Quarkonium production as a function of charged-particle multiplicity in pp and p-Pb collisions with ALICE at the LHC

Theraa TORK,
On behalf of the ALICE collaboration.
IJCLab, Paris-Saclay university.

DIS2022, 2-6 May 2022 Santiago de Compostela, Spain.

High multiplicity events and MPI

Features known as a signature of QGP were observed in pp and p-Pb collisions:

- Elliptic flow of charged particles: long-range angular correlation. [HEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions.
 Nature Phys 13, 535-539 (2017).

High multiplicity events and MPI

Features known as a signature of QGP were observed in pp and p-Pb collisions:

- Elliptic flow of charged particles: long-range angular correlation. [HEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions.
 Nature Phys 13, 535-539 (2017).

How to interpret this behavior? possible scenarios:

- Final state effects: e.g. interaction with co-moving particles. Comovers effects are expected to be stronger for loosely bound states. Phys. Lett. B 749 (2015) 98-103
- QGP droplets in high multiplicity events.
- Multiparton interactions (MPIs): several parton-parton interactions in a single hadron-hadron collision.

Outline

How does multiparton interactions (MPIs) influence quarkonium production?

To answer this question we will go through:

- The reference system, pp collisions at \sqrt{s} = 13 TeV:
 - Double J/ψ production cross section.
 - Multiplicity dependence of :
 - J/ψ and $\psi(2S)$ production.
 - bottomonia $\Upsilon(nS)$ production.
- The p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV:
 - Cold nuclear matter effects.
 - Multiplicity dependence of:
 - J/ψ and $\psi(2S)$ production.

Where to look for MPI

It is directly connected with event multiplicity

- Quarkonium pairs production (ideally):
 - Direct probe for MPIs.
 - In addition, provide information on single quarkonium production mechanism.

But it needs large statistics to measure (p_T and / or y differential) cross section.

- (or) Quarkonium production vs multiplicity:
 - Indirect probe for MPI.
 - Gain insight on the correlation between soft and hard process in the interaction.

The ALICE Experiment

The ALICE Experiment

Central barrel

 $|\eta_{lab}| < 0.9$

The reference system: pp collisions at $\sqrt{s} = 13 \text{ TeV}$

Double J/ψ production

Important to gain an insight on:

- Single J/ψ production.
- MPI: single and double parton scattering.

Double J/ψ production

Important to gain an insight on:

- Single J/ψ production.
- MPI: single and double parton scattering.

ALICE is in a good agreement with LHCb results for both:

- Double J/ψ cross section.
- Double-to-single J/ψ cross section ratio.

Caveats:

- LHCb measured prompt double J/ψ production.
- Slight difference in the rapidity window between ALICE and LHCb.

10

measured at midrapidity

PLB 810 (2020) 135758

- Self normalized J/ ψ yields vs multiplicity at midrapidity.
- Faster than linear increase of J/ψ yields vs multiplicity.
- The trend is described by models that include either initial and/or final state effects.
- EPOS 3 and PYTHIA 8.2 event generators do not reproduce the behavior of the data.

measured at midrapidity

- Self normalized J/ψ yields at midrapidity vs multiplicity at midrapidity.
- Faster than linear increase of J/ψ yields vs multiplicity.
- The trend is described by models include either initial and/or final state effects.
- EPOS 3 and PYTHIA 8.2 event generators do not reproduce the behavior of the data.

measured at forward rapidity

- J/ψ yields at forward rapidity vs multiplicity measured at midrapidity:
 - Compatible with a linear increase within uncertainty.
 - Models includes initial and/or final state effects reproduce the measurements
 - EPOS 3 and PYTHIA 8.2 event generators do not reproduce the behavior of the data.

Multiplicity dependence of J/ψ production at different c.m.s energies

Higher energies, more MPIs?

- J/ ψ yields at forward rapidity vs multiplicity measured at midrapidity at \sqrt{s} = 5.02 TeV, 7 TeV, and 13 TeV:
 - Compatible with a linear increase within uncertainty.
 - The data points at the three collision energies are compatible with each other.

Multiplicity dependence of $\psi(2S)$ production

 $\psi(2S)$ is the radial excited state of J/ ψ

- $\psi(2S)$ yields increase linearly with $dN_{ch}/d\eta$.
- PYTHIA 8.2 predicts the trend of the measurements at the probed multiplicities.

Multiplicity dependence of $\psi(2S)$ production

 $\psi(2S)$ is the radial excited state of J/ψ

- Similar behavior for J/ ψ and ψ (2S) vs multiplicity.
- Measurements are compatible with available models within uncertainties:
 - Comovers: predicts a stronger suppression of ψ(2S) at high multiplicity.
 - PYTHIA 8.2 : suggests a flat ψ(2S)-to- J/ψ ratio.

Made of bottom and anti-bottom quarks

- Υ (1S) and Υ (2S) yields increase with $dN_{ch}/d\eta$.
- The trend is compatible with a linear increase (y = x).

Made of bottom and anti-bottom quarks

- Compared to J/ ψ , similar behavior of Υ (1S) vs multiplicity.
- Current precision on the measurements can not confirm nor rule out final-state effects

p-Pb collisions at √s_{NN} = 8.16 TeV

How does the nuclear environment affect quarkonium production vs multiplicity?

p-Pb configurations

Definition of forward and backward rapidity regions in p-Pb collisions

Muon reconstructed at forward rapidity. p-going direction. $2.03 < y_{cms} < 3.53$

Muon reconstructed at backward rapidity. Pb-going direction. $-4.46 < y_{cms} < -2.96$

Cold nuclear matter effects

→ Initial state effects:

- Parton shadowing due to modification of PDFs in nuclei. R. Vogt, Phys. Rev. C 71, 054902, JHEP10(2014)073
- Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons.

F. Gelis. arXiv:1002.0333

→ Initial-Final state effects:

 Fully coherent energy loss:by partons via gluon emission. F.Arleo et.al.IHEP 01 (2022) 164

©b.Diab

→ Final state effects

- Interaction with comoving particles. E.G.Ferreiro, Phys. Lett. B 749 (2015) 98-103
- Nuclear absorption due to the interaction with the nucleons of the colliding nuclei.

L. Kluberg et.al, arXiv:0901.3831

Cold nuclear matter effects

- → Initial state effects:
 - Parton shadowing due to modification of PDFs in nuclei.
 - ✓ Color Glass Condensate CGC i.e medium with high density of small Bjorken-x gluons.
- → Initial-Final state effects:
 - Fully coherent energy loss: by partons via gluon emission.

- → Final state effects :
 - Interaction with comoving particles.
 - Nuclear absorption due to the interaction with the nucleons of the colliding nuclei (negligible at LHC energies).

measured at forward-backward rapidity

- J/ ψ yields increase with dN_{ch} / d η in both rapidity regions.
- Faster (Slower) than linear increase observed at backward (forward) rapidity.
- The different behavior likely due to different Bjorken-x regions probed.

measured at forward-backward rapidity

EPOS describes the behavior of J/ψ vs multiplicity in both rapidity regions.

arXiv:2204.10253

- The $\psi(2S)$ yield increases with increasing $dN_{ch}/d\eta$ in p-Pb collisions.
- Percolation+ comovers+EPSO9 calculation predicts the trend of the measurements
 - Large uncertainty at forward rapidity due to EPSO9 nPDF uncertainty.

arXiv:2204.10253

Multiplicity dependence of $\psi(2S)$ production

- Similar behavior of J/ ψ and ψ (2S) vs dN_{cb}/d η in p-Pb.
- Similar trend of the $\psi(2S)$ -to-J/ ψ ratio vs multiplicity in both rapidity regions.
- The comovers calculation describes the data within statistical and systematic uncertainties.

ALTCE

Conclusions

- In pp collisions at √s = 13 TeV:
 - First measurement of double-J/ψ production in ALICE.
 - The behaviour of J/ψ yield at midrapidity and forward rapidity with respect to charged-particle multiplicity at midrapidity is described by models that include either initial and/or final state effects. All these models include the influences of MPI on particle production.
 - $\psi(2S)$ and Υ (1S) results as a function of charged-particle multiplicity can not confirm nor rule out a possible influence of final-state effects.
- In p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV:
 - J/ψ yield at forward and backward rapidity as a function of charged-particle multiplicity is described by EPOS calculation, that includes both initial and final state effects.
 - $\psi(2S)$ measurements at large rapidities are not conclusive due to limited statistics.
 - More stringent tests of the models are needed to disentangle initial and final-state effects.

Thank you

Double J/ψ production

One-dimensional projections of the two-dimensional fit of reconstructed di-Jpsi.

measured at midrapidity

Normalized inclusive J/ ψ yield at midrapidity as a function of normalized charged-particle pseudorapidity density at midrapidity ($|\eta|$ <1) with the event selection based on SPD tracklets at midrapidity and on VO amplitude at forward rapidity in pp collisions at TeV.

measured at midrapidity p_{τ} dependence?

Normalized inclusive J/ ψ yield at midrapidity as a function of normalized charged-particle pseudorapidity density at midrapidity ($|\eta| < 1$), for different p_{τ} ranges.

PYTHIA 8.2 reproduce the data in the p_{τ} > 8 GeV/c.