

Prospects for Higgs Physics at the (HL-)LHC

Elisabeth Petit (CPPM, AMU/CNRS/IN2P3) on behalf of the CMS and ATLAS experiments

XXIX International Workshop on Deep-Inelastic Scattering and Related Subjects

> Santiago de Compostela 2-6 May 2022

- ♦ 10 years after the Higgs boson discovery
- ♦ All main production modes observed
 - couplings measured with 10-50% precision
- Spin/parity: $J^{PC} = 0^{++}$
 - spin 1 and 2 excluded at > 99% CL

 m_{H} [GeV]

- Only 5% of total LHC dataset delivered
 - already ~8 million Higgs bosons per experiment

• Propects studies done by the ATLAS and CMS collaborations in the past years

European Strategy for Particle Physics 2018-2020

- CERN Yellow Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC (link)
- symposium in 2019 + briefing book (link) + conclusions (link)
- US Snowmass process 2020-2022
 - to identify the most important questions in HEP and the tools and infrastructure required to address them
 - meeting in July 2022, book end of 2022
 - White paper by ATLAS and CMS (link)

• First beam on the 22nd of April!

- ♦ Expected integrated luminosity: ~350 fb⁻¹
 - pile-up similar to Run 2 + upgraded muons system, but generally radiation damaged detectors
- Centre-of-mass energy: 13.6 TeV

• Increase in Higgs boson production cross-section from the centre of \sqrt{s} :

20			
ggF	+7.5%		
VBF	+7.9%		
WH	+6.2%		
ZH	+6.9%		
ttH	+12.6%		
HH	+11%		

• In general: measurements that are still statistically limited with Run 2 dataset

- Differential cross-section measurements
- Couplings to 2nd generation
 - $H \rightarrow \mu\mu$: first evidence by the CMS collaboration with Run 2 dataset: observed (expected) signal significance of 3.0 σ (2.5 σ)
 - ATLAS Run2 : observed (expected) signal significance of 2.0σ (1.7 σ)
 - projected CMS analysis: 5σ can be achieved with $L \approx 300$ fb⁻¹ of data (at = 14 TeV)
 - also sensitivity to $VH(\rightarrow c\bar{c})$
- Rare decay: $H \rightarrow Z (\rightarrow ee/\mu\mu)\gamma$:BR = 0.1×10⁻³
 - full Run 2 significance:
 - ATLAS: 2.2σ (expected 1.2σ)
 - CMS: 2.7σ (expected 1.2σ) **NEW**
 - 5σ expected at HL-LHC \Rightarrow evidence could be expected by the end of Run 3

- ◆ From 2029 to ~2040
- Total integrated luminosity: 3000 fb⁻¹ /experiment
 - peak luminosity *5-7 wrt Run 2-3
- Center-of-mass energy: 14 TeV
- Upgrades of ATLAS and CMS to cope with aging, pile-up, radiation
 - 2017-2019: >4500 pages of Technical Design Reports

- possible to maintain (or even improve!) Run 2 performance (reconstruction efficiencies, calibration, etc) despite harder environment

CERN-2019-007

HL-LHC analyses

- Extrapoled from Run-2, or dedicated analyses with parameterised performance
- Assumption on systematics: Run 2 or 'YR2018':
 - statistics-driven sources: data $\rightarrow \sqrt{L}$, simulation $\rightarrow 0$
 - theory uncertainties typically halved
 - intrinsic detector limitations stay ~constant
 - luminosity uncertainty 1%
 - PDF uncertainties: pseudo-data generated for various inputs: top Drell-Yan, iso photons, W+charm, W and Z in the forward region, inclusive jets, etc
 - optimistic (A) and conservative (C) scenarios

- reduction of PDF uncertainties by almost a factor 4 in the optimistic scenario in the gg channel, and around a factor 3 in the $q\bar{q}$ and qq channels
- VH(\rightarrow bb) and H($\rightarrow \tau\tau$) studies for Snowmass2021 showed that 'YR2018' assumptions could be achieved

CMS-PAS-FTR-21-007 Higgs boson mass and width at HL-LHC CERN-2019-007

- Mass: new projection of CMS measurements
 - $H \rightarrow \gamma \gamma$: 20 (stat) \oplus 70 (syst) MeV
 - $H \rightarrow ZZ \rightarrow 41: 30 = 22 \text{ (stat)} \oplus 20 \text{ (syst)} \text{MeV}$
 - reach of 10-20 MeV precision plausible goal, dependent on future improvements of muon momentum measurements
- Width (SM = 4.07 MeV): Direct measurement will be challenging also with HL-LHC statistics.
 - new CMS 4lepton onshell: upper limit of 177 MeV at 95% CL
 - 4lepton onshell+offshell: 20% precision at 68% CL combining CMS+ATLAS (assumption that ratio from SM)
 - from couplings: $\Gamma_{\rm H}$ 5% precision at 95% CL, but model dependent
 - diphoton interference study, only weaker constraints

CMS Higgs boson spin/CP at HL-LHC

- Modification of CP-structure to the couplings to τ leptons could account for the observed baryon asymmetry of the universe in certain baryogenesis models $=\frac{\kappa_{\tau}}{\kappa_{\tau}}$ $\tan(\alpha^{\mathrm{H}\tau\tau}$
 - described in terms of an effective mixing angle $\alpha^{H\tau\tau}$
 - 0° = pure scalar coupling, 90° = pure pseudoscalar coupling
 - any other value = mixed couplings between CP-even and CP-odd components

- ~independent from the systematic uncertainty assumptions

20% uncertainty with Run-2 data

Higgs couplings at HL-LHC (1)

- Precision on cross-sections and κ modifiers between 2 and 4%
 - limited by experimental and mostly theoretical systematics

CMS

 Importance of systematic uncertainties, example of ttH(→ bb, dilepton) channel:

Luminosity [fb⁻¹]

$$u_i^f \equiv \frac{\sigma. BR}{\sigma_{SM}. BR_{SM}} = \frac{\kappa_i^2. \kappa_f^2}{\kappa_H^2}$$
$$(\sigma. BR)(i \rightarrow H \rightarrow f) = \frac{\sigma_i. \Gamma_f}{\Gamma_H}$$

more information on the κ framework in the talk by P. Windischhofer

Higgs couplings at HL-LHC (2)

11

- 2^{nd} generation: Coupling to muons through $H \rightarrow \mu\mu$
- Extrapolations of Run 2 analyses
 - improvement of the acceptance and resolution thanks to the extension of the coverage of the CMS muon system ($|\eta| < 2.8$) and ATLAS inner tracker ($|\eta| < 4$)
- Expected precision on signal strength (YR2018 uncertainties):

Higgs couplings at HL-LHC (3)

- 2^{nd} generation: Coupling to charm through VH (H \rightarrow cc)
- CMS Run2 (most stringent limits up to date):
 - both resolved and boosted jets, and new c-taggers
 - observed (expected) upper limit on cross-section: 14 $(7.6^{+3.4}_{-2.3})$ times the SM
 - observed limit on κ_c : 1.1 < $|\kappa_c|$ < 5.5 (expected $|\kappa_c|$ < 3.4)

- ◆ Also ATLAS HL-LHC projection but less sensitive
 - only resolved jets in this extrapolation
 - boosted H(bb) analyses using substructure methods, developed in Run 2

κ_b

- Higgs invisible width
- Current ATLAS and CMS Run 2:
 - global coupling fit BR(H \rightarrow inv) < 4.2% @ 95% CL if BR(BSM) \geq 0 (any invisible or undetected states)
 - direct searches: $BR(H \rightarrow inv) < 10\%$ at 95% CL
- Prospects of direct searches @14TeV:
 - VH: ATLAS, 2013: <8% @ 95%CL
 - VBF: CMS, 2018: <3.8% @ 95%CL
 - full reoptimization of the analysis at 200 pile-up to study how to handle the impact of pile-up in E_T^{miss}
 - combination: $BR(H \rightarrow inv) < 2.5\%$ @ 95% CL

Differential cross-sections at HL-LHC (1)

• Expected precision of ~ 10% for $p_T^H > 350$ GeV, statistically limited

CERN-2019-007

ATL-PHYS-PUB-2021-039 Differential cross-sections at HL-LHC (2)

ATL-PHYS-PUB-2022-003

- For Snowmass2021: couplings in Simplified Template Cross Section framework for
 - measurements into bins of key variables such as Higgs transverse momentum (p_T^{H}) , jet multiplicity (Njets), and dijet invariant mass (mjj)
- VH(\rightarrow bb) and H \rightarrow $\tau\tau$

- $p_T^{H} > 250-300$ GeV (sensitive to BSM) could be measured with a precision of $\sim 10\%$
 - better than theoretical uncertainties for $H{\rightarrow}\,\tau\tau$

Higgs self-coupling at HL-LHC (1)

more information on the HH search in the talk by J. Schaarschmidt

- Through the HH production Hrare process of the Standard Model ($\sigma(HH)/\sigma(H) = 0.1\%$) destructive interference between triangle and box diagrams HSummary of channels/methods for the YR2018 studies: **ATLAS** CMS Largest BR 😊 extrapolation parametric bbbb Large multijet and tt bkg 🙁 Sizeable BR 🙂 extrapolation parametric bbtt Relatively small bkg 🙂 Small BR 😕 Updated for Good diphoton resolution 🙂 bbyy smearing parametric Snowmass2021 Relatively small bkg 🙂 bbVV Large BR 🙂 parametric Large bkg 😕 $\rightarrow |v|v)$ Very small BR 😕 bbZZ parametric í → 4I) Very small bkg 🙂
- New for Snowmass 2021:

WWγγ+τγγ		Large Dkg 😡 🛛
ttHH	parametric	Very small cross-section 😕 Highly sensitive to BSM 😊

CMS Higgs self-coupling at HL-LHC (2)

Expected significance for SM HH production in YR2018 (\rightarrow Snowmass2021):

CERN-2019-007

ATL-PHYS-PUB-2022-018/

CMS-PAS-FTR-22-001

	Statistical-only		Statistical + Systematic	
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH ightarrow b \bar{b} au au$	2.5→ 4.0 1.6		2.1 → 2	
$HH ightarrow b ar{b} \gamma \gamma$	2.1→ 2	. <mark>3</mark> 1.8	$2.0 \rightarrow 2$	2.2 $1.8 \rightarrow 2.2$
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0 → 3	3.2 2.6
	Combined		C	ombined
	4.5		4.0	

... as a function of int. luminosity:

- YR2018 (ATLAS+CMS): [0.5; 1.5] at 68% CL
- Snowmass2021 (ATLAS bbττ+bbγγ only!): [0.5; 1.6]
- importance of measurements sensitive to m_{HH} to remove the second minimum (degeneracy of the HH production cross-section)

Higgs boson studies at Future Colliders

- ♦ After HL-LHC: Electron-positron (FCC-ee, CEPC, CLIC, ILC), proton-proton (HE-LHC, FCC-hh), electron-proton (LHeC)
- Precision on κ coupling modifiers:

- Precise measurements of Higgs couplings (large gain in κ_w, κ_z, κ_b, access to κ_c), invisible decays and CP properties, and the opportunity to measure the Higgs width
- Several of the proposed FCs will establish the existence of the self-coupling at 5σ

CERN-ESU-004

Conclusion

- ♦ Already well defined physics program for the HL-LHC
 - mostly extrapolated from the Run-2 results
 - based on the foreseen detector improvements
- Higgs mass could be measured with an uncertainty of 10-20 MeV
- Higgs couplings will be measured with percent precision
- Higgs self-couplings could be measured with a precision betten than 50%, expected significance for the HH process >4 σ
- ♦ Already improvements between the YR2018 and Snowmass2021 projections
 - ex. uncertainty on κ_c :
 - Snowmass2013: 7.5%
 - YR2018: 5.0%
 - Snowmass2021: 3.5%
 - Stay tuned! Ultreia!

Back-up

ATL-PHYS-PUB-2015-043 CMS-PAS-FTR-21-009

Higgs couplings at HL-LHC (4)

- 2nd generation: Coupling to charm through rare decays with quarkonium mesons
 - low branching ratios in the SM, can be largely enhanced by BSM
- $H \rightarrow J/\Psi + \gamma (BR = 2.9 \pm 0.2 \times 10^{-6})$
 - ~3 expected signal events
 - expected 95% CL upper limits: 15*SM
- $H \rightarrow J/\Psi + Z (BR = 2.3 \times 10^{-6})$
 - search in the 4 muon invariant mass
 - expected 95% CL upper limits: 126*SM
- $H \rightarrow \Upsilon(mS)\Upsilon(nS) (BR = 6.5 \times 10^{-5})$
 - search in the 4 muon invariant mass
 - expected 95% CL upper limits: 0.2*SM
 - predicted background negligible
 - \Rightarrow 1 event = evidence
 - \Rightarrow 3 events = observation

22

- Constraints of the HL–LHC pseudo-data on the PDF4LHC15 set by means of the Hessian Profiling method
 - PDF4LHC15 set broadly represents the state-of-the-art understanding of the proton structure
 Kinematic coverage
- HL-LHC coverage of the large-x region, where current PDF fits exhibit large uncertainties, is markedly improved as compared to available LHC measurements

Fig. 6: Comparison between the HL–LHC pseudo-data and the theoretical predictions for forward W+charm production (left) and for the invariant mass $m_{t\bar{t}}$ distribution in top-quark pair production (right). The theory calculations are shown both before (PDF4LHC15) and after profiling.

 expected precision of the HL-LHC measurements is rather higher than the current PDF uncertainties ⇒ marked improvement once they are included in PDF4LHC15 via the Hessian profiling

- Scenarios: reduction factor applied to the systematic errors of the reference 8 TeV or 13 TeV measurements
 - optimistic (C): reduction of the systematic errors by a factor 2.5 (5) as compared to the reference 8 TeV (13 TeV) measurements
 - conservative (A): no reduction in systematic errors with respect to the 8 TeV reference

- use of processes which will benefit from a significant improvement in statistics
- they tend to lie in kinematic regions where the PDFs themselves are generally less well determined
- marked reduction of the PDF uncertainties in all cases
 - gluon PDF: improvement in the complete relevant range of momentum fraction x

• Reduction of the PDF uncertainties as compared to the PDF4LHC15 baseline:

Predictions for SM Higgs production at $\sqrt{s} = 14$ TeV:

- Two caveats:
 - only a subset of all possible measurements of relevance for PDF fits at HL–LHC
 - possible data incompatibility has not been accounted for fully

Theoretical uncertainties ('YR2018') talk of A. Huss at Higgs2021

- Theoretical uncertainties are assumed to be reduced by a factor of two with respect to the current knowledge
 - higher-order calculation
 - reduced parton distribution functions uncertainties

• Effect of κ_c variations on p_T^{Higgs} :

Higgs self-couplings

• BSM effects could change $\lambda \Rightarrow$ define deviation of tri-linear term: $\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}$

- no quartic terms considered here

Di-Higgs production at hadronic colliders (1)

- Main production mode: ggF
- Rare process of the Standard Model
 - destructive interference between triangle and box diagrams
 - $-\sigma(HH)/\sigma(H) = 0.1\%$

State of the art NNLO calculation with finite m_t effects at NLO

Di-Higgs production at hadronic colliders (2)

- Self-couplings through
 - total HH cross section
 - differential cross section $d\sigma/dm_{_{\rm HH}}$

Di-Higgs production at hadronic colliders (3)

• Sensitivity to κ_{λ} directly related to the acceptance, so to the m_{HH} shape

Many decay channels!

• In practice consider channels with $b\overline{b}$ (BR = 59%) to maximise the rate

Summary of channels/methods for HL-LHC studies:

Benefit from performance work of Technical design reports

• New analyses, either

- extrapolations from Run-2 analyses
- dedicated studies with smeared/parametric detector response, corresponding to pile-up of 200