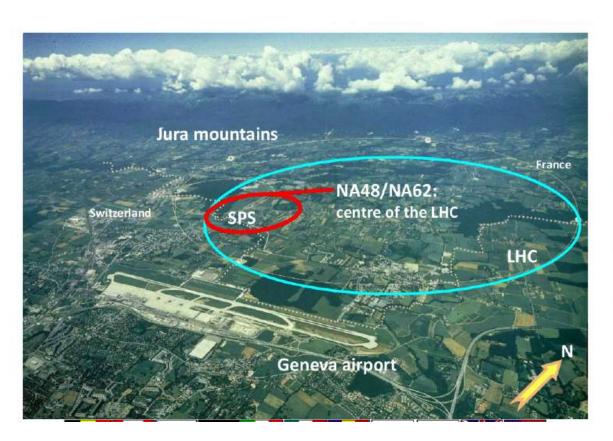
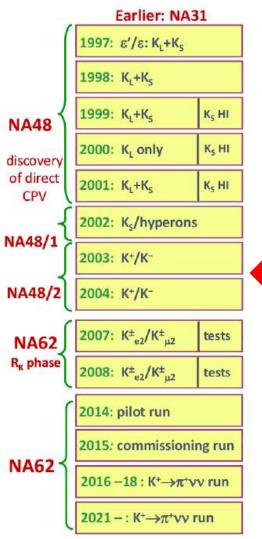
First measurement of the $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} v (K^{00}_{\mu 4})$ decay with the NA48/2 experiment at CERN

R. Fantechi

CERN and INFN - Sezione di Pisa on behalf of the NA48/2 Collaboration

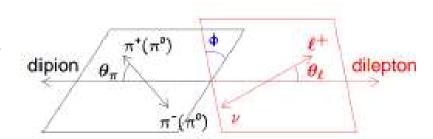

The NA48/2 Collaboration

DIS 2022 - Santiago de Compostela May 2nd-6th, 2022


Outline

- The NA48/2 beam and detector
- The measurement of $K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \, \nu$
- Prospects and conclusions

Kaons at CERN: NA48 and NA62



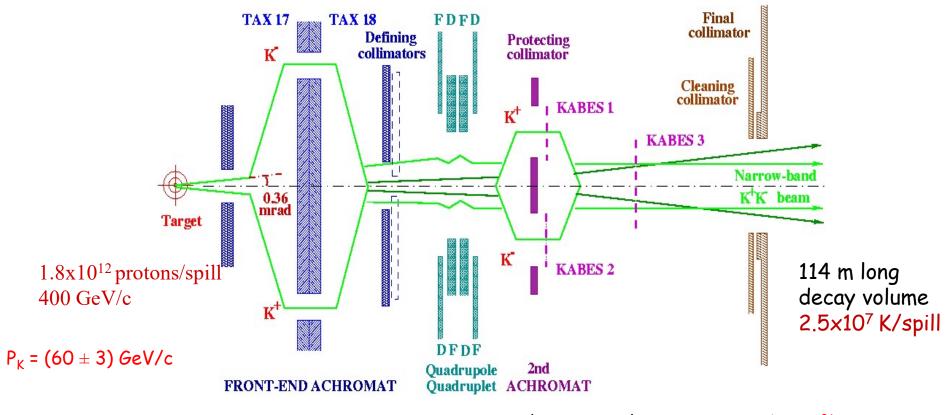
Kaon decay in flight experiments. NA48/2: ~120 participants, 15 institutes

$K^{\pm} \rightarrow \pi^{0} \pi^{0} \mu^{\pm} \nu (K^{00}_{\mu 4})$

The decay is characterized using the 5 Cabibbo-Maksymowicz variables: S_{π} (dipion mass squared), S_{I} (dilepton mass squared) and the angles θ_{π} (in the dipion frame, θ_{I} (in the dilepton frame) and ϕ

The amplitude depends on 4 form factors, named F, G, R, H

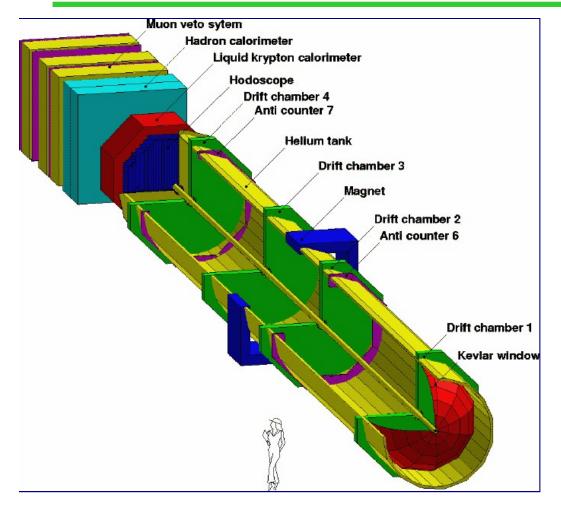
- With the two π^0 in s-wave, no dependence on cos θ_π , $\phi.$ Only F and R contribute
- Unlike K^{00}_{e4} , R plays some role due to the non-negligible μ mass
- Use the $F(S_{\pi}, S_{\parallel})$ experimental parametrization from K^{00}_{e4} , according to lepton universality.
 - NA48/2 JHEP 08 (2014) 159
- •For $R(S_{\pi}, S_{l})$ use ChPT calculation
 - Bijnens, Colangelo, Gasser, Nucl. Phys. B 427(1994) 427


Current status

K _{I4} mode	BR [10 ⁻⁵]	N_{cand}	o Pero II.
K _{e4} ±	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu 4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu 4}^{00}$?	0	

- Goals: first observation and check of the ChPT prediction
- Analysis challenge: suppression of the huge background from $K^{\pm} \rightarrow \pi^{0}\pi^{0}\pi^{\pm}$ ($\pi^{\pm} \rightarrow \mu^{\pm}\nu$)

The NA48/2 Beam


NA48/2 beam (2003-2004): simultaneous $K^+/K^ N(K^+)/N(K^-) = 1.8$

K decays in the vacuum tank: 22%

Beam size: $4x4 \text{ mm}^2$, $10x10 \mu r$

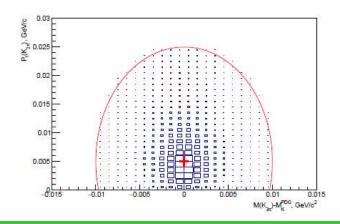
The NA48/2 Detector

LKr Calorimeter:

 $\sigma(E)/E \cong 3.2\%/JE \oplus 9\%/E \oplus 0.42\%$

 $\sigma(x) = \sigma(y) \cong (4.2/\sqrt{E} \oplus 0.6) \text{mm} \cong 1.5 \text{mm} \oplus 10 \text{ GeV}$

Spectrometer:


 $\sigma(P)/P \cong 1.02\% \oplus 0.044 P[GeV/c]\%$

Scintillator hodoscope: fast trigger and good time resolution (150 ps)

Efficient trigger chain using the hodoscope hits and LKr energy deposits at L1 and 1 DCH track consistent with a kaon decay in the FV at L2

Event selection - Common selection

- The normalization channel is $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$
- First set of common cuts for signal and normalization
 - First-order cancellations in BR computation
 - Kaon track selected using the KABES beam spectrometer
 - Triggered using HOD and LKr at L1, momentum calculation with DCH at L2
 - Event selection: 4 isolated photons consistent with $2\pi^0$ in time with a beam track and a DCH one, spatial matching between the $2\pi^0$ vertex and the kaon-DCH track vertex

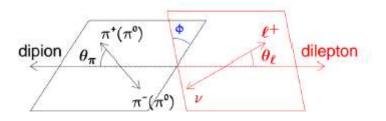
Normalization selection: ellipse cut

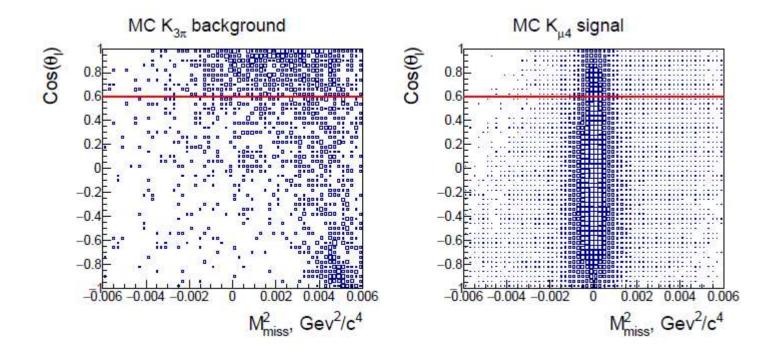
Center: $M(K_{3\pi}) = M_K$, $P_t = 5 \text{ MeV/c}$

Semi-axes: $\Delta M(K_{3\pi}) = 10 \text{ MeV/c}^2$, $\Delta P_t = 20 \text{ MeV/c}$

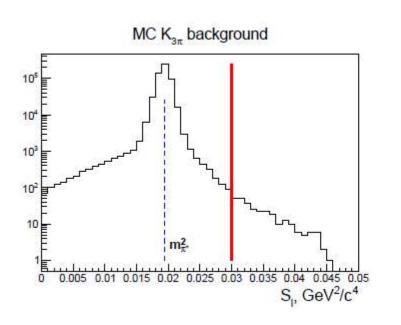
Selection of 72.99*10 6 K_{3 π} events

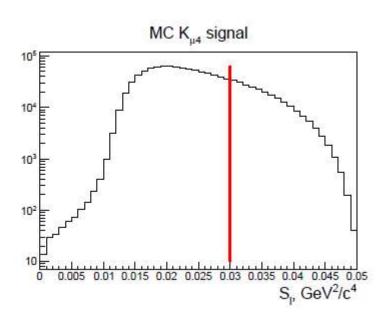
Event selection - signal


- Events outside the $K_{3\pi}$ ellipse
- Association of the charged track with MUV response
- Define two invariant masses

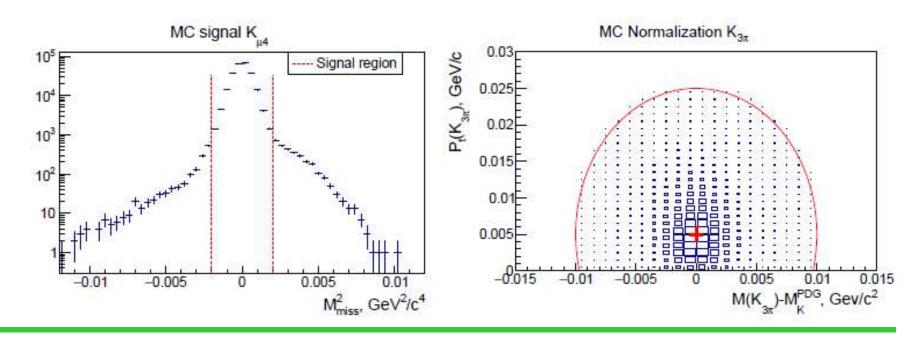

$$M_{miss}^2 = (P_K - P(\pi_1^0) - P(\pi_2^0) - P(\mu^\pm))^2 \qquad M_{miss}^2(\pi^\pm) = (P_K - P(\pi_1^0) - P(\pi_2^0) - P(\pi^\pm))^2$$

• Selection cut: $M_{miss}^2(\pi^{\pm}) < 0.5 \cdot M_{miss}^2 - 0.0008 \frac{GeV^2}{c^4}$


Event selection - signal


Cut on $cos(\theta_1) < 0.6$

Event selection - signal

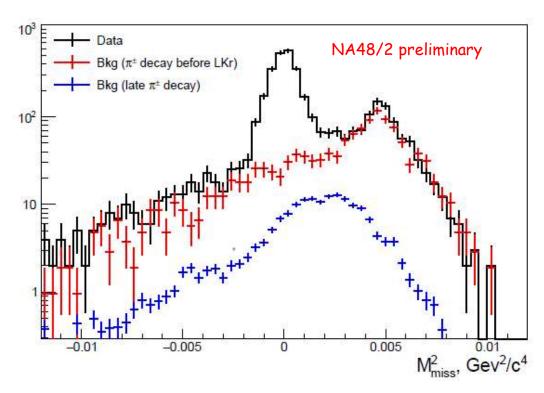


- Rejection of $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ with a cut on $S_1 = M(\mu^{\pm} \nu)^2 : S_1 > 0.03 \text{ GeV}^2/c^4$
- 3718 K_{u4} candidates selected
- 2437 events in the M^2_{miss} signal region [-0.002,0.002] GeV²/c⁴

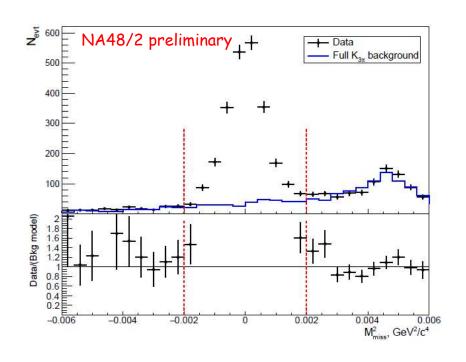
Acceptances

- K⁰⁰_{u4} signal acceptance (full phase space)
 - $A_S = (0.651 \pm 0.001)\%$
- Restricted phase space (S₁^{true} > 0.03 GeV²/c⁴)
 - $A_s = (3.453 \pm 0.007)\%$
- Normalization acceptance
 - $-A_N = (4.477 \pm 0.002)\%$

Residual background


Coming from K[±] \rightarrow $\pi^0\pi^0\pi^\pm$ with π^\pm \rightarrow $\mu^\pm\nu$ before the muon detector with a probability ~10% for P(π^\pm) ~ 10 GeV/c

Decay before the LKr calorimeter:


Estimation from MC

Late π^{\pm} decay or muon emission in a late hadron shower:

Simulation not easy, use data with a background enhanced sample, selected with the ratio E_{LKr}/P_{DCH}

Signal extraction fit

2437 events in signal region

Background estimation with a fit for $-0.003 < M^2_{miss} < 0.006$, ignoring the signal region

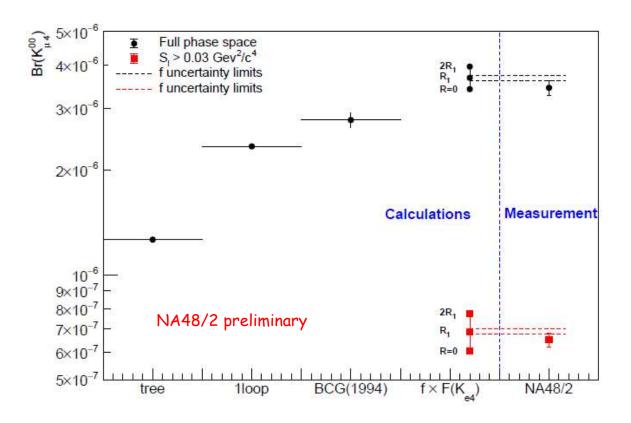
Fit with a combination of background and signal tails

 $354 \pm 33_{stat} \pm 62_{syst}$ background events

Systematics evaluated varying the way the background is estimated

Branching ratio evaluation

$$BR(K^{\pm} \to \pi^{0} \pi^{0} \mu^{\pm} \nu) = \frac{N_{S}}{N_{N}} \cdot \frac{A_{N}}{A_{S}} \cdot K_{trig} \cdot BR(K_{3\pi}^{00})$$


- N_s = candidates-background: 2437-(354±33_{stat}) = 2083±59_{stat}
- Normalization $N_N = 72.99*10^6$
- Normalization acceptance $A_N = (4.477 \pm 0.002)\%$
- Acceptance for the restricted phase space $A_S^r = (3.453 \pm 0.007)\%$
- Acceptance for the full phase space A_S = (0.651±0.001)%
- Trigger correction (from control triggers)
 - $Ktrig=KCHT * KNUT = (0.998\pm0.002)*(1.0007\pm0.0007) = 0.999\pm0.002$
- PDG BR($\pi^0\pi^0\pi^+$) = (1.760±0.023)%

Branching ratios and error budget

	Full phase space 3.45		$S_I > 0.03 \text{ GeV}^2/c^4$ 0.651	
$BR(K_{\mu 4})$ central value [10 ⁻⁶]				
	$\delta BR[10^{-6}]$	$\delta BR/BR$	$\delta BR[10^{-6}]$	$\delta BR/BR$
Data stat. error	0.10	2.85%	0.019	2.85%
MC stat. error	0.01	0.21%	0.001	0.21%
Trigger	0.01	0.18%	0.001	0.18%
Background	0.10	2.96%	0.019	2.96%
Accidentals	0.01	0.32%	0.002	0.32%
MUV inefficiency	0.06	1.65%	0.011	1.65%
Form Factor modelling	0.05	1.37%	0.001	0.14%
$BR(K_{3\pi})$ error (external)	0.05	1.31%	0.009	1.31%
Total error	0.17	4.83%	0.030	4.64%

- Accidental obtained from side bands of time distribution
- MUV inefficiency uncertainty taken as full inefficiency effect

Comparison with theory

Bijnens, Colangelo, Gasser Nucl. Phys. B427 (1994) 427 Tree approximation 1-loop Beyond 1-loop with measured F from Rosselet et al. Phys. Rev. D 15 (1977) 574

Updated by NA48/2 using:

 $F(K_{e4})$ from NA48/2 R1 = R(1loop) 2020 PDG constants

Conclusions

- NA48/2 has observed for the first time the decay $K^\pm\!\!\to\pi^0\pi^0\mu^\pm\nu$
- 2437 signal candidates with a background of $354\pm33_{stat}\pm62_{syst}$
- The preliminary result for the restricted phase space $(S_1>0.03)$ is

$$BR(K^{\pm} \to \pi^{0} \pi^{0} \mu^{\pm} \nu, S_{\ell} > 0.03) = (0.65 \pm 0.019_{stat} \pm 0.024_{syst}) \times 10^{-6} = (0.65 \pm 0.03) \times 10^{-6}$$

- The preliminary result for the full space is

$$BR(K^{\pm} \to \pi^{0} \pi^{0} \mu^{\pm} \nu) = (3.4 \pm 0.10_{stat} \pm 0.13_{syst}) \times 10^{-6} = (3.4 \pm 0.2) \times 10^{-6}$$

- The results are consistent with a contribution of the R form factor, as from 1-loop ChPT computation
- A paper is in preparation