W2 Small-x, Diffraction and Vector Mesons Summary: Experimental talks

Conveners:

Guillaume Beuf, Rafał Staszewski, <u>Daria Sokhan</u>, (with help from Tolga Altinoluk)

46 talks: 10 experimental, 36 theory

Imanol Corredoira: Studies of low-x phenomena with LHCb

- Can study same system in forward & backward configuration: two different x-regions
- Charged hadron production, nuclear modification factor:

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{ppb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/dp_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/dp_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/d\rho_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/d\rho_T d\eta}, A = 208$$

$$R_{pPb}(\eta, p_T)/d\rho_T d\eta}{d^2 \sigma_{pp}(\eta, p_T)/d\rho_T d\eta}, A = 208$$

$$R_$$

- Also neutral pion production in both x-ranges.
- Measurements help to constrain nPDFs (better modelling of nuclear effects), tune saturation models and non-linear effects.

Ben Gilbert: ATLAS measurement of photo nuclear processes in UPC Pb+Pb

 Rapidity gaps help separate hadronic from photonuclear, which are highly asymmetric and fall quickly with multiplicity.

 Photonuclear can be used to study collectivity in a novel small system and inclusive jet production (hard scattering) as probe of nPDFs: saturation physics probe.

Vector-dominance model and hydrodynamic evolution reproduces ATLAS data for flow dependence on pT: can be modelled as rho-nucleus collision.

Irais Bautista: Forward neutron multiplicity dependence of di-muon acoplanarity in UPC with PbPb at 5.02 TeV (CMS)

- Neutron multiplicity is a measure of impact parameter for ion collisions.
- Acoplanarity in $\gamma\gamma \to \mu^+\mu^-$ an indication of interaction of produced leptons and QGP.

$$\alpha = 1 - \frac{|\phi^+ - \phi^-|}{\pi}$$

• First experimental demonstration that the initial energy and transverse momentum of photons exchanged in UPC depend on the impact parameter of the interaction.

Diego Stocco: Quarkonium and di-lepton photoproduction ALICE

- Photonuclear crosssection sensitive to gluon distribution at low-x
 - Moderate gluon shadowing, tdependence described by models including saturation or shadowing

γγ → e⁺e⁻ in Pb–Pb collisions

 Excess observed over known hadronic e+estates, first measurement with low invariant mass in peripheral Pb-Pb collisions.

Marta Ruspa: Exclusive vector meson production in p+Pb at CMS

Exclusive Upsilon at 5 TeV

 $b = 6.0 \pm 2.1 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \text{ GeV}^{-2}$

|t| dependence

In agreement with **ZEUS** measurement, and predictions based on pQCD models (NLO)

Exclusive rho (770) at 5 TeV

Consistent with **ZEUS** measurement, and Regge model expectation

Isaac Upsal: Nuclear Tomography with polarised photon-gluon collisions at STAR

- UPC photon can fluctuate into qq-bar pair, interacts with pomeron or reggeon.
- Photon polarisation aligned with emitting source, dictates rho polarisation.
- Excess at low pT: observe diffractive production

	Au+Au (fm)	U+U (fm)
Charge Radius	6.38 (long: 6.58, short: 6.05)	6.81 (long: 8.01, short: 6.23)
Inclusive t slope (STAR 2017) [1]	7.95 ± 0.03	
Inclusive t slope (WSFF fit)*	7.47 ± 0.03	7.98 ± 0.03
Tomographic technique*	6.53 ± 0.03 (stat.) ± 0.05 (syst.)	7.29 \pm 0.06 (stat.) \pm 0.05 (syst.)
DESY [2]	6.45 ± 0.27	6.90 ± 0.14
Cornell [3]	6.74 ± 0.06	
Neutron Skin (Tomographic Technique)*	0.17 \pm 0.03(stat.) \pm 0.08(syst.) $\sim 2\sigma$	0.44 ± 0.05 (stat.) ± 0.08 (syst.) $\sim 4.7\sigma$ (Note: for Pb ≈ 0.3)
, , , , , , , , , , , , , , , , , , , ,		*arXiv:2204.01625

 Modulation sensitive to gluon distribution, nuclear radius

Grzegorz Grzelak : Cross-section ratio of $\Psi(2S)$ and J/Ψ in exclusive photoproduction at HERA

 Ratio has discriminating power for charmonium models HERA II data (2003 - 2007)

Gary Penman: 3D imaging of nucleons and nuclei with ECCE at the future EIC

 Exclusive and diffractive processes are sensitive to Generalised Parton Distributions and gluon densities.

DVCS ep

DVCS eA (e-He4)

TCS

DVMP ep J/Ψ

DVMP eA (e-Pb) Φ

Kong Tu: Diffractive Vector Meson production at the EIC

Probe of gluon density, spatial distributions, their fluctuations.

t ~ momentum transfer (kicks)

- Very large incoherent background
- Study with ATHENA detector at the EIC

 Tracking and calorimetry can achieve background suppression and minima resolution

Anna Stasto: Diffractive Longitudinal Structure Function at EIC

Reduced cross section depends on two structure functions:

$$\sigma_{\rm r}^{{\rm D}(4)}(\xi,\beta,Q^2,t) = F_2^{{\rm D}(4)}(\xi,\beta,Q^2,t) - \frac{y^2}{Y_+} F_L^{{\rm D}(4)}(\xi,\beta,Q^2,t)$$

- F_LD: sensitive to gluon density (saturation, higher-twist effects), only measured once at HERA with large error bars.
- Five energy combinations are sufficient to extract it from EIC measurements through linear fit to reduced cross-sections.

 Also possible to extract ratios of structure functions:

$$R^{D(3)} = F_L^{D(3)} / F_T^{D(3)}$$

