Overview of ATLAS forward proton detectors for LHC Run 3 and plans for the HL-LHC

Pragati Patel on behalf of ATLAS Forward Detectors
Institute of Nuclear Physics
Polish Academy of Sciences
Krakow, Poland

International workshop on Deep Inelastic Scattering and related subjects
May 04, 2022

Diffractive Physics

- Soft diffractive processes: large cross sections, non-perturbative computations:

- Hard diffractive processes: small cross sections, perturbative QCD, examples:

Single Diffractive Jet Production

Double Pomeron Exachange Jet Production

Proton survival due to colour singlet exchange (quantum numbers of the vacuum): photon (QED) or Pomeron (strong interactions).

Measurement method

- Topology: presence of rapidity gap between the proton(s) and the "central" system; one or both ${ }^{\infty}$ interacting proton(s) remain intact.
- Intact protons are scattered at very small angles $(\mathcal{O}(100 \mu \mathrm{rad})) \rightarrow$ very close to the beam \rightarrow detectors must be located far from the Interaction Point (IP).

Measuring rapidity gap:

+ "classically" used for diffractive pattern identification
+ no need for additional detectors
- gap is frequently destroyed due to pile-up background
- gap may be out of acceptance of "central" detector

Forward Detectors in ATLAS

ATLAS Forward Proton (AFP)

- purpose: soft and hard diffraction (limited acceptance for low masses), BSM searches
- NEAR (205 m) and FAR (217 m) stations
- horizontally inserted Roman Pots
- taking data during nominal (high pile-up, low β^{*}) and special (low pile-up, low β^{*}) runs
- purpose: soft diffraction, especially elastic scattering (CNI region, dip, Odderon searches)
- NEAR (237 m) and FAR ($241 \rightarrow 245 \mathrm{~m}$) stations
- vertically inserted Roman Pots
- taking data during special runs: very low pile-up, (very) high β^{*} optics

AFP: Silicon Tracker (SiT)

Roman pot as "seen" by proton beam, thin window

installation of detector package:

- 4 Silicon Tracker (SiT) planes are present in each RP station to measure proton position.
- $50 \times 250 \mu \mathrm{~m}^{2}$ pixel size
- 14° tilt to improve resolution in x, staggering of layers to improve resolution in y
- Resolution (measured): $=5.5 \pm 0.5 \mu \mathrm{~m}$ per pixel plane, $2.8 \pm 0.5 \mu \mathrm{~m}$ for all plane in \times [JINST 11 (2016) P09005] and $\approx 30 \mu \mathrm{~m}$ in y

Unfolding Proton Kinematics

proton trajectories along LHC beamline in vicinity of ATLAS IP; protons which lost more energy are diverged further from the beam:

"diffractive pattern" visible in the detectors; shape is due to LHC magnetic field:
positions of protons with given ξ and p_{T}; depends on settings of LHC magnets:

- At the IP, the proton is fully described by 6 variables: position ($x_{\mid P}, y_{\mid P}, z_{\mid P}$), angle: ($x_{\mid P}^{\prime}, y_{\mid P}^{\prime}$) and energy (E). They translate to a unique position at the AFP: $x_{A F P}, y_{A F P}, x_{A F P}^{\prime}, y_{A F P}^{\prime}$
- Knowledge of LHC magnetic field (transport matrix) allows unfolding of proton kinematics ($x_{i P}^{\prime}, y_{l P}^{\prime}, E$) from position measured in the detectors.
- Kinematics of scattered protons is strongly correlated to kinematics of central system.
- Challenges: non-uniform high radiation environment, background from showers, high pile-up

Time-of-Flight Detectors (ToF)

concept of ToF measurement:

- Purpose: Assign protons to individual collisions in IP1 (reducing background due to pile-up)
- Concept:
- Measure ToF difference: $\Delta t=\left(t_{A}-t_{C}\right) / 2$
- Calculate vertex position: $z_{\text {ToF }}=c \Delta t$
- Compare vertex z position reconstructed by ATLAS and AFP ToF
- Detectors: 4×4 matrix of quartz bars, L-shaped and rotated 48° w.r.t. LHC beam (Cherenkov angle)
- Timing: $20 \pm 4 \mathrm{ps}$ (side A) and $26 \pm 5 \mathrm{ps}$ (side C) [ATL-FWD-PUB-2021-002] $20 \mathrm{ps} \rightarrow$ spatial resolution of 4.24 mm .

AFP upgrades for RUN 3

- Improvement in silicon detector cooling (new heat exchangers).
- Production of new tracking modules.
- New design of detector flange: Out-of-Vacuum solution for ToF detectors
- New trigger module: possibility to trigger on single train.
- New photo-multipliers: address inefficiency issues from Run2 data-taking.
- Above items were successfully tested at DESY in 2020.
- Both NEAR and FAR station have been successfully installed:
- laser survey (positioning wrt. LHC) done,
- interlock validation done \rightarrow Roman pots qualified to be inserted to take data,
- commissioning of readout and trigger ongoing (validation with 900 GeV collisions).

Run 3 Optics - Luminosity Levelling

2022:

- 10 steps in $\beta^{*}: 60 \mathrm{~cm} \rightarrow 30 \mathrm{~cm}$ after 5 h ,
- change of crossing angle only at the beginning of run from $170 \rightarrow$ $160 \mu \mathrm{rad}$ (afterwards constant)
- Achromatic Telescopic Squeezing (ATS) will be used \rightarrow magnetic field will not change around IP1 during levelling \rightarrow less complicated unfolding of proton kinematics.

2023-2025:

- 21 steps in $\beta^{*}: 120 \mathrm{~cm} \rightarrow 25 \mathrm{~cm}$ after 12 h ,
- change of crossing angle only at the beginning of run from 170 to $135 \mu \mathrm{rad}$; afterward $135 \rightarrow 160 \mu \mathrm{rad}$ for each β^{*},
- due to ATS change of β^{*} would not have impact of transport, but change of crossing angle will make a difference \rightarrow to be addressed in the proton reconstruction procedure.

Roman Pot Position During Levelling

- Scenario 1: constant TCT position (2022):
- jaw of the main "trimming" collimator (TCT) kept constant in mm , the minimal XRP distance:

$$
d_{X R P}\left(\beta^{*}\right)=\operatorname{MAX}\left[\left(8.5 \frac{\sigma_{T C T}\left(\beta_{0}^{*}\right)}{\sigma_{T C T}\left(\beta^{*}\right)}+3\right) \sigma_{X R P}+0.3 \mathrm{~mm}, 1.5 \mathrm{~mm}\right]
$$

- nominal opening of collimators is defined at $\beta_{0}^{*}=30 \mathrm{~cm}$: $\mathrm{TCT} / \mathrm{TCL} 4 / \mathrm{TCL5}=8.5 \sigma / 15 \sigma / 40 \sigma$.
- Scenario 2: minimum RP distance (considered for 2023+):
- if possible, all Roman Pots at the closest distance of 1.5 mm ,
- Setting is not possible for AFP NEAR station \rightarrow TCT being close

Example of AFP NEAR station acceptance for scenario 1:
h_M_15
 than 8.5σ limit \rightarrow detectors must be further away.

- Fixed TCT half gap at 8.5σ at all β^{*} to allow pots to go as close as possible and pot distance is given by $d_{X R P}[\mathrm{~mm}]=\operatorname{MAX}\left(11.5 \cdot \sigma_{X R P}+0.3 \mathrm{~mm}, 1.5 \mathrm{~mm}\right)$

Run 3 Data-taking Plans

AFP

- standard (high- μ) runs; integrated luminosity collected with AFP is expected to match the one collected by ATLAS "central" detectors,
- Dedicated low- $\mu\left(\mathcal{O}(0.5)\right.$, to be determined) run during $1^{\text {st }}$ LHC ramp-up, at 600 b step:
- purpose: soft diffraction, low p_{T} hard diffraction, ToF commissioning in "clean" experimental environment,
- joining very low- $\mu(\mathcal{O}(0.005))$ run requested by ATLAS for min-bias studies,
- interest in joining "LHCf run": diffractive studies, connection to cosmic ray physics,
- low- μ Run during $2^{\text {nd }}$ ramp-up, at 600b step,
- low- μ 'electroweak' runs ($\mu \sim 1-2$):
- ~ 1 /fb of data planned to be collected \rightarrow excellent sample to study medium/high p_{T} hard diffractive processes,
- $p p \rightarrow P b P b$ reference run: sample for diffracive studies at lower energy

ALFA

- join $\beta^{*}=90 \mathrm{~m}$ run in 2022,
- key interest: take data during $\beta^{*}=3 / 6 \mathrm{~km}$ run with $\sqrt{s}=13.6 \mathrm{TeV}$ (planned early in 2023) \rightarrow measurement of elastic scattering at new energy.

HL-LHC

- There is an ongoing internal discussion within ATLAS community on the presence of Roman pots at HL-LHC. Especially studies of gain wrt. to "standard" ATLAS measurement possibilities.
- At HL-LHC high pile-up and low β^{*} environment the main focus would be on photon induced processes and Beyond Standard Model searches:
- exclusive $\gamma \gamma \rightarrow W W / Z Z$,
- exclusive $t \bar{t}$,
- ALP searches,
- Dark Matter searches,
- ...
- Preliminary studies of possible detector acceptance were done with HL-LHC optics ver. $1.5, \sqrt{s}=14 \mathrm{TeV}$, $\beta^{*}=15 \mathrm{~cm}$ and horizontal/vertical crossing angle.
- Following locations of pots were considered:
- RP1(A/B): 195.5, 198 m,
- RP2(A/B): 217, 219.5 m ,
- RP3(A/B/C): 234, 237, 245 m,
- Roman pots were assumed to be inserted at $11 \sigma+0.3 \mathrm{~mm}$ from the beam.
- Default setting of collimators (TCL4,5,6) is 14.2σ (with possibility of opening up more, e.g. to 16.4σ).

HL-LHC Acceptance - Horizontal Crossing Angle

positions of protons with certain kinematics:

geometric acceptance for RP1A and horizontal crossing angle:
HL-LHC V1. $5 \sqrt{s}=14 \mathrm{TeV}, \beta^{*}=0.15 \mathrm{~m}, \phi=0$ Det.pos $=195.5$

mass acceptance for considered sets of stations: HL-LHC Roman Pots at IP1

- Plane of crossing angle, θ_{C}, must be opposite at IP1 and IP5: vertical θ_{C} at IP5 means horizontal at IP1.
- Mass acceptance depends on pot location - stations closer to IP have acceptance towards higher masses (continues lines on right plot).
- Combination of stations (e.g. RP1+RP2) assumes installation of more pots (cost to be considered) to provide "enchanced" acceptance (dashed and dotted lines on right plot):

Summary

Run 2:

- Ongoing elastic, diffractive, and (semi-)exclusive analysis based on Run 2 data!

Run 3:

- All AFP stations installed and qualified to be inserted! \rightarrow Commissioning ongoing.
- AFP ToF system: new PMTs, new design - Out-of-Vacuum solution. \rightarrow Successful test beams at DESY and SPS.
- Plan to take data during regular (high pile-up) and special (low-pile-up) runs for BSM searches and studies exclusive processes and soft/hard diffraction.
- ALFA refurbished and qualified to be inserted! \rightarrow Commissioning ongoing.
- Request to take in Run 3 with very high $\beta^{*} \rightarrow$ properties of elastic scattering at new energy.

Run 4:

- Physics programme being discussed within ATLAS.
- Output will set the constraints on preferred detector localization and technology (position and timing resolutions),
- Optimization of Run 4 optics to enhance acceptance is considered.

BACK-UP

HL-LHC

- Pot Locations:
- RP1A at 195.5 m
- RP1B at 198.0 m
- RP2A at 217.0 m
- RP2B at 219.5 m
- RP3A at 234.0 m
- RP3B at 237.0 m
- RP3C at 245.0 m
- RP1 means combination two stations RP1A and RP1B on both sides of IP: proton measured in all of them.
- RP1+RP2 means:
$[($ RP1A \& RP1B on side $A) \mid(R P 2 A$ \& RP2B on side $A)]$ \& [(RP1A \& RP1B on side C) \mid (RP2A \& RP2B on side C)].

ATS

- The Achromatic Telescopic Squeezing (ATS) scheme is a novel concept enabling the matching of ultra-low β^{*} while correcting the chromatic aberrations induced by the inner triplet.
- change of β^{*} is by acting only on the insertions on either side of IR1 and IR5 (i.e. IR8/2 for IR1 and IR4/6 for IR5),
- magnet settings between IP1 and AFP do not change during β^{*}-levelling

