

PROSPECTS FOR QCD, EWK AND TOP PHYSICS AT THE (HL-)LHC

R. Schöfbeck, HEPHY Vienna

LHC LONG TERM SCHEDULE

(~2x10³⁴ cm⁻²s⁻¹), "last significant low PU run" of PU 40-60 Run 3(+2): 300-350 fb⁻¹

(~5-7 10^{34} cm⁻²s⁻¹), 3-4 ab⁻¹, PU $140-200 \rightarrow Major$ detector upgrades in LS3

Shutdown/Technical stop
Protons physics
Ions
Commissioning with beam
Hardware commissioning/magnet training

Last updated: January 2022

CMS UPGRADES FOR HL-LHC

ATLAS UPGRADES FOR HL-LHC

Inner Tracking Detector (ITk)

All silicon, strips and Pixels up to |η| ≤ 4 [ATLAS-TDR-025, ATLAS-TDR-030]

Muon system upgrade

New chambers in the Inner barrel region ($|\eta| \le 2.7$)
[ATLAS-TDR-026]

High granularity timing detector (HGTD) $2.4 \le |\eta| \le 4.0$ with 3ops [ATLAS-TDR-031]

Upgraded Trigger and **Data Aquisition System**

[ATLAS-TDR-029]

FURTHER READING

- HL/HE-LHC WG Yellow report (2018-19)
 - [SM Physics] [Higgs Physics] [Beyond the SM] [Flavour Physics] [High-density QCD]
- European Particle Physics Strategy Update (EPPSU) [Physics Briefing Book]
- Snowmass Community Planning Exercise (until Oct. 2022) & [Snowmass White paper]

FURTHER READING

- HL/HE-LHC WG Yellow report (2018-19)
 - [SM Physics] [Higgs Physics] [Beyond the SM] [Flavour Physics] [High-density QCD]
- European Particle Physics Strategy Update (EPPSU) [Physics Briefing Book]
- Snowmass Community Planning Exercise (until Oct. 2022) & [Snowmass White paper]

FREQUENTLY MADE ASSUMPTIONS

- "more data": scale statistical uncertainties with luminosity
- "can afford computing": no statistical uncertainty in simulation
- "anticipate accompanying theory developments": reduce theoretical uncertainties to 50%
 - cross sections, ISR/FSR scale, PDF, tuning, b-fragmentation, ren./fact. scales, color reconnection
- "detector upgrades balance harsh conditions": 1) nominal exp uncertainties from Run II analyses 2) statistical component reduced with lumi 3) lumi at 1%

RECONSTRUCTION PERFORMANCE

[ATL-PHYS-PUB-2021-024, ATL-PHYS-PUB-2021-023]

ATLAS Simulation
Preliminary

Nuclear interaction lengths $\left[\lambda_0
ight]$

- ATLAS ITk nuclear interaction length vs. η with extended tracking coverage
- impacts b-tagging performance similar to Run II (200PU & up to $|\eta| < 4$)
- Excellent & stable PU jet rejection across all PU densities
- E_T^{miss} resolution not much worse than in Run II

Hard-scatter jet efficiency vs. PU density

TOP QUARK MEASUREMENTS

- A great many things have to come together
 - 1. state of the art theoretical tools/calculations
 - 2. low-level understanding of sub-detector performance
 - 3. object performance realistic projections
 - 4. novel analysis ideas that incorporate 1-3

TOP QUARK MEASUREMENTS

- A great many things have to come together
 - 1. state of the art theoretical tools/calculations
 - 2. low-level understanding of sub-detector performance
 - 3. object performance realistic projections
 - 4. novel analysis ideas that incorporate 1-3

kinematic reach

- NNLO QCD for HL-LHC 14 TeV with 3/ab
- EWK corrections essential for precision
- increase reach by several TeV

Cumulative Mtt distribution for HL-LHC

TOP QUARK MEASUREMENTS

- A great many things have to come together
 - 1. state of the art theoretical tools/calculations
 - 2. low-level understanding of sub-detector performance
 - 3. object performance realistic projections
 - 4. novel analysis ideas that incorporate 1-3

kinematic reach

- NNLO QCD for HL-LHC 14 TeV with 3/ab
- EWK corrections essential for precision
- increase reach by several TeV

Cumulative $p_T(t)$ distribution for HL-LHC

≈20 events $p_T > 2.5 \text{ TeV}$ TeV scale jets/leptons collimated to slim jets: $\Delta R \approx 0.13$ (16cm @ CMS ECAL)

[arXiv:1808.08865]

PRECISION FROM THE BULK AND FROM HIGH ETA

- uncertainty on differential top x-sec O(5%)
- significant impact on high x gluon PDF

[M. Guzzi: tt+jets on CT18]

PRECISION FROM THE BULK AND FROM HIGH ETA

 $\Lambda(1b)$ [%]

quark PDFs:

asymmetry vs η_ℓ

differential I[±]b charge

(300/fb for HL/LHC)

[arXiv:1808.08865]

- uncertainty on differential top x-sec O(5%)
- significant impact on high x gluon PDF
- complemented with forward tops:
 - 300/fb LHCb data probe high-x PDFs with partially reconstructed top quarks
 - quark PDFs: use differential charge asymmetry vs. lepton n

sensitivity from 300/fb of LHCb data in (partial) t and tt final states

Final state	$300 \; {\rm fb}^{-1}$	< x >]
ℓb	830k	0.295	
$\ell b ar b$	130k	0.368	
$\mu e b$	12k	0.348	
$\mu e b ar b$	1.5k	0.415	
	$\ell b \over \ell b ar{b}$	$\begin{array}{c c} \ell b & 830 \mathrm{k} \\ \ell b \bar{b} & 130 \mathrm{k} \\ \mu e b & 12 \mathrm{k} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

background leve

ultimately: Drell-Yan at all $m(\ell\ell)$, top quarks, W+charm, direct χ , forward W+Z, inclusive jets

- ATLAS direct χ up to $E_T^{\chi} \approx 2$ TeV with good statistics
- differential high- E_{T}^{χ} x-sec ratio for different PDF sets
- "ultimate" PDF precision for projected measurements: > factor 2

TOP MASS

 top mass measurement requires precision on all fronts!

- simple concept:
 - I. pick out jets from top
 - 2. pair up the right jets to each top
 - 3. calculate mass
- challenges (a selection)
 - efficient b tagging (combinatorics)
 - moderate p_T triggers
 - relate the 'MC mass' to a well defined parameter in a ren. scheme to 100 MeV [e.g. here]
 - precision JES & E_T^{miss}, lepton E scale

TOP MASS

 top mass measurement requires precision on all fronts!

- simple concept:
 - I. pick out jets from top
 - 2. pair up the right jets to each top
 - 3. calculate mass
- challenges (a selection)
 - efficient b tagging (combinatorics)
 - moderate p_T triggers
 - relate the 'MC mass' to a well defined parameter in a ren. scheme to 100 MeV [e.g. here]
 - precision JES & E_T^{miss}, lepton E scale

(fragmentation modelling)
Irement requires
fronts!

Mitigate JES by considering 0.04% BR

with a J/Psi: $t\bar{t} \to (W^+b)(W^-b)$ $\to (\ell \nu_\ell J/\psi(\to \mu^+\mu^-)X)(qq'b))$

- Fully reconstructed dileptonic top pairs provide access to polarization and spin correlation observables.
- Projection based on Run II analysis, 50% theory unc.

- 40% improvement for the most sensitive measurement of the spin correlation strength
- Set limits in SUSY top squark using a parametric DNN, trained on 19 kinematic features
- Improving SUSY mass limits by x10 where $M_{\text{stop}} \gtrsim M_{\text{top}}$ (corridor) and traditional SUSY searches are inefficient

[EPJC 80 (2020) 1085, CMS-PAS-FTR-18-031]

- complete NLO cross section 15.8 fb ± 20 % known (EWK: 11%)
 - Enhanced in BSM scenarios (SUSY gluinos, sgluons, 2HDM)
 - Relevant for y_t measurement, and 4-fermion operators in SM-EFT

$$\sigma(t\bar{t}t\bar{t})=13.14-2.01\kappa_t^2+1.52\kappa_t^4$$
 [fb] (13 TeV)

• ATLAS Run II observes 4.7σ (2.6σ), 1.9σ above SM

$$\sigma(t\bar{t}t\bar{t})=13.14-2.01\kappa_t^2+1.52\kappa_t^4 \ [10.15]$$
• ATLAS Run II observes 4.7 σ (2.6 σ), 1.9 σ above S
$$\mu=2.2\pm0.7 \ (\text{stat.})^{+1.5}_{-1.0} \ (\text{syst.})=2.2^{+1.6}_{-1.2} \ \ \frac{1}{200} \ \ \frac{$$

- Run II "improved"
 - 50% theory uncertainties
 - scale down ttX+HF uncertainties with £
 - keep exp. uncertainties
- CMS limits on 4-top contact interactions

CMS expected limits

- complete NLO cross section 15.8 fb ± 20 % known (EWK: 11%)
 - Enhanced in BSM scenarios (SUSY gluinos, sgluons, 2HDM)
 - Relevant for y_t measurement, and 4-fermion operators in SM-EFT

$$\sigma(t\bar{t}t\bar{t}) = 13.14 - 2.01\kappa_t^2 + 1.52\kappa_t^4 \text{ [fb] (13 TeV)}$$

• ATLAS Run II observes 4.7σ (2.6σ), 1.9σ above SM

$$\mu = 2.2 \pm 0.7 \text{ (stat.)}^{+1.5}_{-1.0} \text{ (syst.)} = 2.2^{+1.6}_{-1.2}$$

- important: ttW + 7/≥ 8 jets modelling
- Run II (ttW nuisance post-fit)
- Run II "improved"
 - 50% theory uncertainties
 - scale down ttX+HF uncertainties with £
 - keep exp. uncertainties
- CMS limits on 4-top contact interactions

TOP-Z/γ COUPLING MEASUREMENTS

- ATLAS/CMS study using $p_T(Z)$ and $p_T(\gamma)$ with Delphes
 - Constrain t- Z/γ coupling modifications
- ATLAS projects constraints for $tt\gamma$ (1/21)
 - 5-7% uncertainty up to $p_T(y) \approx 1 \text{ TeV}$
- CMS ttZ (3\ell): Up to factor 4 sensitivity improvements for EWK interactions of the top quark

THE MASS OF THE W BOSON

- M_W: dedicated low-PU runs @ <μ> ≈2
 - 200 pb⁻¹ $\approx \mathcal{O}$ (weeks), 1fb⁻¹ $\approx \mathcal{O}$ (months)
- projection study by ATLAS
 - realistic combination of $m_T \& p_T(\ell)$ fits
 - comparing different PDF sets
 - "HL-LHC" incorporates future constraints
 - high η bins important 40% improvement
 - anti-correlation between different η bins
 - also expected for ATLAS/CMS/LHCb combination M.Pernas, <u>LHCb talk</u>!

DIBOSON VBS PRODUCTION

- Higgs observation established that
 W and Z acquire mass via BEH mechanism
- Vector boson scattering (VBS) is crucial in testing the fundamentals of the BEH
 - pert. non-unitarity for W_LW_L at s~1.2 TeV

DIBOSON VBS PRODUCTION

- Higgs observation established that
 W and Z acquire mass via BEH mechanism
- Vector boson scattering (VBS) is crucial in testing the fundamentals of the BEH
 - pert. non-unitarity for W_LW_L at s~1.2 TeV
- LHC "laboratories": VBS systems

- 2 jets, large M_{ii}, larger rapidity separation
- Small deviations lead to large changes in predictions for EW induced VBS

VBS DIBOSON SIGNATURES NOW AND IN THE FUTURE

VBS DIBOSON SIGNATURES NOW AND IN THE FUTURE

[<u>13 TeV</u>] 6.5σ

[<u>13 TeV</u>] 5.7σ

<u>projection</u>

 $\sigma(x\text{-sec}) = 6\%$ $\sigma(W_1W_1) = 1.8\sigma$

<u>projection</u>

 $\sigma(x\text{-sec}) = 3\%$ $\sigma(W_1W_1) = 2.7\sigma$

[<u>13 TeV</u>] 5.3σ

[<u>13 TeV</u>] 6.8σ

projection

+27% purity from MVA ind. pol., $F_0(W^+)$: 2.5 σ

projection

 $\sigma(x\text{-sec})=3\%\text{-}5\%$ $W_1Z_1 \approx 1.5\sigma$

[<u>13 TeV</u>] 5.5σ

[13 TeV] 4σ

projection

 $\sigma(x\text{-sec})=20\text{-}100\%$ dep. on $\sigma(ZZjj QCD)$ $Z_LZ_L: 4\sigma$

[projection]

σ(x-sec)≈10%

CMS EXTRAPOLATION FOR W*W* AND WZ

YR [ATLAS-PHYS-PUB-2018-052]

- targets EWK production of W * W**, Run II based
 - same-sign WW: comparably low backgrounds
 - YR study by ATLAS YR [<u>ATLAS-PHYS-PUB-2018-052</u>]
- W_I radiated closer to the quark direction
 - lower p_T and changes in decay angle distributions
 - $W_L^{\pm}W_L^{\pm}$ (10.9%), $W_L^{\pm}W_T^{\pm}$ (31.9%), $W_T^{\pm}W_T^{\pm}$ (57.2%)
- Extrapolation: Follows Run II strategy
 - Fit in BDT discriminants, sensitive to differences in polarized components
- significance of $\sigma_{WLWL} \approx 4\sigma$
 - >5σ in ATLAS combination
 - one of the last LHC discoveries could tackle one of the earliest SM LHC predictions

SUMMARY

- With 3ab-1 HL-LHC will be the workhorse for many years to come
 - We're now convinced that PU140-200 is a challenge we can meet
 - Detector upgrades enlarge the physics scope
 - Highly energetic tails and low-xsec processes pose many sensitive tests of the SM – many of them new
- Improvements on theoretical and modelling uncertainties crucial!
- The value of upgrade studies is to facilitate new ideas!
 - The best is yet to come!

MW UNCERTAINTY CORRELATIONS

TOP MASS COMBINATIONS (MARCH2022)

M_W UNCERTAINTY EVOLUTION (FULL FIT)

[M_W extrapolation]

UNCERTAINTY DETAILS (TOP MASS)

		Valı	ıe (GeV)		
	Source	8 TeV,	14 TeV,	14 TeV	Comment
_		$19.7{ m fb}^{-1}$	$0.3{\rm ab}^{-1}$	$3\mathrm{ab}^{-1}$	
-	Method calibration	± 0.04	± 0.02	± 0.02	MC stat. ×4
	Lepton energy scale	+0.01	± 0.01	± 0.01	unchanged
۸ -	Global IES	± 0.13	± 0.12	± 0.04	3D fit, differential
*	Flavor-dependent JES	± 0.19	± 0.17	± 0.06	3D fit, differential
	Jet energy resolution	-0.03	± 0.02	< 0.01	differential
	$E_{\mathrm{T}}^{\mathrm{miss}}$ scale	+0.04	± 0.04	± 0.04	unchanged
	b tagging efficiency	+0.06	± 0.03	± 0.03	improved with data
	Pileup	-0.04	± 0.04	± 0.04	unchanged
	Backgrounds	+0.03	± 0.01	± 0.01	cross sections
-	ME generator	-0.12 ± 0.08	_	_	NLO ME generator
	Ren. and fact. scales	-0.09 ± 0.07	± 0.06	± 0.06	NLO ME generator,
					MC stat.
	ME-PS matching	$+0.03 \pm 0.07$	± 0.06	± 0.06	MC stat.
	Top quark $p_{\rm T}$	+0.02	< 0.01	< 0.01	improved with data
	b fragmentation	< 0.01	< 0.01	< 0.01	unchanged
	Semileptonic b hadron decays	-0.16	± 0.11	± 0.06	improved with data
	Underlying event	$+0.08 \pm 0.11$	± 0.14	± 0.09	improved with data,
					MC stat.
	Color reconnection	$+0.01 \pm 0.09$	± 0.05	< 0.01	improved with data
_	PDF	± 0.04	± 0.03	± 0.02	improved with data
	Systematic uncertainty	± 0.48	± 0.30	± 0.17	
	Statistical uncertainty	± 0.16	± 0.04	± 0.02	
	Total	± 0.51	± 0.31	± 0.17	

COMMON SYSTEMATICS

- Renormalization and factorization scales (includes ME and PS): factor 1/2 (improve with more data and more studies)
- Top pt: factor 1/3 or even less (more differential cross sections, NLO generators, 2D-differential NNLO predictions used for differential kfactors.)
- MC statistics: no uncertainty
- https://twiki.cern.ch/twiki/bin/view/LH
 CPhysics/HLHELHCCommonSystemat
 ics

Object Efficiency	uncertainty	Recommendation
Muons	muon reco+ID (all WP)	0.1%
	muon reco+ID+isolation (all WP)	0.5%
Electrons/photons	electron reco=ID (incl. isolation), all WP (pt > 20 GeV)	0.5%
	photon reco+ID+incl. isolation)	~2% (?)
tau	tau reco+ID+isolation (all WP)	5% as in Run2
		recommend 2.5% for analyses where tau efficiency is one of the diominant uncertainties
flavor tagging	b-jets (all working points)	~ 1% for 30 <pt<300 26%="" for="" gev,="" pt="">300 GeV</pt<300>
	c-jets (all working points)	~2%
	light jets (loose WP)	5%
	light jets (medium WP)	10%
	light jets (tight WP)	15%
	subjet b-tagging	
	double-b tag	
Jets	JES	
	abs. scale	0.1-0.2%
	rel. scale	0.1-0.5%
	Pile up	0-2%
	Jet Flavour	0.75%
	JER	
Jet substructure	Jet mass scale uncertainty	1%
	Jet mass resolution	10%
	W tagging efficiency	10% (governed by Herwig vs Pythia)
Integrated Iuminosity		1%

Fig. 70: Expected signal yields (top-left), migration matrices (top-right), and its properties (bottom) for measurements of $p_{\rm T}(t_{\rm h})$ for the HL-LHC (Phase-2) simulation. The purity is defined as the fraction of parton-level top quarks in the same bin at the detector level, the stability as the fraction of detector-level top quarks in the same bin at the parton level, and the bin efficiency as the ratio of the number of events found in a certain bin at detector level and the number of events found at parton-level in the same bin.

CMS W[±]W[±] VBS SELECTION

Table 2: Selection to define the W $^\pm$ W $^\pm$ and WZ SRs. The looser lepton p_T requirement on the WZ selection refers to the trailing lepton from the Z boson decays. The $|m_{\ell\ell}-m_Z|$ requirement is applied to the dielectron final state only in the W $^\pm$ W $^\pm$ SR.

Variable	$W^\pm W^\pm$	WZ
Number of leptons	2	3
$p_{ m T}^\ell$	> 25/20GeV	> 25/10/20 GeV
$p_{ m T}^{ m j}$	> 50GeV	> 50 GeV
$ ilde{ extbf{m}}_{\ell\ell} - extbf{m}_{ extbf{Z}} $	> 15 GeV (ee)	< 15 GeV
$m_{\ell\ell}$	> 20 GeV	-
$m_{\ell\ell\ell}$	-	> 100 GeV
$p_{ m T}^{ m miss}$	> 30GeV	$> 30\mathrm{GeV}$
Anti b-tagging	Applied	Applied
au veto	Applied	Applied
$max(z_\ell^*)$	< 0.75	< 1.0
$m_{ m jj}$	> 500 GeV	> 500 GeV
$ \Delta \eta_{ m jj} $	> 2.5	> 2.5

CMS W[±]Z VBS SELECTION

Table 3: Selection to define the nonprompt, WZb, and ZZ CRs. The looser lepton p_T requirement on the WZb CR selection refers to the trailing lepton from the Z boson decays. The $|\mathbf{m}_{\ell\ell} - \mathbf{m}_{Z}|$ requirement is applied to the dielectron final state only in the nonprompt CR. The lepton p_T requirements in the ZZ CR are ordered by the p_T values themselves.

X7 1.1.	NT	TA7771	77
Variable	Nonprompt	WZb	ZZ
Number of leptons	2	3	4
$p_{ m T}^\ell$	> 25/20GeV	> 25/10/20 GeV	$p_{\rm T} > 25/20/10/10{ m GeV}$
$p_{ m T}^{ m j}$	> 50GeV	$> 50\mathrm{GeV}$	$> 50\mathrm{GeV}$
$ ilde{ extbf{m}}_{\ell\ell} - extbf{m}_{ extbf{Z}} $	> 15 GeV (ee)	< 15 GeV	< 15 GeV (both pairs)
$m_{\ell\ell}$	$> 20\mathrm{GeV}$	-	-
$m_{\ell\ell\ell}$	-	$> 100\mathrm{GeV}$	-
$p_{ m T}^{ m miss}$	$> 30\mathrm{GeV}$	$> 30\mathrm{GeV}$	-
Anti b-tagging	Inverted	Inverted	-
au veto	Applied	Applied	-
$max(z_{\ell}^*)$	< 0.75	< 1.0	< 0.75
$m_{ m ij}$	$> 500\mathrm{GeV}$	$> 500\mathrm{GeV}$	> 500 GeV
$[\Delta \eta_{ m jj}]$	> 2.5	> 2.5	> 2.5

FLAVOR CHANGING NEUTRAL CURRENTS

- FCNC BR suppressed to 10⁻¹² 10⁻¹⁵ in SM by GIM mechanism
- sensitive probe BSM models (2HDM, SUSY, RPV, ...)
- traditionally use anomalous coupling Lagrangian:

$$\mathcal{L}_{FCNC} \ = \ \sum_{q=u,c} \left[\sqrt{2} g_s \ \frac{\kappa_{\mathrm{tgq}}}{\Lambda} \ \left(\bar{q} \sigma^{\mu\nu} T^a (f_{gq}^L P_L + f_{gq}^R P_R) t \right) G_{\mu\nu}^a \right. \\ \left. + \frac{g}{\sqrt{2}} \ \kappa_{\mathrm{tqH}} \ \left(\bar{q} (f_{Hq}^L P_L + f_{Hq}^R P_R) t \right) H \right. \\ \left. + e \ \frac{\kappa_{\mathrm{tq}\gamma}}{\Lambda} \ \left(\bar{q} \sigma^{\mu\nu} (f_{\gamma q}^L P_L + f_{\gamma q}^R P_R) t \right) F_{\mu\nu} \right. \\ \left. + \frac{g}{\sqrt{2} c_W} \frac{\kappa_{\mathrm{tq}Z}}{\Lambda} \left(\bar{q} \sigma^{\mu\nu} (\hat{f}_{Zq}^L P_L + \hat{f}_{Zq}^R P_R) t \right) Z_{\mu\nu} \right. \\ \left. + \frac{g}{4 c_W} \ \zeta_{\mathrm{tq}Z} \left(\bar{q} \gamma^{\mu} (\bar{f}_{Zq}^L P_L + \bar{f}_{Zq}^R P_R) t \right) Z_{\mu} \right] + \mathrm{h.c.} \\ \ln \mathrm{practice, often simplify chiral structure, e.g. } \mathbf{f}^{\mathrm{R}} = \mathbf{1}$$

- q = u,c with more sensitivity to u (higher x-sec)

ATLAS AND CMS ON FCNC

- Comprehensive studies by ATLAS (tZq) and CMS (tqg)
- Both simulate dedicated signal and background samples and follow the Run-II startegies
- CMS uses BNN on kinematic input
- ATLAS uses χ^2 constructed under FCNC hypothesis
- Improvement typically one order of magnitude

	HL-LHC	HE-LHC	
B limit at 95%C.L.	$3 \text{ ab}^{-1}, 14 \text{ TeV}$	$15ab^{-1}$, 27 TeV	Run-II (36/fb)
$t \to gu$	3.8×10^{-6}	5.6×10^{-7}	2×10^{-5}
$t \to gc$	32.1×10^{-6}	19.1×10^{-7}	4×10^{-4}
t o Zq	$2.4 - 5.8 \times 10^{-5}$		$1.7-2.4 \times 10^{-4}$
$t \to \gamma u$	8.6×10^{-6}		1.3 10-4
$t \to \gamma c$	7.4×10^{-5}		2.0 10-3
t o Hq	10^{-4}		1.1 10-3

SM-EFT limits:

Operator	Expected limit
$ C_{uB}^{(31)} $	0.13
$ C_{uW}^{(31)} $	0.13
$ C_{uB}^{(32)} $	0.14
$ C_{uW}^{(32)} $	0.14

TOP-W COUPLING

• W boson helicity measurements, asymmetries and single top production are able to constrain potential anomalous Wtb couplings:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-}$$
$$- \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + \text{h.c.}$$

- comprehensive list of measurements
 - W boson helicity from Tevatron & LHC (8 TeV)
 - A_{FB} from LHC (8 TeV)
 - single top x-sec from Tevatron and LHC (7/8/13)
- Extrapolate to 3/ab & include scaled results
 - Reconstruction level uncertainties were kept (b-tagging was divided by two)

HL-LHC	$g_{ m R}$	$g_{ m L}$	$V_{ m R}$
Allowed Region (Re)	[-0.05, 0.02]	[-0.17, 0.19]	[-0.28 , 0.32]
Allowed Region (Im)	[-0.11, 0.10]	[-0.19, 0.18]	[-0.30 , 0.30]

SIN² θ_{EFF} AND THE MASS OF THE W BOSON [PHYS-PUB-2018-026] [PHYS-PUB-2018-037]

- tackle important discrepancies, profit from ITk at $|\eta| \le 4$
 - Sin ${}^2\theta_{\rm eff}$ di-electron Drell-Yan events
 - fitting rapidity dependence of A_{FB} and m(ℓℓ)
 - Benefit from η ~ 4 extension of the ATLAS Itk upgrade
 - Can resolve LEP/SLD disagreement with similar precision

- M_w: dedicated low-PU runs @ <μ> ≈2
- Combine m_T , $p_T(\ell)$ fits
- "HL-LHC" incorporates future constraints

CMS AND ATLAS SPIN CORRELATION

Figure 1 – Parton-level $|\Delta\phi_{\ell\ell}|$ distributions measured by ATLAS⁷ (left) and CMS⁸ (right), compared with various predictions. In the centre, the ATLAS measurement is compared with fixed-order calculations^{3,11}.