New winds in heavy-ion physics

Liliana Apolinário

Monday, May 2nd

Heavy-ion collision:

- Probe the QCD phase diagram
- Understand the QCD fundamental interactions
 - Collectivity from a gauge-field theory?
- Tools used to study created matter shared with nearby physics fields research
 - QGP vs colliding nuclei?

Different QGP probes will access different wavelengths:

- Different QGP probes will access different wavelengths:

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

- Different QGP probes will access different wavelengths:

 - Hard probes (large-Q² process): high-momentum particles <u>pQCD based description</u>

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

Focus of this talk

- Different QGP probes will access different wavelengths:

 - Hard probes (large-Q² process): high-momentum particles pQCD based description

Common difficulty: QGP is dynamically evolving system

All observables require interpretation in the framework of transport models

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

Different QGP probes will access different wavelengths:

- Hard probes (large-Q² process): high-momentum particles pQCD based description

Common difficulty: QGP is dynamically evolving system

All observables require interpretation in the framework of transport models

Heavy-ion collision characterisation:

A multi-scale problem!

Soft probes (bulk of the collision): low momentum particles - hydrodynamic based description

Jets in heavy-ions

Also a multi-scale problem:

L. Apolinário

Jets in heavy-ions

Also a multi-scale problem:

Medium-induced energy loss?

Evolving medium

Jets in heavy-ions

Also a multi-scale problem:

Medium-induced energy loss?

Collisional energy loss?

Medium recoils?

L. Apolinário

Evolving medium

Improving theoretical control

In-medium processes

- Amount of energy loss measures transparency to the passage of a high momentum particle:
 - Towards higher accuracy in elementary building blocks of the parton shower

In-medium processes

- Amount of energy loss measures transparency to the passage of a high momentum particle:
 - Towards higher accuracy in elementary building blocks of the parton shower

Relevant for heavy (low-energy) partons

L. Apolinário

Dominant for light (high-energy) partons

Inelastic scattering processes:

• Accumulation of momenta enhances gluon radiation:

• Single-gluon emission spectrum:

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{p},\mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \tilde{\mathcal{K}}(\mathbf{k})$$

$(t', \mathbf{q}; t, \mathbf{p}) P(\infty, \mathbf{k}; t', \mathbf{q})$

• Accumulation of momenta enhances gluon radiation:

• Single-gluon emission spectrum:

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{p},\mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \tilde{\mathcal{K}}(\mathbf{k})$$

Momentum Broadening:

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \int_{t'}^{t''} \, ds\right\}$$

 $(t', \mathbf{q}; t, \mathbf{p}) P(\infty, \mathbf{k}; t', \mathbf{q})$

$$n(s) \, \sigma(\boldsymbol{z}) \bigg\}$$

• Accumulation of momenta enhances gluon radiation:

• Single-gluon emission spectrum:

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{p},\mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \tilde{\mathcal{K}}(\mathbf{k})$$

Momentum Broadening:

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \, \int_{t'}^{t''} \, ds \, n(s) \, \sigma(\boldsymbol{z})\right\}$$

 $(t', \mathbf{q}; t, \mathbf{p}) P(\infty, \mathbf{k}; t', \mathbf{q})$

Density of scattering centres:

$$n(x_{+}) = \int dx_{i+} \delta(x_{+} - x_{i+}).$$

Dipole cross-section (collision rate):

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i \boldsymbol{q} \boldsymbol{r}}\right)$$

Accumulation of momenta enhances gluon radiation:

• Single-gluon emission spectrum:

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{p},\mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \tilde{\mathcal{K}}(\mathbf{k})$$

Momentum Broadening:

$$\mathcal{P}(t'', \boldsymbol{k}; t', \boldsymbol{q}) \equiv \int d^2 \boldsymbol{z} \, e^{-i(\boldsymbol{k}-\boldsymbol{q})\cdot\boldsymbol{z}} \, \exp\left\{-\frac{1}{2} \int_{t'}^{t''} \, ds\right\}$$

 $(t', \mathbf{q}; t, \mathbf{p}) P(\infty, \mathbf{k}; t', \mathbf{q})$

Density of scattering centres:

$$n(x_{+}) = \int dx_{i+} \delta(x_{+} - x_{i+}).$$

• Accumulation of momenta enhances gluon radiation:

• Single-gluon emission spectrum:

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{p},\mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \tilde{\mathcal{K}}(\mathbf{k})$$

Emission Kernel:

$$\begin{aligned} \mathcal{K}\left(t', \boldsymbol{z}; t, \boldsymbol{y}\right) &\equiv \int_{\boldsymbol{p}\boldsymbol{q}} e^{i(\boldsymbol{q}\cdot\boldsymbol{z}-\boldsymbol{p}\cdot\boldsymbol{y})} \widetilde{\mathcal{K}}\left(t', \boldsymbol{q}; t, \boldsymbol{p}\right) \\ &= \int_{\boldsymbol{r}(t)=\boldsymbol{y}}^{\boldsymbol{r}(t')=\boldsymbol{z}} \mathcal{D}\boldsymbol{r} \exp\left[\int_{t}^{t'} ds \; \left(\frac{i\omega}{2} \dot{\boldsymbol{r}}^2 - \frac{1}{2}n(s)\sigma(\boldsymbol{r})\right)\right] \end{aligned}$$

 τ_{form}

 $(t',\mathbf{q};t,\mathbf{p}) P(\infty,\mathbf{k};t',\mathbf{q})$

Density of scattering centres:

$$n(x_{+}) = \int dx_{i+} \delta(x_{+} - x_{i+}).$$

Dipole cross-section (collision rate):

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}}\right)$$

• Accumulation of momenta enhances gluon radiation:

• Single-gluon emission spectrum:

$$\omega \frac{dI}{d\omega d^2 \mathbf{k}} = \frac{2\alpha_s C_R}{(2\pi)^2 \omega^2} \operatorname{Re} \int_0^\infty dt' \int_0^{t'} dt \int_{\mathbf{p},\mathbf{q}} \mathbf{p} \cdot \mathbf{q} \ \tilde{\mathcal{K}}(\mathbf{k})$$

Emission Kernel:

$$\begin{split} \mathcal{K}\left(t', \boldsymbol{z}; t, \boldsymbol{y}\right) &\equiv \int_{\boldsymbol{p}\boldsymbol{q}} e^{i(\boldsymbol{q}\cdot\boldsymbol{z}-\boldsymbol{p}\cdot\boldsymbol{y})} \widetilde{\mathcal{K}}\left(t', \boldsymbol{q}; t, \boldsymbol{p}\right) \\ &= \int_{\boldsymbol{r}(t)=\boldsymbol{y}}^{\boldsymbol{r}(t')=\boldsymbol{z}} \mathcal{D}\boldsymbol{r} \exp\left[\int_{t}^{t'} ds \; \left(\frac{i\omega}{2} \dot{\boldsymbol{r}}^{2} - \frac{1}{2}n(s)\sigma(\boldsymbol{r})\right)\right] \end{split}$$

Solution to the path integral (for an arbitrary potential) poses significant technical challenges...

Tform

 $(t',\mathbf{q};t,\mathbf{p}) \ P(\infty,\mathbf{k};t',\mathbf{q})$

Density of scattering centres:

$$n(x_{+}) = \int dx_{i+} \delta(x_{+} - x_{i+}).$$

Dipole cross-section (collision rate):

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}} \right)$$

• Accumulation of momenta enhances gluon radiation:

- In addition to energy loss, parton also undergoes transverse momentum diffusion See also Sievert talk (Tue)
 - Medium-induced transverse momentum broadening

Transport coefficient:

$$\hat{q} = \frac{\langle k_T \rangle}{\lambda}$$

Accumulation of momenta enhances gluon radiation:

- In addition to energy loss, parton also undergoes transverse momentum diffusion See also Sievert talk (Tue)
 - Medium-induced transverse momentum broadening

$$\hat{q} = \frac{\langle k_T \rangle}{\lambda}$$

Dipole cross-section (collision rate):

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}} \right)$$

$$\hat{q} \propto \int d^2 \mathbf{q}^2 q^2 \frac{d\sigma(\mathbf{q})}{d^2 \mathbf{q}}$$

L. Apolinário

Accumulation of momenta enhances gluon radiation:

- In addition to energy loss, parton also undergoes transverse momentum diffusion See also Sievert talk (Tue)
 - Medium-induced transverse momentum broadening

$$\hat{q} = \frac{\langle k_T \rangle}{\lambda}$$

Dipole cross-section (collision rate):

$$\sigma(\boldsymbol{r}) = \int_{\boldsymbol{q}} V(\boldsymbol{q}) \left(1 - e^{i\boldsymbol{q}\boldsymbol{r}} \right)$$

$$\hat{q} \propto \int d^2 \mathbf{q}$$

L. Apolinário

Medium-interactions per emission?

Multiple-soft scattering

Single-hard emission

Jet Energy Loss

Medium-induced energy loss and momentum broadening closely connected

From single-particle or jet suppression, recover \hat{q}

LHC (PbPB 5.02 TeV)

Jet Energy Loss

RHIC (AuAu 200 GeV)

 $R_{AA} < 1$

Energy loss

Medium-induced energy loss and momentum broadening closely connected

From single-particle or jet suppression, recover \hat{q}

[HQ: Beraudo et al (1803.0382), Cao et al (1809.07894)]

See also Escobedo (Quarkonia - Th) and Ru (CNM - Th) talks

Medium-induced energy loss and momentum broadening closely connected

From single-particle or jet suppression, recover \hat{q}

Several ansatz:

- Initial state (factorisation to finalstate effects)?
 - Medium temperature and energy-density time-evolution profiles?
- QGP phase initialisation time?
- Energy loss during partonic and hadronic phases?
 - QGP EoS and degrees of freedom?

See also Escobedo (Quarkonia - Th) and Ru (CNM - Th) talks

Medium-induced energy loss and momentum broadening closely connected

From single-particle or jet suppression, recover \hat{q}

How can we improve it?

Several ansatz:

- Initial state (factorisation to finalstate effects)?
 - Medium temperature and energy-density time-evolution profiles?
- QGP phase initialisation time?
- Energy loss during partonic and hadronic phases?
 - QGP EoS and degrees of freedom?

- ...

See also Escobedo (Quarkonia - Th) and Ru (CNM - Th) talks

or

Accuracy of radiation spectrum:

Improved analytic opacity expansion (expand multiple soft interaction) $n(s)\sigma(\mathbf{r}) \simeq \frac{1}{2}\hat{q}\mathbf{r}^2 + \mathcal{O}(r^2\ln r^2) \Rightarrow v(r,s)_{HO} + \delta v(r,s)$

[Barata, Mehtar-Tani, Soto-Ontoso, Tywoniuk (1910.02032, 2106.07402)]

Accuracy of radiation spectrum:

Improved analytic opacity expansion (expand multiple soft interaction) $n(s)\sigma(\mathbf{r}) \simeq \frac{1}{2}\hat{q}\mathbf{r}^2 + \mathcal{O}(r^2\ln r^2) \Rightarrow v(r,s)_{HO} + \delta v(r,s)$

Full numerical solution:

> $\partial_{\tau} \mathcal{P}(\tau, \boldsymbol{k}; s, \boldsymbol{l}) = -\frac{1}{2} n(\tau) \int_{\boldsymbol{k}'} \sigma(\boldsymbol{k} - \boldsymbol{k}') \mathcal{T}$ $\partial_t \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{p}) = \frac{i\boldsymbol{p}^2}{2\omega} \widetilde{\mathcal{K}}(s, \boldsymbol{q}; t, \boldsymbol{p}) + \frac{1}{2}n(t)$

Set of integro-partial differential equations that can be numerically solved to any (realistic) potential

[Barata, Mehtar-Tani, Soto-Ontoso, Tywoniuk (1910.02032, 2106.07402)]

[Andrés, LA, Dominguez, Gonzales (2002.01517,2011.06522)]

Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):

$$\mathcal{P}(au, oldsymbol{k}'; s, oldsymbol{l})$$

$$\int_{m{k}'} \sigma(m{k}' - m{p}) \widetilde{\mathcal{K}}(s, m{q}; t, m{k}')$$

Also: [Feal, Salgado, Vasquez (1911.01309)]

- Accuracy of radiation spectrum:
 - Improved analytic opacity expansion
 - Full numerical solution:
 - Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):

[Andrés, Dominguez, Gonzales (2011.06522)]

- Accuracy of radiation spectrum:
 - Improved analytic opacity expansion
 - Full numerical solution:
 - Solve the spectrum by using Schwinger-Dyson type equations (in momentum space):

Yukawa potential:
$$V(q) = \frac{8\pi\mu^2}{(q^2 + \mu^2)^2}$$

HTL potential: $\frac{1}{2}n V(q) = \frac{g_s^2 N_c m_D^2 T}{q^2 (q^2 + m_D^2)}$

[Andrés, LA, Dominguez, (2002.01517)]

Full HTL TL = 0.4Full Yukawa $n_0 L = 1$

Effects of **medium expansion** on energy loss (HO): $\hat{q} = \hat{q}(t)$

Static equivalent of an expanding medium obtained by scaling laws: $\langle \hat{q} \rangle = \frac{2}{L^2} \int_{t_0}^{L+t_0} \mathrm{d}t \, (t-t_0) \hat{q}(t)$ [Adhya, Salgado, Spousta, Tywoniuk, (1911.12193)]

L. Apolinário

Also: [Barata, Sadofyev, Salgado (2202.08847)]

 $\omega_{\rm eff} = \begin{cases} \frac{1}{2} \hat{q}_0 L^2 & \text{static medium} \\ 2 \hat{q}_0 L^2 & \text{exponentially expansion} \end{cases}$ $2\hat{q}_0 t_0 L$ Bjorken expansion

Effects of **medium expansion** on energy loss (HO): $\hat{q} = \hat{q}(t)$

Static equivalent of an expanding medium obtained by scaling laws: $\langle \hat{q} \rangle = \frac{2}{L^2} \int_{t_0}^{L+t_0} \mathrm{d}t \, (t-t_0) \hat{q}(t)$ [Adhya, Salgado, Spousta, Tywoniuk, (1911.12193)]

$\hat{q}_0 ~[{ m GeV^3}]$	static	exponential	Bjo
no scaling	0.2	0.2	0
soft scaling	0.2	0.05	1.
optimal scaling	0.2	0.09	1.
scaling by $\langle \omega_c \rangle$	0.2	0.1	3.

Also: [Barata, Sadofyev, Salgado (2202.08847)]

- Effects of **medium expansion** on energy loss (full solution):
 - Static equivalent of an expanding medium obtained by scaling laws:

$$n_0 L = \int_0^{L'} dt \, n(t) \qquad \frac{n_0 \mu^2 L^2}{2} = \int_0^{L'} dt \, t \, n(t)$$

For a hydrodynamic medium, use instead a power-law equivalent to improve accuracy

$$n_{hydro}(t) = k_1 T(t) \qquad n(t) = \frac{n'_0}{(t+t_0)^{\alpha}} \qquad \mu^2(t)$$

$$\mu^2_{hydro}(t) = k_2 T^2(t)$$

L. Apolinário

Also: [Barata, Sadofyev, Salgado (2202.08847)]

[Andrés, LA, Dominguez, Gonzalez, Salgado (on-going)]

2022 כוט

Improving "medium" parton showers

• Multiple emitters:

• Interference effects suppressed (+ anti-angular ordering)

 $dN_q^{\omega \to 0} \sim \alpha_s C_R \frac{d\omega}{\omega} \frac{\sin \theta d\theta}{1 - \cos \theta} \left[\Theta(\cos \theta_1 - \cos \theta) + \Delta_{med} \Theta(\cos \theta - \cos \theta_1) \right]$

Analytic: [Casalderrey-Solana, Iancu, Mehtar-Tani, Salgado, Tywoniuk (1105.1760, 1210.7765)]

L. Apolinário

Improving "medium" parton showers

Multiple emitters:

> Interference effects suppressed (+ anti-angular ordering)

Non-instantaneous emissions will induce modifications to the vacuum parton shower structure:

 $dN_q^{\omega \to 0} \sim \alpha_s C_R \frac{d\omega}{\omega} \frac{\sin \theta d\theta}{1 - \cos \theta} \left[\Theta(\cos \theta_1 - \cos \theta) + \right]$ $\Delta_{med}\Theta(\cos\theta-\cos\theta_1)]$

> Analytic: [Casalderrey-Solana, Iancu, Mehtar-Tani, Salgado, Tywoniuk (1105.1760, 1210.7765)]

L. Apolinário

Monte Carlo: [Q-PYTHIA, JEWEL] [Armesto, Cunqueiro, Salgado (0907.1014), Zapp (1311.0048)]

New experimental handles

New experimental handles

From particles to jets

• How can we access QGP-related information?

L. Apolinário

How can we access QGP-related information?

L. Apolinário

20

However: - Sensitive to average quantities...

DIS 2022

• How can we access QGP-related information?

substructure

L. Apolinário

• How can we access QGP-related information?

substructure

• How can we access QGP-related information?

L. Apolinário

• How can we access QGP-related information?

substructure

Angular ordered tree

• How can we access QGP-related information?

What more information can they provide?

$$\frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

$$\frac{p_{T,1}, p_{T,2})}{p_{1} + p_{T,2}} > z_{cut} \left(\frac{R_{12}}{R_{0}}\right)^{\beta}$$

[Larkoski, Marzani, Soyez, Thaler (1402.2657)] [Dasgupta, Fregoso, Marzani, Salam (1307.0007)]

How can we access QGP-related information?

$$rac{1}{p_{t, ext{jet}}} z(1-z) p_t \left(rac{ heta}{R}
ight)^a$$

والاستراد والمراد والمراد والمرا	
	- - - - - - - - - - - - - - - - - - -
	- - - - - - - - - - - - -
	- - - - - - - - - - - - - - - - - - -

- How can we access QGP-related information?
 - Jets in PbPb \neq Jets in pp + Background

[Zapp QM (17)]

- How can we access QGP-related information?
 - Jets in PbPb \neq Jets in pp + Background
 - Background-resilient to distinguish quenching models

Fully reclustered anti-kt subjets

[Zapp QM (17)]

- How can we access QGP-related information?
 - Jets in PbPb \neq Jets in pp + Background
 - Background-resilient to distinguish quenching models

Fully reclustered anti-kt subjets

- How can we access QGP-related information?
 - Jets in PbPb \neq Jets in pp + Background
 - Background-resilient to distinguish quenching models
 - Leading jet: quantifies quark vs gluon in-medium energy loss
 - Allows to create samples that are the same in pp and in PbPb

Fully reclustered anti-kt subjets

 $\Delta \theta_{\rm SJ}$

• Jets propagate on a fast evolving medium:

Parton Shower

Barrera, Basyak, Szczurek, Singh, Mondal, + CMS/ATLAS (Tue)

Jets propagate on a fast evolving medium:

L. Apolinário

Barrera, Basyak, Szczurek, Singh, Mondal, + CMS/ATLAS (Tue)

(Vacuum) \mapsto (QGP)

Jets propagate on a fast evolving medium:

L. Apolinário

Barrera, Basyak, Szczurek, Singh, Mondal, + CMS/ATLAS (Tue)

In-medium radiation

(Vacuum) \mapsto (QGP)

Jets propagate on a fast evolving medium:

L. Apolinário

Barrera, Basyak, Szczurek, Singh, Mondal, + CMS/ATLAS (Tue)

(Vacuum) \mapsto (QGP)

Novel jet reclustering tools

• Easily select two classes of jets:

Novel jet reclustering tools

• Easily select two classes of jets:

• "early" jets: $\tau_1 < 1$ fm/c (strongly modified)

• "late" jets: $\tau_1 > 3$ fm/c (weakly modified)

Novel jet reclustering tools

Easily select two classes of jets:

• "early" jets: $\tau_1 < 1$ fm/c (strongly modified)

• "late" jets: $\tau_1 > 3$ fm/c (weakly modified)

How can it be related to the QGP expansion?

L. Apolinário

From dense to light

QGP onset

• No energy loss in pA...

L. Apolinário

28

QGP onset

No energy loss in pA... but strong evidence in support of hydrodynamic behavior

L. Apolinário

Flow coefficients well reproduced by hydro predictions, but not by initial state effects only

• Extrapolation from dense to light needs further understanding...

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

g, Teaney)5.00961)])8.04928)]

• Extrapolation from dense to light needs further understanding...

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

g, Teaney)5.00961)])8.04928)]

• Extrapolation from dense to light needs further understanding...

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

g, Teaney)5.00961)])8.04928)]

- Extrapolation from dense to light needs further understanding...
- the initial state

Future OO run similar to PbPb peripheral (better suited to system-size dependence)

Future pO run crucial do reduce nPDF uncertainties

Future oxygen runs can help us to determine the smallest amount of energy loss, provided that we control

30

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

- Extrapolation from dense to light needs further understanding...
- the initial state

Future OO run similar to PbPb peripheral (better suited to system-size dependence)

Future pO run crucial do reduce nPDF uncertainties

Cold or Hot nuclear matter effects?

Nucleon structure at high energy:

L. Apolinário

Future oxygen runs can help us to determine the smallest amount of energy loss, provided that we control

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

- Extrapolation from dense to light needs further understanding...
- the initial state

L. Apolinário

[Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney (1601.03283, 1805.00961)] [Schlichting, Soudi (2008.04928)]

See also Mikuni, Klest (Tue), Lim, Radhakrishnan, Morales, Vitev (Th)

Future oxygen runs can help us to determine the smallest amount of energy loss, provided that we control

Wrapping up

Summary

- Heavy-ions are a vibrant field full of activity
 - From far-from-equillibrium QCD to a fully thermalised medium
- Quark-Gluon Plasma studies have entered precision physics era
 - Determination of energy loss, momentum broadening and structure of a medium-modified parton showers
- Future runs will provide crucial input to many of our current unsolved questions
 - HL-LHC, sPHENIX, LHeC, EIC...

Summary

- Heavy-ions are a vibrant field full of activity
 - From far-from-equillibrium QCD to a fully thermalised medium
- Quark-Gluon Plasma studies have entered precision physics era
 - Determination of energy loss, momentum broadening and structure of a medium-modified parton showers
- Future runs will provide crucial input to many of our current unsolved questions
 - HL-LHC, sPHENIX, LHeC, EIC...

Thank you!

Backup Slides

Heavy-Quark transport coefficients

• Heavy-quark transport coefficients

$$D_s = \frac{d(\Delta E)^2}{dt}$$

$$\hat{e} = \frac{dE}{dt}$$

Soft vs Hard

• Compilation of the specific shear viscosity as a function of temperature of the medium.

$$\frac{\eta}{s} = \frac{Ds(2\pi T)}{4\pi k}$$

$$\frac{\eta}{s} \approx 1.25 \frac{T^3}{\hat{q}}$$

Zg 1st SD

Ratio of zg JEWEL (PbPb/pp):

1st and 2nd Emissions

1st and 2nd Emissions

1st and 2nd Emissions

Acknowledgments

