance

$$
-A_{N}=(4.477 \pm 0.002) \%
$$

Residual background

Coming from $\mathrm{K}^{ \pm} \rightarrow \pi^{0} \pi^{0} \pi^{ \pm}$with $\pi^{ \pm} \rightarrow \mu^{ \pm} v$ before the muon detector with a probability $\sim 10 \%$ for $P\left(\pi^{ \pm}\right) \sim 10 \mathrm{GeV} / \mathrm{c}$

Decay before the LKr calorimeter:

Estimation from MC

Late $\pi^{ \pm}$decay or muon emission in a late hadron shower:

Simulation not easy, use data with a background enhanced sample, selected with the ratio $E_{\text {LKr }} / P_{D C H}$

Signal extraction fit

2437 events in signal region
Background estimation with a fit for $-0.003<M^{2}{ }_{\text {miss }}<0.006$, ignoring the signal region

Fit with a combination of background and signal tails
$354 \pm 33_{\text {stat }} \pm 62_{\text {syst }}$ background events

Systematics evaluated varying the way the background is estimated

Branching ratio evaluation

$$
B R\left(K^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} v\right)=\frac{N_{S}}{N_{N}} \cdot \frac{A_{N}}{A_{S}} \cdot K_{\text {trig }} \cdot B R\left(K_{3 \pi}^{00}\right)
$$

- $N_{s}=$ candidates-background: 2437-($\left.354 \pm 33_{\text {stat }}\right)=2083 \pm 59_{\text {stat }}$
- Normalization $\mathrm{N}_{\mathrm{N}}=72.99 * 10^{6}$
- Normalization acceptance $A_{N}=(4.477 \pm 0.002) \%$
- Acceptance for the restricted phase space $A^{r}{ }_{s}=(3.453 \pm 0.007) \%$
- Acceptance for the full phase space $A_{S}=(0.651 \pm 0.001) \%$
- Trigger correction (from control triggers)
- Ktrig=KCHT* KNUT $=(0.998 \pm 0.002)^{*}(1.0007 \pm 0.0007)=0.999 \pm 0.002$
- PDG $\operatorname{BR}\left(\pi^{0} \pi^{0} \pi^{+}\right)=(1.760 \pm 0.023) \%$

Branching ratios and error budget

	Full phase space		$S_{I}>0.03 \mathrm{GeV}^{2} / \mathrm{c}^{4}$	
$B R\left(K_{\mu 4}\right)$ central value $\left[10^{-6}\right]$	3.45		0.651	
	$\delta B R\left[10^{-6}\right]$	$\delta B R / B R$	$\delta B R\left[10^{-6}\right]$	$\delta B R / B R$
Data stat. error	0.10	2.85%	0.019	2.85%
MC stat. error	0.01	0.21%	0.001	0.21%
Trigger	0.01	0.18%	0.001	0.18%
Background	0.10	2.96%	0.019	2.96%
Accidentals	0.01	0.32%	0.002	0.32%
MUV inefficiency	0.06	1.65%	0.011	1.65%
Form Factor modelling	0.05	1.37%	0.001	0.14%
$B R\left(K_{3 \pi}\right)$ error (external)	0.05	1.31%	0.009	1.31%
Total error	0.17	4.83%	0.030	4.64%

- Accidental obtained from side bands of time distribution
- MUV inefficiency uncertainty taken as full inefficiency effect

Comparison with theory

Bijnens, Colangelo, Gasser Nucl. Phys. B427 (1994) 427 Tree approximation 1-loop
Beyond 1-loop with measured F from Rosselet et al.
Phys. Rev. D 15 (1977) 574

Updated by NA48/2 using:
$F\left(\mathrm{~K}_{\text {e4 }}\right)$ from NA48/2 R1 $=$ R(1loop)
2020 PDG constants

Conclusions

- NA48/2 has observed for the first time the decay $K^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} v$
- 2437 signal candidates with a background of $354 \pm 33_{\text {stat }} \pm 62_{\text {syst }}$
- The preliminary result for the restricted phase space ($S_{p}>0.03$) is

$$
B R\left(K^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} v, S_{\ell}>0.03\right)=\left(0.65 \pm 0.019_{\text {stat }} \pm 0.024_{\text {syst }}\right) \times 10^{-6}=(0.65 \pm 0.03) \times 10^{-6}
$$

- The preliminary result for the full space is

$$
B R\left(K^{ \pm} \rightarrow \pi^{0} \pi^{0} \mu^{ \pm} v\right)=\left(3.4 \pm 0.10_{\text {stat }} \pm 0.13_{\text {syst }}\right) \times 10^{-6}=(3.4 \pm 0.2) \times 10^{-6}
$$

- The results are consistent with a contribution of the R form factor, as from 1-loop ChPT computation
- A paper is in preparation

