How small is small *x*? A perspective from the NLO CGC phenomenology

Bo-Wen Xiao

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen

Ultimate Questions and Challenges in QCD

To understand our physical world, we have to understand QCD!

Three pillars of EIC Physics:

- How does the spin of proton arise? (Spin puzzle)
- What are the emergent properties of dense gluon system?
- How does proton mass arise? Mass gap: million dollar question.

EICs: keys to unlocking these mysteries! Many opportunities will be in front of us!

Saturation Physics (Color Glass Condensate)

QCD matter at extremely high gluon density

- Gluon density grows rapidly as x gets small.
- Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine ⇒ Non-linear QCD dynamics (BK/JIMWLK) ⇒ ultra-dense gluonic matter
- Multiple Scattering (MV model) + Small-x (high energy) evolution

Dual Descriptions of Deep Inelastic Scattering

Bjorken frame $F_2(x, Q^2) = \sum_q e_q^2 x \left[f_q(x, Q^2) + f_{\bar{q}}(x, Q^2) \right]$. Dipole frame [A. Mueller, 01; Parton Saturation-An Overview]

$$F_2(x,Q^2) = \sum_s e_f^2 rac{Q^2}{4\pi^2 lpha_{
m em}} S_\perp \int_0^1 {
m d}z \int {
m d}^2 r_\perp \left| \psi \left(z, r_\perp, Q
ight)
ight|^2 \left[1 - S^{(2)} \left(Q_s r_\perp
ight)
ight]$$

- Bjorken: partonic picture is manifest. Saturation shows up as limit of number density.
- Dipole: the partonic picture is no longer manifest. Saturation appears as the unitarity limit for scattering. Convenient to resum the multiple gluon interactions.

Geometrical Scaling in DIS

[Golec-Biernat, Stasto, Kwiecinski; 01, Munier, Peschanski, 03]

■ Define $Q_s^2(x) = (x_0/x)^{\lambda} \text{GeV}^2$ with $x_0 = 3.04 \times 10^{-3}$ and $\lambda = 0.288$. All low-x data with $x \le 0.01$ and $Q^2 \le 450 \text{GeV}^2$ is function of a single variable $\tau = Q^2/Q_s^2$.

NLO CGC meets HERA data

[Beuf, Hänninen, T. Lappi, and H. Mäntysaari, 20]

- Dipole-amplitude fits to HERA inclusive data using the full NLO impact factor combined with an improved BK evolution.
- Robust predictions for future deep inelastic scattering experiments.
- The needs for extension to heavy quark case at NLO. [Beuf, Lappi, Paatelainen, 22]

A Tale of Two Gluon Distributions

Two gauge invariant TMD operator def. [Bomhof, Mulders and Pijlman, 06] Link [Dominguez, Marquet, Xiao and Yuan, 11] Link

I. Weizsäcker Williams distribution: conventional density

$$xG_{WW}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr}\langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

II. Color Dipole gluon distributions:

$$xG_{\mathrm{DP}}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}} \operatorname{Tr}\langle P|F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}|P\rangle.$$

Modified Universality for Gluon Distributions:

	Inclusive	Single Inc	DIS dijet	γ +jet	dijet in pA
xG_{WW}	×	×	✓	×	✓
xG_{DP}	✓	✓	×	✓	✓

NLO CGC Computation for dijet in DIS

[Caucal, Salazar, and Venugopalan, 21]

- First complete next-to-leading order computation of inclusive dijet production in DIS.
- Dijet photoproduction at low-x at NLO and its back-to-back limit. [Taels, Altinoluk,

Beuf, Marquet, 22]

Diffractive and Exclusive processes in DIS

- LO [Brodsky, Frankfurt, Gunion, Mueller, Strikman, 94; Kowalski, Teaney, 03; Kowalski, Motyka, Watt, 06; Kowalski, Caldwell, 10; Berger, Stasto, 13]...
- Incoherent diffractive production for nucleon/nuclear targets [T. Lappi, H. Mantysaari, 11; Toll, Ullrich, 12; Lappi, Mantysaari, R. Venugopalan, 15]...;
- NLO[Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon, 16] •Link
- Numerical NLO results with light and heavy quarks [Mäntysaari and Penttala, 22]

Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Dilute-dense factorization at forward rapidity

$$\frac{d\sigma_{\text{LO}}^{pA \to hX}}{d^2p_{\perp}dy_h} = \int_{\tau}^{1} \frac{dz}{z^2} \left[x_1 q_f(x_1, \mu) \mathcal{F}_{x_2}(k_{\perp}) D_{h/q}(z, \mu) + x_1 g(x_1, \mu) \tilde{\mathcal{F}}_{x_2}(k_{\perp}) D_{h/g}(z, \mu) \right].$$

- Proton: Collinear PDFs and FFs (Strongly depends on μ^2).; Nucleus: Small-x gluon!
- Need NLO correction! IR cutoff: [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11] [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14]; Full NLO [Chirilli, BX and Yuan, 12]
- Forward jets at LO and NLO [Mäntysaari, Paukkunen, 19; Liu, Xie, Kang, Liu, 22]

NLO diagrams in the $q \rightarrow q$ channel

[Chirilli, BX and Yuan, 12]

- Take into account real (top) and virtual (bottom) diagrams together!
- Non-linear multiple interactions inside the grey blobs!
- Integrate over gluon phase space \Rightarrow Divergences!.

Factorization for single inclusive hadron productions

Factorization for the $p + A \rightarrow H + X$ process [Chirilli, BX and Yuan, 12]

- Include all real and virtual graphs in all channels $q \to q$, $q \to g$, $g \to q(\bar{q})$ and $g \to g$.
- 1. collinear to the target nucleus; \Rightarrow BK evolution for UGD $\mathcal{F}(k_{\perp})$.
- \blacksquare 2. collinear to the initial quark; \Rightarrow DGLAP evolution for PDFs
- 3. collinear to the final quark. \Rightarrow DGLAP evolution for FFs.

Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

$$\mathrm{d}\sigma = \int x f_a(x) \otimes D_a(z) \otimes \mathcal{F}_a^{x_g}(k_\perp) \otimes \mathcal{H}^{(0)} + rac{lpha_s}{2\pi} \int x f_a(x) \otimes D_b(z) \otimes \mathcal{F}_{(N)ab}^{x_g} \otimes \mathcal{H}_{ab}^{(1)}.$$

Consistent implementation should include all the NLO α_s corrections.

- NLO parton distributions. (MSTW or CTEQ)
- NLO fragmentation function. (DSS or others.)
- Use NLO hard factors. Partially by [Albacete, Dumitru, Fujii, Nara, 12]
- Use the one-loop approximation for the running coupling
- rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
- Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

- Reduced factorization scale dependence!
- The abrupt drop at NLO when $p_T > Q_s$ was surprising and puzzling.
- Fixed order calculation in field theories is not guaranteed to be positive.

NLO hadron productions in pA collisions: An Odyssey

[Watanabe, Xiao, Yuan, Zaslavsky, 15] Rapidity subtraction! with kinematic constraints

■ Originally assume the limit $s \to \infty$

$$\int_{0}^{1-\frac{q_{\perp}^{2}}{x_{p}s}} \frac{d\xi}{1-\xi} = \underbrace{\ln \frac{1}{x_{g}}}_{1-\xi < \frac{q_{\perp}^{2}}{k_{\perp}^{2}}} + \underbrace{\ln \frac{k_{\perp}^{2}}{q_{\perp}^{2}}}_{\text{missed earlier}} \Rightarrow$$

New terms:
$$L_q + L_g$$
 from $q_{\perp}^2 \le (1 - \xi)k_{\perp}^2$.

Related to threshold double logs!

- Negative when $p_T \gg Q_s$ at forward $y(x_p \to 1)!$
- Approach threshold at high k_{\perp} .

Extending the applicability of CGC calculation

Some Remarks:

- Towards a more complete framework. [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14; Kang, Vitev, Xing, 14; Ducloue, Lappi and Zhu, 16, 17; Iancu, Mueller, Triantafyllopoulos, 16; Liu, Ma, Chao, 19; Kang, Liu, 19; Kang, Liu, Liu, 20;]
- Goal: find a solution within our current factorization (exactly resum $\alpha_s \ln 1/x_g$) to extend the applicability of CGC. Other scheme choices certainly is possible.
- More than just negativity problem. Need to work reliably (describe data) from RHIC to LHC, low p_T to high p_T .
- Demonstrate onset of saturation and visualize smooth transition to dilute regime.
- Add'l consideration: numerically challenging due to limited computing resources.
- A lot of logs occur in pQCD loop-calculations: DGLAP, small-x, threshold, Sudakov.
- Breakdown of α_s expansion occurs due to the appearance of logs in certain PS.

Threshold Logarithms

[Watanabe, Xiao, Yuan, Zaslavsky, 15; Shi, Wang, Wei, Xiao, 21] • 2112.06975 [hep-ph]

- Numerical integration (8-d in total) is notoriously hard in r_{\perp} space. Go to k_{\perp} space.
- In the coordinate space, we can identify two types of logarithms

$$\text{single log: } \ln\frac{k_{\perp}^2}{\mu_r^2} \rightarrow \ln\frac{k_{\perp}^2}{\Lambda^2}\,, \quad \ln\frac{\mu^2}{\mu_r^2} \rightarrow \ln\frac{\mu^2}{\Lambda^2}; \quad \text{double log: } \ln^2\frac{k_{\perp}^2}{\mu_r^2} \rightarrow \ln^2\frac{k_{\perp}^2}{\Lambda^2},$$

with $\mu_r \equiv c_0/r_\perp$ with $c_0 = 2e^{-\gamma_E}$. Performing Fourier transformations

$$\int \frac{d^2 r_{\perp}}{(2\pi)^2} S(r_{\perp}) \ln \frac{\mu^2}{\mu_r^2} e^{-ik_{\perp} \cdot r_{\perp}} = -\int \frac{d^2 l_{\perp}}{\pi l_{\perp}^2} \left[F(k_{\perp} + l_{\perp}) - J_0(\frac{c_0}{\mu} l_{\perp}) F(k_{\perp}) \right]$$

$$= -\frac{1}{\pi} \int \frac{d^2 l_{\perp}}{(l_{\perp} - k_{\perp})^2} \left[F(l_{\perp}) - \frac{\Lambda^2}{\Lambda^2 + (l_{\perp} - k_{\perp})^2} F(k_{\perp}) \right] + F(k_{\perp}) \ln \frac{\mu^2}{\Lambda^2}.$$

- Introduce a semi-hard auxiliary scale $\Lambda^2 \sim \mu_r^2 \gg \Lambda_{OCD}^2$. Identify dominant r_{\perp} !
- Dependences on μ^2 , Λ^2 cancel order by order. Choose "natural" values at fixed order.

Numerical Results for pA spectra

- RHIC: $\Lambda^2 \sim Q_s^2$; LHC, larger Λ^2 .
- $\mu \sim Q \ge 2k_{\perp}$ ($\alpha > 2$) at high p_T . $2 \to 2$ hard scattering.
- **E**stimate higher order correction by varying μ and Λ .
- Threshold enhancement for σ .
- Nice agreement with data across many orders of magnitudes for different energies and p_T ranges

Comparison with the new LHCb data

- LHCb data: 2108.13115
- ▶ Data Link ▶ DIS2021
- $\mu \sim (2 \sim 4)p_T$ with proper choice of Λ
- Threshold effect is not important at low *p*_T for LHCb data. Saturation effects are still dominant.
- Predictions are improved from LO to NLO.

Numerical Results for forward pp spectra and central rapidity pA

- Set $\mu^2 = \alpha^2(\mu_{\min}^2 + p_T^2)$ with $\alpha = 2 \rightarrow 4$
- $\mu \sim Q \ge 2k_{\perp} \ (\alpha > 2)$ in the high p_T region. $2 \to 2$ hard scattering.
- Nice agreement with data for *pp* collisions and central rapidity *pA*!
- For large p_T data in pA, events with $x_g > 0.01$ starts to contribute.

Comparison with the new LHCb pp data at 13 TeV

Why the threshold resummation works?

At low p_T , saturation dominates; At high p_T , threshold wins!

- At one-loop, negativity appears under two conditions:
 - Need $p_T \gg Q_s$ for the threshold logarithmic terms to take over.
 - Need to go to sufficiently forward rapidity to reach the kinematic boundary.
- At RHIC, negativity does not appear at *y* = 4 due to lack of phase space.
- Maybe counter-intuitive, but *p_T* expansion is key.

Applicability of CGC and Initial Condition

Kinematics: constraint $\tau/z = \frac{p_T e^y}{z\sqrt{s}} \le 1$ and CGC constraint $x_g \equiv \frac{p_T e^{-y}}{z\sqrt{s}} \le 10^{-2}$.

- Small-x gluon: [Albacete, Armesto, Milhano, Quiroga-Arias and Salgado, 11] Link
- Initial condition set at $x_g \equiv \frac{p_\perp e^{-y}}{z\sqrt{s}} = 10^{-2}$ + running coupling BK evolution.
- Applicability of CGC: rapidity y sufficiently large and $p_T = k_{\perp} z$ not too large.
- At high p_T , events with $x_g > 0.01$ start to contribute. y = 0 and $k_{\perp} > 50$ GeV.

Summary

- Ten-Year Odyssey in NLO hadron productions in pA collisions in CGC.
- Towards the precision test of saturation physics (CGC) at RHIC and LHC. Key!.
- Next Goal:Global analysis for CGC combining data from pA and DIS.
- A lot of remarkably difficult NLO calculations have been accomplished in CGC in the last couple of years.
- Entering an exciting time of NLO CGC phenomenology with the upcoming EIC and tremendous interesting physics results ahead.

Threshold resummation in the CGC formalism

Threshold logarithms: Sudakov soft gluon part and Collinear (plus-distribution) part.

- Soft single and double logs $(\ln k_{\perp}^2/\Lambda^2, \ln^2 k_{\perp}^2/\Lambda^2)$ are resummed via Sudakov factor.
- Two equivalent methods to resum the collinear part $(P_{ab}(\xi) \ln \Lambda^2/\mu^2)$: 1. Reverse DGLAP evolution; 2. RGE method (threshold limit $\xi \to 1$).
- Introduce forward threshold quark jet function $\Delta^q(\Lambda^2, \mu^2, \omega)$, which satisfies

$$\frac{\mathrm{d}\Delta^q(\omega)}{\mathrm{d}\ln\mu^2} = -\frac{\mathrm{d}\Delta^q(\omega)}{\mathrm{d}\ln\Lambda^2} = -\frac{\alpha_s C_F}{\pi} \left[\ln\omega + \frac{3}{4} \right] \Delta^q(\omega) + \frac{\alpha_s C_F}{\pi} \int_0^\omega \mathrm{d}\omega' \frac{\Delta^q(\omega) - \Delta^q(\omega')}{\omega - \omega'}.$$

- Consistent with the threshold resummation in SCET[Becher, Neubert, 06]! Physically, the auxiliary scale Λ^2 is analogous to the intermediate scale μ_i^2 in SCET.
- Two formulations. [Xiao, Yuan, 18; Kang, Liu, 19; Liu, Kang, Liu, 20]

Natural Choice of the Auxiliary Scale

- At threshold: radiated gluon is soft! $\tau = \frac{p_T e^y}{\sqrt{s}} = x\xi z \le 1$ with large k_{\perp} (p_T) .
- Intuitively, semi-hard cutoff $\Lambda^2 \sim (1-\xi)k_\perp^2 \sim (1-\tau)p_T^2 \gg \Lambda_{QCD}^2$ at fixed coupling.
- Saddle point approximation for r_{\perp} integration at fixed and running coupling. $\Lambda^2 \sim \mu_r^2$
- For running coupling, $\Lambda^2 = \Lambda_{QCD}^2 \left[\frac{(1-\xi)k_{\perp}^2}{\Lambda_{QCD}^2} \right]^{C_R/[C_R+\beta_1]}$. Akin to CSS & Catani *et al*.
- When saturation momentum is large, $\Lambda^2 \sim Q_s^2$. (competing mechanism)
- Enhancement at high- p_T ; Mild Λ dependence at low p_T far away from boundary.

Numerical Setup

[Xiao, Yuan, 18; Shi, Wang, Wei, Xiao, 2112.06975 [hep-ph]]

$$d\sigma = \int x f_a(x,\mu) \otimes D_a(z,\mu) \otimes \mathcal{F}_a^{x_g}(k_{\perp}) \otimes \mathcal{H}^{(0)} \otimes \Delta(\mu,\Lambda) \otimes S_{\text{Sud}}(\mu,\Lambda)$$

$$+ \frac{\alpha_s}{2\pi} \int x f_a(x,\mu) \otimes D_b(z,\mu) \otimes \mathcal{F}_{(N)ab}^{x_g} \otimes \mathcal{H}_{ab}^{(1)}(\mu,\Lambda),$$

$$= \int x f_a(x,\Lambda) \otimes D_a(z,\Lambda) \otimes \mathcal{F}_a^{x_g}(k_{\perp}) \otimes \mathcal{H}^{(0)} \otimes S_{\text{Sud}}(\mu,\Lambda) \quad \leftarrow \mu = \mu_b \text{ TMD}$$

$$+ \frac{\alpha_s}{2\pi} \int x f_a(x,\mu) \otimes D_b(z,\mu) \otimes \mathcal{F}_{(N)ab}^{x_g} \otimes \mathcal{H}_{ab}^{(1)}(\mu,\Lambda).$$

- Natural choice of Λ^2 : Competition between saturation and Sudakov $\Lambda \sim c_0/r_{\perp}$.
- Two implementation methods give similar numerical results.
- $\Delta(\mu, \Lambda)$ and $S_{\text{Sud}}(\mu, \Lambda)$ satisfy collinear and Sudakov (soft) RGEs. $\Delta(\mu, \mu) = 1$

