Recent Highlights on QCD, Electroweak and Top Quark Physics from LHC

Alexander Grohsjean

29th International Workshop on DIS and Related Subjects

02.05.2022 Santiago de Compostela

Abundance of Beautiful Physics at LHC

Focus on ATLAS and CMS

Focus on ATLAS and CMS

Exploring 9 Orders of Magnitude in Cross Section

Inclusive Jet Cross Section

JHEP 02 (2022) 142

- key to test QCD at the highest achievable energy scales
 - double-differential measurements of R=0.4/0.7 anti-k_T jet production

high p_{T:} predictions slightly too low/high in central/forward region generally very good agreement

Inclusive Jet Cross Section

JHEP 02 (2022) 142

- key to test QCD at the highest achievable energy scales
 - double-differential measurements of R=0.4/0.7 anti-k_⊤ jet production

- ◆ agreement worsen using H_T as scale instead of jet p_T
- large PDF uncertainties indicate sensitivity to high-x gluon PDF

Inclusive Jet Cross Section

JHEP 02 (2022) 142

- key to test QCD at the highest achievable energy scales
 - double-differential measurements of R=0.4/0.7 anti-k_⊤ jet production
- QCD analysis at NLO of
 - R=0.7 jet cross sections
 - 3-dimensional tt cross section from CMS
 - charged- and neutral-current DIS cross sections of HERA

$$\alpha_s (m_z) = 0.1188 \pm 0.0031$$

$$m_{top}^{pole} = 170.4 \pm 0.6 \text{ GeV}$$

significantly improved top mass and gluon PDF

arXiv:2202.12327 [hep-ex]

stringent test of V-A of electroweak sector

$$A_{FB} = (N (\cos \theta_{I-} > 0) - N (\cos \theta_{I-} < 0)) / (N (\cos \theta_{I-} > 0) + N (\cos \theta_{I-} < 0))$$

forward configuration:

arXiv:2202.12327 [hep-ex]

stringent test of V-A of electroweak sector

$$A_{FB} = (N (\cos \theta_{I-} > 0) - N (\cos \theta_{I-} < 0)) / (N (\cos \theta_{I-} > 0) + N (\cos \theta_{I-} < 0))$$

extract A_{FB} from a template fit in bins of lepton pair rapidity |y| and cos θ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right]$$

arXiv:2202.12327 [hep-ex]

stringent test of V-A of electroweak sector

$$A_{FB} = (N (\cos \theta_{I-} > 0) - N (\cos \theta_{I-} < 0)) / (N (\cos \theta_{I-} > 0) + N (\cos \theta_{I-} < 0))$$

extract A_{FB} from a template fit in bins of lepton pair rapidity and cos θ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right]$$

combined A_{FB} in sync with SM expectation

arXiv:2202.12327 [hep-ex]

stringent test of V-A of electroweak sector

$$A_{FB} = (N (\cos \theta_{I-} > 0) - N (\cos \theta_{I-} < 0)) / (N (\cos \theta_{I-} > 0) + N (\cos \theta_{I-} < 0))$$

forward configuration:

extract A_{FB} from a template fit in bins of lepton pair rapidity and cos θ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right]$$

- combined A_{FB} in sync with SM expectation
- split between electron and muon to test lepton flavor universality:
 - 2.4 SD different from 0

arXiv:2202.12327 [hep-ex]

stringent test of V-A of electroweak sector

$$A_{FB} = (N (\cos \theta_{I-} > 0) - N (\cos \theta_{I-} < 0)) / (N (\cos \theta_{I-} > 0) + N (\cos \theta_{I-} < 0))$$

extract A_{FB} from a template fit in bins of lepton pair rapidity and cos θ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} \propto \frac{3}{8} \left[1 + \cos^2\theta + \frac{A_0}{2} \left(1 - 3\cos^2\theta \right) + A_4\cos\theta \right]$$

- combined A_{FB} in sync with SM expectation
- split between electron and muon to test lepton flavor universality:
 - 2.4 SD different from 0
- complementary sensitivity to new Z':
 - lower mass limit of 4.4 TeV

powerful probe of BSM physics

Diboson Production in BSM Phase Space

ATLAS-CONF-2022-011

 no direct link between searches and SMP measurements: control regions used to derive adhoc scale factors from data

novel approach by ATLAS:
 unfolded particle-level measurements in BSM
 (here SUSY) associated topologies

Diboson Production in BSM Phase Space

ATLAS-CONF-2022-011

 no direct link between searches and SMP measurements: control regions used to derive adhoc scale factors from data

 novel approach by ATLAS: unfolded particle-level measurements in BSM (here SUSY) associated topologies

 $m_{eu} > 100 \text{ GeV}$ $60 < E_t^{miss}/\text{GeV} < 100$ $60 < m_{T2}/\text{GeV} < 100$

energy related observables generally well described

Diboson Production in BSM Phase Space

ATLAS-CONF-2022-011

 no direct link between searches and SMP measurements: control regions used to derive adhoc scale factors from data

novel approach by ATLAS:
 unfolded particle-level measurements in BSM
 (here SUSY) associated topologies

 $m_{eu} > 100 \text{ GeV}$ $60 < E_t^{miss}/\text{GeV} < 100$ $60 < m_{T2}/\text{GeV} < 100$

region of small azimuthal angles and large rapidity differences underestimated

Observation of Electroweak W⁺W⁻ Boson Production

CMS-PAS-SMP-21-001

- first observation of W±W± using 2016 data only
 - W+W- more challenging due to large top background
- electroweak production characterized by large
 separation in jet pseudorapidity and high invariant jet mass

electroweak production

strong production

Observation of Electroweak W⁺W⁻ Boson Production

CMS-PAS-SMP-21-001

- first observation of W±W± using 2016 data only
 - W+W- more challenging due to large top background
- electroweak production characterized by large
 separation in jet pseudorapidity and high invariant jet mass

m_{jj}/Δη_{jj} bins for ee/μμ, DNN discriminant for eμ

$$\sigma_{\text{fid}}^{\text{obs}}$$
 = 10.2 ± 2.0 fb
 $\sigma_{\text{fid}}^{\text{theo}}$ = 9.1 ± 0.6 fb

- first observation with 5.6 (5.2) SD obs. (exp.)
 - dominated by statistical uncertainty
 - sizable systematic uncertainty from QCD scale choice for background

CMS-PAS-SMP-21-013

 DPS allows studying correlation of partons inside same proton

DPS vs SPS

CMS-PAS-SMP-21-013

- DPS allows studying correlation of partons $q^{(p1)}$ inside same proton
- approximately described by

$$\sigma_{AB}^{DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}, \quad (n(A=b)=1:2)$$

• $\sigma_{\text{eff}} \sim (\text{transverse inter-parton distance})^2$

DPS vs SPS

CMS-PAS-SMP-21-013

- DPS allows studying correlation of partons inside same proton
- approximately described by

$$\sigma_{AB}^{DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}, \quad (n(A=b)=1:2)$$

- $\sigma_{\text{eff}} \sim (\text{transverse inter-parton distance})^2$
- two BDTs to discriminate against WZ and non-prompt lepton background

DPS vs SPS

CMS-PAS-SMP-21-013

- DPS allows studying correlation of partons inside same proton
- approximately described by

$$\sigma_{AB}^{DPS} = \frac{n}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}, \quad (n(A=b)=1:2)$$

- $\sigma_{\text{eff}} \sim (\text{transverse inter-parton distance})^2$
- two BDTs to discriminate against WZ and non-prompt lepton background
- DPS with 6.2 SD observed

$$\sigma_{\text{incl}}^{\text{DPS WW}}$$
 = 0.16 ± 0.02 (stat) ± 0.02 (syst)
± 0.02 (model) pb

• effective cross section of 12.2 +2.9 mb in sync with vector boson results:

difference between qq and gg dominated processes

DPS vs SPS

CMS Preliminary

Observation of Tri-Boson Production

arXiv:2201.13045 [hep-ex]

direct test of gauge boson self-interactions

use BDT to enhance signal in 2l (e[±]e[±], μ[±]μ[±], e[±]μ[±]) and 3l categories separately

 μ (WWW) = 1.61 ± 0.25

2.6 SD different from NLO prediction of 511 ± 18 fb

first observation of WWW

Differential Probe of tt Production

CMS-PAS-TOP-20-006

- variety of up to tripple-differential cross section measurements in dilepton final states
 - e.g. p_{Ttop} , $y_{t\bar{t}}$, $m_{t\bar{t}}$, $p_{T,t\bar{t}}$,...
- uncertainties halved compared to previous results

Differential Probe of tt Production

CMS-PAS-TOP-20-006

- variety of up to tripple-differential cross section measurements in dilepton final states
 - e.g. p_{Ttop} , $y_{t\bar{t}}$, $m_{t\bar{t}}$, $p_{T,t\bar{t}}$,...
- uncertainties halved compared to previous results

NLO predictions slightly too central

Differential Probe of tt Production

CMS-PAS-TOP-20-006

- variety of up to tripple-differential cross section measurements in dilepton final states
 - e.g. p_{Ttop} , $y_{t\bar{t}}$, $m_{t\bar{t}}$, $p_{T,t\bar{t}}$,...
- uncertainties halved compared to previous results

best described by MiNNLOPS

Differential Probe of tt Production

CMS-PAS-TOP-20-006

- variety of up to tripple-differential cross section measurements in dilepton final states
 - e.g. p_{Ttop}, y_{tt}, m_{tt}, p_{T,tt},...
- uncertainties halved compared to previous results

best description of top pT by Powheg+H7
MG5_aMCatNLO with add. jets at NLO worst

Differential Probe of tt Production

CMS-PAS-TOP-20-006

- variety of up to tripple-differential cross section measurements in dilepton final states
 - e.g. p_{Ttop} , $y_{t\bar{t}}$, $m_{t\bar{t}}$, $p_{T,t\bar{t}}$,...
- uncertainties halved compared to previous results

problem of top p_T modeling most pronounced at high $m_{\bar{t}}$

Differential Probe of tt Production

CMS-PAS-TOP-20-006

- variety of up to tripple-differential cross section measurements in dilepton final states
 - e.g. p_{Ttop} , $y_{t\bar{t}}$, $m_{t\bar{t}}$, $p_{T,t\bar{t}}$,...
- uncertainties halved compared to previous results

arXiv:2202.12134 [hep-ex]

- differential measurements probing boosted top quarks
 - reaching transverse momenta up to 2 TeV

arXiv:2202.12134 [hep-ex]

- differential measurements probing boosted top quarks
 - reaching transverse momenta up to 2 TeV
- explore linear dependence of JEC on reconstructed top mass:
 - reduced uncertainty up to a factor of 4!

arXiv:2202.12134 [hep-ex]

- differential measurements probing boosted top quarks
 - reaching transverse momenta up to 2 TeV
- explore linear dependence of JEC on reconstructed top mass:

arXiv:2202.12134 [hep-ex]

- differential measurements probing boosted top quarks
 - reaching transverse momenta up to 2 TeV
 - studying QCD radiation in boosted regime

several predictions with significant discrepancies best results from Powheg+Pythia8 with reduced ISR

Understanding ttW

CMS-PAS-TOP-21-011

- ttW production dominated by qq
- previous results above SM (but compatible)

Understanding ttW

CMS-PAS-TOP-21-011

- ttW production dominated by qq
- previous results above SM (but compatible)
- explore NN discriminant in dilepton channel (left)
 and m₃₁ for final states with three leptons (right)

Understanding ttW

CMS-PAS-TOP-21-011

- ttW production dominated by qq
- previous results above SM (but compatible)
- explore NN discriminant in dilepton channel (left)
 and m₃₁ for final states with three leptons (right)

NLO with improved FxFx merging in better agreement small tension remains

close collaboration with theory crucial

Pinning down the top quark mass

CMS-PAS-TOP-20-008

- baseline observable: m_t from kinematic fit
 - ~ 50% events with correct object matching
 - less than 5% background

• m_{top}: key parameter to check consistency of SM

Pinning down the top quark mass

CMS-PAS-TOP-20-008

m_{top}: key parameter to check consistency of SM

- baseline observable: m_t from kinematic fit
 - ~ 50% events with correct object matching
 - less than 5% background
- adding 4 complementary observables to constrain systematics → total reduction by 40%

Pinning down the top quark mass

CMS-PAS-TOP-20-008

- baseline observable: m_t from kinematic fit
 - ~ 50% events with correct object matching
 - less than 5% background
- adding 4 complementary observables to constrain systematics → total reduction by 40%

• m_{top}: key parameter to check consistency of SM

$$m_t = 171.77 \pm 0.38 \text{ GeV}$$

 largest uncertainty from b JEC, parton shower and color reconnection

most precise top quark mass

Electroweak Top Quark Production

- t and tW channels of single top production very well established at LHC
 - good agreement with SM predictions at 7, 8 and 13 TeV

Studying Polarized Top Quarks

 W^+

arXiv:2202.11382 [hep-ex]

- single top quarks produced via V-A:
 maximally polarized along direction of spectator quark
- polarization inferred from template fit to three
 orthogonal angular distributions of lepton from top decay

Studying Polarized Top Quarks

arXiv:2202.11382 [hep-ex]

- single top quarks produced via V-A:
 maximally polarized along direction of spectator quark
- polarization inferred from template fit to three
 orthogonal angular distributions of lepton from top decay

excellent agreement with NNLO predictions for top quark and antiquark

Studying Polarized Top Quarks

arXiv:2202.11382 [hep-ex]

- single top quarks produced via V-A:
 maximally polarized along direction of spectator quark
- polarization inferred from template fit to three
 orthogonal angular distributions of lepton from top decay
- use unfolded distributions of cos θ_{lx} and cos θ_{ly} to constraint C_{tW} and C_{itW}

limits on C_{itW} improved by factor of 3 compared to previous simultaneous fits

 W^+

spin: powerful and complementary probe of BSM

Observing Photon Associated Single Top Production

ATLAS-CONF-2022-013

fundamental probe of top-electroweak couplings

Observing Photon Associated Single Top Production

ATLAS-CONF-2022-013

- fundamental probe of top-electroweak couplings
- dedicated DNN provides clear separation between signal and background in region with tagged forward jet

fiducial cross section : $\sigma_{\text{fid}} = \sigma_{tqy} \times BR(t \rightarrow lvb) + \sigma_{t(\rightarrow lvby)q}$

$$\sigma_{\text{fid}}^{\text{meas}}$$
 = 287 ± 8 (stat.) ± 31(syst.) fb
 $\sigma_{\text{fid}}^{\text{theo}}$ = 207+26₋₁₁ fb (4FS, NLO)

- compatible with SM within 1.9 SD
- 40% increased result consistent with CMS

Summary

- ATLAS and CMS started a new era of particle physics
 - several new, rare processes with full Run 2 data set observed
 - boosted final states allow to probing new regions of phase space
- key to success
 - excellent performance and calibration of leptons, photons and jets
 - novel machine learning techniques (S/B separation, object identification, regression, ...)
 - simultaneous fits of several parameters including systematic uncertainties
- framework of effective field theory provides a universal language to preserve our results and might reveal first hints of BSM physics in high precision measurements