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I. INTRODUCTION

Deep-inelastic scattering (DIS) of electrons off ions is
at the forefront of experimental efforts to probe the in-
ternal structure of nucleons and nuclei and will be a pri-
mary focus of study at the Electron-Ion Collider. In
semi-inclusive DIS, selected particles produced by the
fragmentation of the struck quark are observed in co-
incidence with the scattered electron, e(k) + N(P ) →
e(k′) + h(p) +X, resulting in observables which provide
access to a convolution of parton distribution functions
(PDFs), describing the momentum of partons within the
nucleon, and fragmentation functions (FFs), describing
the probability of producing a final state particle with
some momentum from the struck quark in the factoriza-
tion approach. [1]

The kinematic variables describing the DIS process,
with center of mass energy squared s = (P + k)2 can be
defined in terms of the virtual photon four-momentum q
as [2],

Q2 = −q2, y =
P · q
P · k

, x =
Q2

sy
(1)

II. SIDIS KINEMATIC RECONSTRUCTION

In semi-inclusive DIS, observables are extracted in the
nucleon center of mass frame, with the SIDIS cross-
section a function of the inclusive DIS variables as well
as (ph⊥, z, ϕh). The relevant transverse momentum is
defined with respect to the virtual photon axis, and the
single-hadron azimuthal angle ϕh is defined between the
lepton scattering plane and hadron production plane (fig-

ure 1). z is defined as z = ph·P
q·P The calculation of

FIG. 1: Definition of semi-inclusive kinematic variables in
target rest frame, from [1].
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FIG. 2: Momentum vs pseudorapidity in x−Q2 bins for
positive pions with z > 0.2 and requiring y > 0.05, generated
with Pythia-8. Different histogram colors represent different√

s values. Red bands represent 3-σ PID coverage based on
ATHENA proposal projections.

SIDIS kinematics therefore requires precise reconstruc-
tion of the four-momenta of the selected hadron and the
exchanged virtual-photon.

A. Electron method

Extraction of SIDIS observables and multiplicities
at the EIC presents a new challenge, as fully multi-
dimensional SIDIS studies have so far only been carried
out in lower energy fixed target experiments. In fixed
target SIDIS studies, q has been determined using only
the scattered electron, q = k−k′. However, studies done
for the EIC yellow report and EIC detector proposals
have found that a significant contribution to uncertainty
in SIDIS kinematics is poor reconstruction of the virtual
photon four-momentum when using only the scattered
electron. In particular, the electron method fails in such
regions of kinematic phase space at the EIC such as at
low y (y < 0.05), where the energy loss of the electron
is small and not well resolved. This is a significant issue
for the study of TMD effects at e-p colliders, as at low-
Q2 and large-x spin-orbit correlations are expected to be
most significant and higher twist effects are observable.
Additionally, the low-y region will be critical for over-
lapping the phase space covered by the EIC and SIDIS
studies carried out at other facilities such as Jefferson
Lab.
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B. Hadronic final state methods

Fast simulation studies for the EIC yellow report [3]
and ATHENA (A Totally Hermetic Electron Nucleon Ap-
paratus) proposal [4] have demonstrated that DIS recon-
struction methods developed at past e-p colliders [2] can
be used to improve the reconstruction of inclusive DIS
variables at the EIC. The DIS reconstruction methods
developed at HERA utilized combinations of measured
quantities from the scattered electron and the hadronic
final state (HFS). The use of the HFS allowed these ad-
ditional methods, such as the double angle (DA) and
Σ-methods [2], to improve inclusive DIS kinematic re-
construction for various regions of the HERA kinematic
space, as well as to make the reconstruction robust with
respect to QED radiative effects [5, 6]. For the studies
planned at the EIC, methods utilizing the HFS must be
extended to the reconstruction of SIDIS kinematics.

The authors of this contribution conducted first stud-
ies of SIDIS kinematic reconstruction for the EIC and
demonstrated methods in which the hadronic final state
can be used to improve the reconstruction of the virtual
photon four momentum. This was carried out in the EIC
yellow report and ATHENA proposal [3, 4] by first ob-
taining the transverse component of q from the recoil of
the HFS transverse to the beamline through a sum of the
momenta of HFS particles. Following the determination
of this transverse recoil, the remaining two components
of q can be constrained by the system of equations in-
cluding q from the definitions of Q2 and y,

qx =

NHFS∑
i

px,i, qy =

NHFS∑
i

py,i (2)

qz, qt ←

{
Q2 = −(q2x + q2y + q2z − q2t )

y =
Pxqx+Pyqy+Pzqz−Ptqt

P ·k
(3)

In the EIC yellow report and ATHENA proposal [3, 4],
this procedure was carried out using various inclusive
DIS reconstruction methods developed at HERA[2], in
fast simulations showing improvements over the electron
method in some regions of the DIS kinematic space. As
methods such as the Jacquet-Blondel (JB) method [2] use
only the hadronic final state information, this also allows
for the determination of q from the HFS alone. Results
using this approach are shown in the next section com-
pared to ML and electron methods, with resolution using
this method expected to improve with further developed
full simulations based on fast simulation results.

III. MACHINE LEARNING KINEMATIC
RECONSTRUCTION

A. Network architecture

Multiple studies have been conducted demonstrating
an improved resolution of inclusive DIS variables Q2, y, x

Q2, x ∈ {DA, JB, ele}

DIS electron px, py, pz, E


HFS particle 1
px, py, pz, E, η, ϕ

ϕ(500,500,500)

512

HFS particle 2
px, py, pz, E, η, ϕ

ϕ(500,500,500)

512

HFS particle N
px, py, pz, E, η, ϕ

ϕ(500,500,500)

512

Sum

512

F(200, 200, 200)

Virtual photon four
momentum

FIG. 3: Network diagram of Particle Flow Networks [9] with
global event features. Features of each HFS particle supplied
individually to layers Φ, then summed over to form a latent

space representation. Latent space features and global
features of event (green), including reconstructed inclusive

DIS variables and DIS electron momentum, supplied to layer
F which produces final output.

through deep learning approaches [7, 8], but these have
not yet been extended to reconstruction of semi-inclusive
DIS kinematics. In this study, we demonstrate that ma-
chine learning models which learn from the full HFS and
scattered electron can be used to improve on current re-
construction methods to provide reliable reconstruction
of the virtual photon axis across all of the DIS kinematic
coverage at the EIC.

This approach to semi-inclusive DIS reconstruction is
centered on the use of deep neural networks to bet-
ter leverage the full hadronic final state at the level
of reconstructed tracks. While previous applications of
deep learning to inclusive DIS reconstruction directly re-
gressed the kinematic variables of interest [7, 8], this
study aims to improve kinematics by directly regressing
the virtual photon four-momentum in the lab frame.

Improvements to the HFS reconstruction are carried
out through the use of Particle Flow Networks [9]. Par-
ticle Flow Networks are an application of the deep sets
neural network architecture, which learns a function of
an unordered set of objects rather than from a fixed size
input. The network consists of fully connected linear
neural network layers which take as input the features
of each particle individually, the outputs of which are
summed over all particles to create a latent space rep-
resentation of the event. The latent space variables and
supplied global features of the event are then passed to
another set of dense layers which produce the final out-
put of the network [9]. Particle flow networks have seen
particular success in tasks such as jet classification at the
LHC. Particle flow networks implemented in Keras [10]
are included in the EnergyFlow python package. [9]
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FIG. 4: SIDIS ph⊥ resolution mean (left) and RMS (right) as a function of ytrue for positive pions with z > 0.2,
ph⊥ > 0.1GeV . HFS methods surpass electron method for very low y, while PFN equals or outperforms electron method for

all y.
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FIG. 5: SIDIS ϕh resolution mean (left) and RMS (right) as a function of ytrue for positive pions with z > 0.2, ph⊥ > 0.1GeV .

B. Variables and dataset

The features of the hadronic final state reconstructed
particles provided to the particle flow network include
the four-momentum of each particle, as well as the lab
frame azimuthal angle and pseudorapidity to provide di-
rect information on angular acceptance in addition to
momentum in each direction.

The global features used for training include the four-
momentum of the scattered electron and the DIS vari-
ables x and Q2 from the electron, DA, and JB methods.
By supplying the full electron four-momentum following
the single-particle layers Φ, the model is intended to learn
corrections to the electron method based on the hadronic
final state latent space variables. When a greater amount
of fully simulated EIC simulated data is available, the
DIS methods could also be replaced by the output of
the deep learning models for inclusive DIS variables de-

scribed previously.

The particle flow network was trained to predict the
full four-momentum q in the lab frame. The particle
flow network, implemented in Keras [10] and available in
the EnergyFlow python package, is used with per-particle
dense layer units ϕ = (500, 500, 500), l = 512, and final
dense layer units F = (200, 200, 200). Both the layers
making up ϕ and F employ a relu activation function,
with the final output layer having linear activation.

The dataset used for the training and testing of this
model was the ATHENA full simulation developed for
the ATHENA detector proposal for the first interaction
region at the EIC. ATHENA was developed with the ob-
jective of meeting the resolution and physics goals laid
out in the EIC yellow report. The ATHENA full simula-
tion was implemented in DD4hep, Geant4, and Juggler
[11–13]. At the time of the detector proposal, PID algo-
rithms were not fully implemented, meaning PID infor-
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FIG. 6: SIDIS ph⊥ resolution mean (left) and RMS (right) as a function of ph⊥,true for positive pions with z > 0.2.
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FIG. 7: SIDIS ϕh resolution mean (left) and RMS (right) as a function of ph⊥,true for positive pions with z > 0.2.

mation was not included in this model. Additionally, the
scattered electron was taken as always correctly iden-
tified by matching the scattered electron with the MC
truth information.

The simulated event sample used for model training
and testing was a neutral current DIS sample generated
using Pythia-8 [14], with additional beam smearing and
crossing angle effects implemented. 3 million events with
Q2 > 1 GeV2 and 2 million events with Q2 > 10 GeV2

were used for training with 1 million Q2 > 1 GeV2 set
aside for model validation.

IV. RESULTS

As a function of y (figures 4 and 5), using the vir-
tual photon four-momentum as predicted by the neural
network model results in significantly improved recon-
struction of ph⊥, ϕh and z for low-y, when compared to
both the electron method and methods utilizing informa-

tion from the hadronic final state. The neural network
reconstruction of q results in a distribution of the SIDIS
variables which is both better centered around the true
value, and with a significantly smaller RMS where the
electron method begins to fail at low-y. At large-y, the
neural network achieves performance only slightly sur-
passing that of the electron method, which is expected
based on the projected energy and tracking resolution for
the scattered electron with ATHENA.

As a function of ph⊥,true, we also observe a significant
improvement in kinematic reconstruction for both trans-
verse momentum and for the semi-inclusive azimuthal an-
gle. As the electron method begins to degrade for lower
values of ph⊥, the neural network reconstruction of q re-
sults in stable performance to the lowest values of ph⊥ in
the dataset.
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V. SUMMARY

The EIC will provide the first opportunity for semi-
inclusive DIS measurements in an e-A collider context,
giving access to new kinematic regions in which to pre-
cisely explore the 3-dimensional spin structure of nucle-
ons. The development of reliable kinematic reconstruc-
tion methods will be critical to enabling precision ex-
traction of SIDIS observables, especially at low-y. This
can be achieved through the use of information from
the hadronic final state alongside the scattered electron.
As demonstrated in this contribution, machine learning,
here using particle flow networks, can combine the infor-
mation from the scattered electron and full HFS to pro-
vide reliable SIDIS kinematic reconstruction across the
DIS variable space. Further steps in this work will in-
clude the consideration of QED radiative effects on SIDIS
reconstruction, as well as possible extension to other neu-
ral network architectures exploiting correlations between
particles. Additionally, this approach will continue to
be studied and validated as more detailed full detector
simulations are developed for the EIC.
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