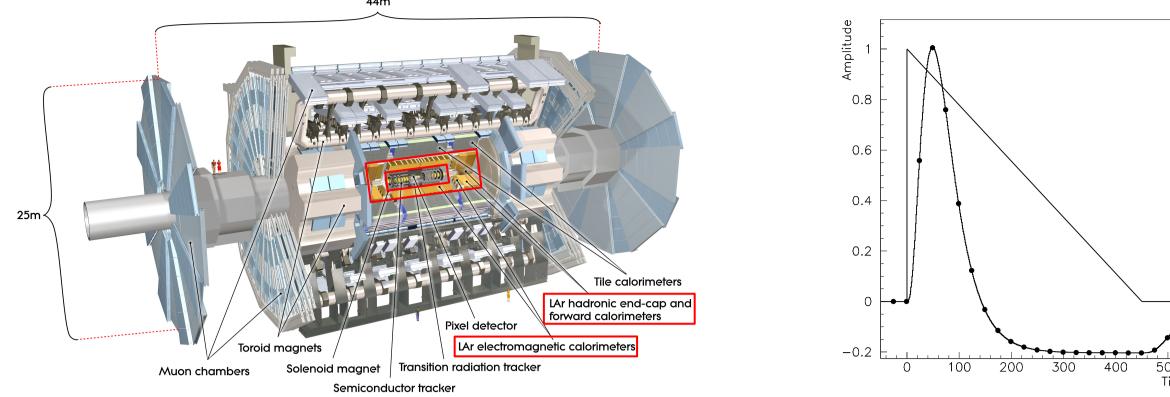
Machine Learning for Real-Time Processing of TLAS ATLAS Liquid Argon Calorimeter Signals with FPGAs ZEXPERIMENT DIS2022: XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects

1. ATLAS Liquid Argon Calorimeter



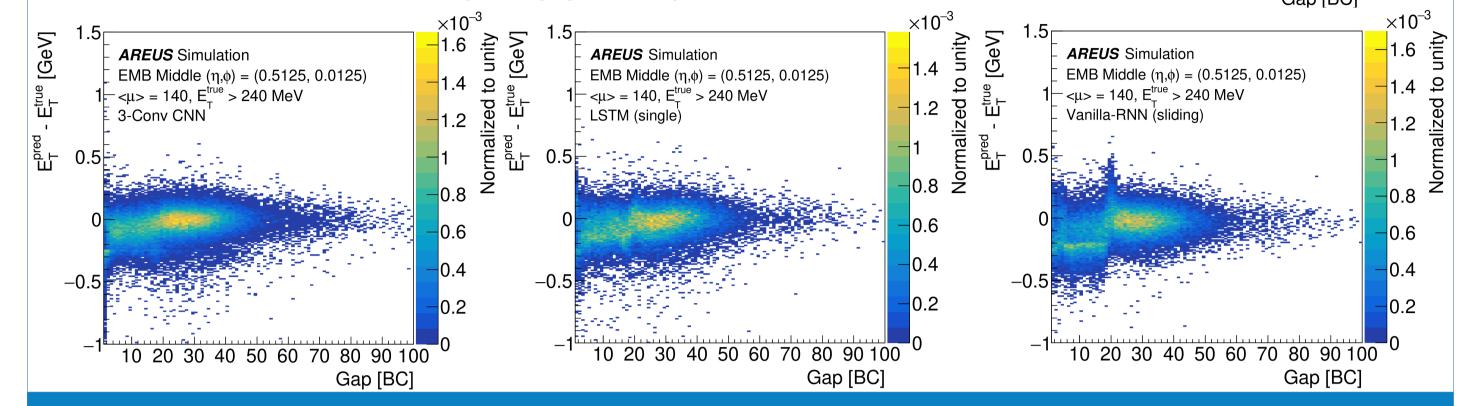
- Sampling calorimeters for the measurement of energy deposited by electrons, photons and hadronic jets
- 182 000 cells filled with Liquid Argon as medium for ionization
- Resulting triangular pulse is amplified, shaped and digitized at 40 MHz
- Energy reconstruction with **Optimal Filter (OF)**: linear combination of up to 5 samples

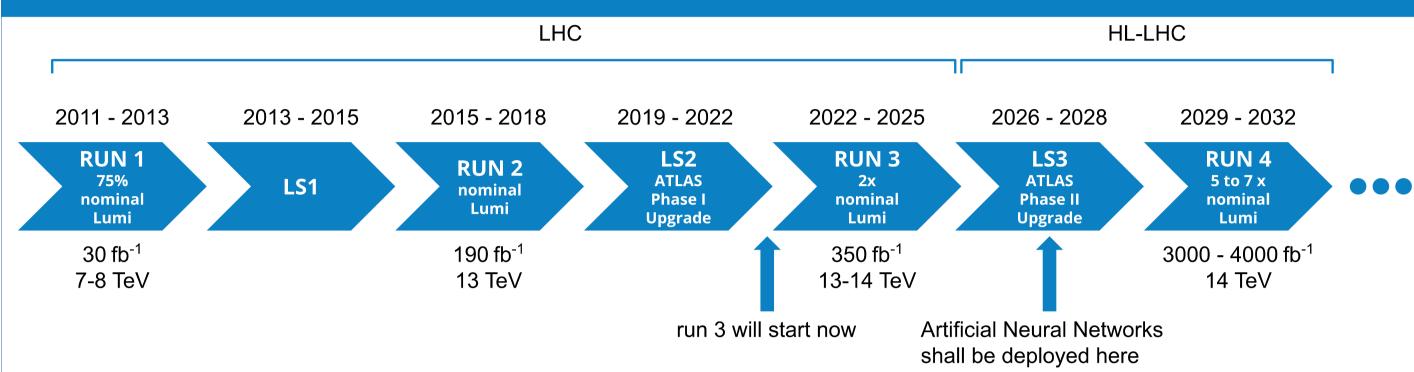
2. Phase II Readout Electronics Upgrade

3.3 Performance in Simulation

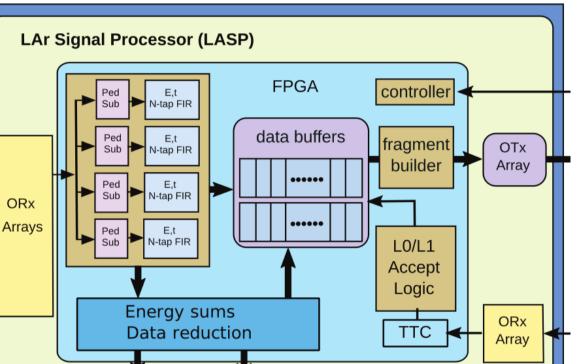
- CNNs and RNNs **outperform OF** in both mean and bias behaviour
- CNNs/RNNs show less biased behaviour with overlapping pulses

Figures: difference between predicted and true energy over the temporal gap between two higher energy deposits for OF (right) and and different types of artificial neural networks (ANN) (bottom)





- High Luminosity LHC (HL-LHC) planned to start in 2029 with up to 7.5 times nominal luminosity
- About 140 proton-proton-collisions per bunch crossing
- Challenges for LAr calorimeter readout under HL-LHC conditions:
 - Revised trigger scheme allows selection of events at 1 MHz and in subsequent bunch crossings (BC)
 - Number of events with overlapping signals will increase
 - \rightarrow in-time and out-of-time pile-up
- New Liquid Argon Signal Processor (LASP) boards will be installed during Long Shutdown 3 (LS3, Phase-II upgrade):
- FPGA to implement more complex real-time energy reconstruction algorithms
- Maximum latency of ~150 ns required by trigger
- Up to 512 detector cells processed on one FPGA
- Readout chain can be **simulated with AREUS** software:
- Supports electronics noise, digitization and LHC

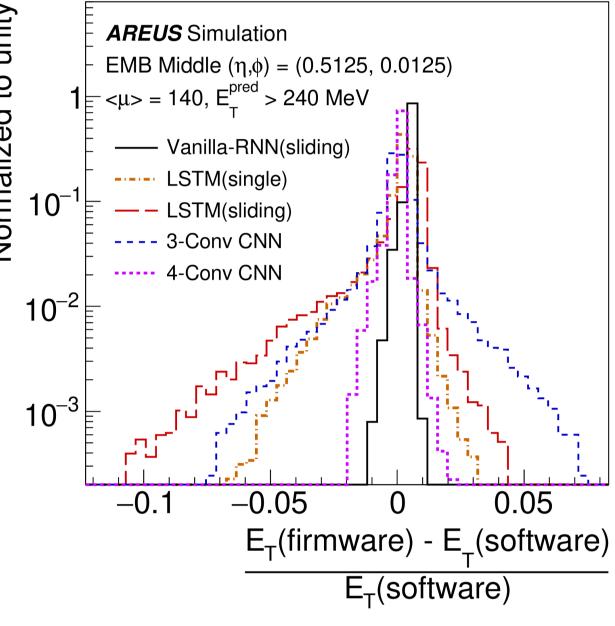


OTx Array

OTx Array

4. FPGA Implementation and Performance

- CNN: Direct **implementation in VHDL** • Optimal use of DSP resources on FPGA • Architecture automatically configured from files obtained during training Ē 10⁻ • RNN: High Level Synthesis approach • Easier design and more flexibility in architecture 10^{-2}
- Good agreement between firmware simulation results and software reference model
- Inherent inaccuracies from fixed point numbers
- Performance and resource usage for single instance (left) and multiplexed model (right):



MB Middle $(\eta,\phi) = (0.5125, 0.012)$

	3-Conv CNN	4-Conv CNN	Vanilla RNN (sliding)	LSTM (single)	LSTM (sliding)		3-Conv CNN	4-Conv CNN	Vanilla RNN
						Multiplicity	6	6	15
Frequency F _{max} [MHz]	493	480	641	560	517	Frequency F _{max} [MHz]	344	334	640
Latency	62	58	206	220	363	Latency clk _{core} cycles	81	62	120
clk _{core} cycles						Max. Channels	390	352	576
#DSPs	46	42	34	176	738		46	42	152

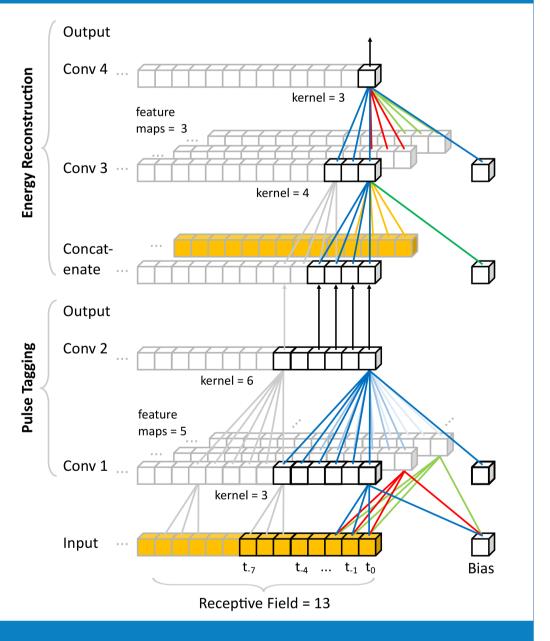
- bunch train structure
- Generates digitized pulse sequence as expected from specific detector cell

3.1 Convolutional Neural Networks (CNN)

- Machine Learning solutions under investigation to **replace OF** in future HL-LHC conditions
- Pulse tagging sub-network (2 layers) Sigmoid activation function
- Energy reconstruction sub-network (1-2 layers) • Uses results of tagging sub-network and raw ADC samples
- ReLU activation function
- Trained and evaluated on AREUS samples
- Training in two stages:
- 1. Tagging part only as pre-training
- 2. All layers together for energy reconstruction

3.2 Recurrent Neural Networks (RNN)

- RNNs have connections between nodes over time \rightarrow memory
- Long Short-Term Memory (LSTM) well suited for long sequences due to gated design
- Limited number of internal dimensions and only one layer due to FPGA resource constraints



#DST 3	0.8%	0.7%	0.6%	3.1%	12.8%	#DSPs	0.8%	0.7%	2.6%	
#ALMs	5684	5702	13115	18079	69892	#ALMs	14235	15627	5782	-
,,	0.6%	0.6%	1.4%	1.9%	7.5%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.5%	1.7%	0.6%	

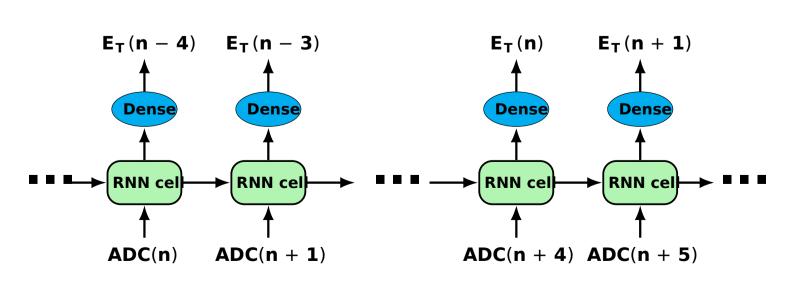
• CNNs:

- short latency and small usage of Digital Signal Processors (DSP)
- Usage of FPGA logic (ALM) and maximum execution frequency of multiplexed version need to be optimized further
- Vanilla RNN:
- meets requirements for resource usage and maximum clock frequency in mutitiplexed version
- Energy reconstruction using CNNs/RNNs can be implemented on LASP FPGA, shows good agreement between software and firmware model and outperforms OF

5. Outlook

- Reliability of ANNs for varying pulse shapes and sequences must be tested in more detail:
 - Influence of bunch train structure expected at HL-LHC
 - Temporal and spatial variation of proton-proton collisions at same bunch crossing leading to shifts of pulse digitization
 - Influence of varying pulse shapes in different detector regions
 - \rightarrow Can the same network structure be used in all detector regions?
- Studies on **reproducibility of performance** for multiple trainings of same ANN architecture:
 - How often do we have to retrain / recalibrate the ANNs? ^{0.8}
 - Training is a statistical process
 - \rightarrow How many trainings are needed to obtain best performance?
 - Can optimized loss functions increase the
- sigmoid — cut off ReLU PLAN sigmoid 0.6 0.4

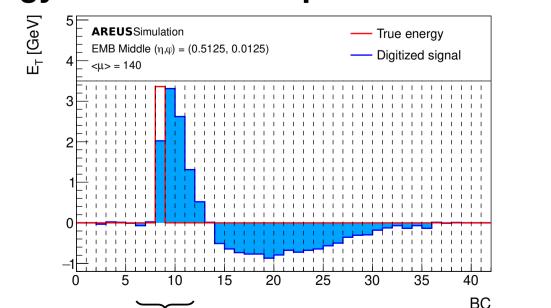
• Single dense neuron as decoder to reconstruct energy from LSTM output

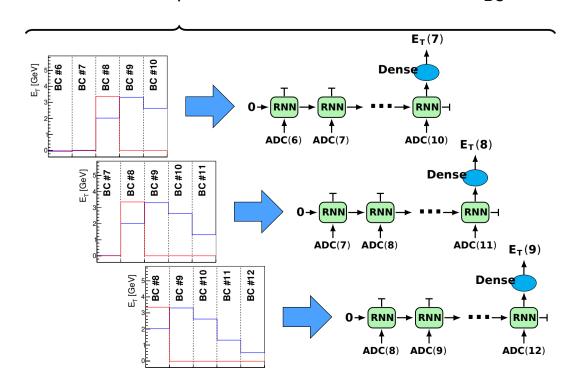


• Single-cell LSTM (above)

• Operates sample per sample **on entire sequence**

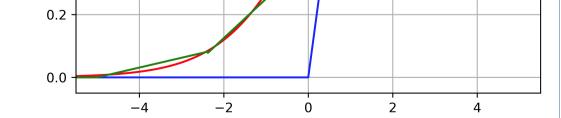
- Expected to be more robust for overlapping pulses Sliding-window LSTM (right)
- Newly instantiated LSTM operates on fixed number of **past samples at each BC**
- Expected to be more robust for isolated pulses
- Vanilla RNN: simple structure to reconstruct energy and forward information





- reproducibility?
- All ANN architectures must be **optimized for** minimal FPGA resource usage
- FPGA implementation is ongoing: • Multiplexing of CNNs and RNNs
 - Optimization of internal fixed point calculation

6. References



Examples for resource-saving replacements for sigmoid activation function

- 1. The ATLAS Collaboration, ATLAS Liquid Argon Calorimeter Phase-II Upgrade: Technical Design Report, CERN-LHCC-2017-018, ATLAS-TDR-027, CERN, 2017
- The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 S08003, 2008
- 3. W.E. Cleland, E.G. Stern, Signal processing considerations for liquid ionization calorimeters in a high rate environment, NIM A Vol. 338, 467-497, 1994
- 4. G. Aad, et al., Computing and Software for Big Science 5, 19 (2021) https://link.springer.com/article/10.1007/s41781-021-00066-y

Christian Gutsche on behalf of the ATLAS Liquid Argon Calorimeter group Institute of Nuclear and Particle Physics, TU Dresden, Germany

