DIS in the big picture of HEP

Fabrizio Caola

Rudolf Peierls Centre for Theoretical Physics & Wadham College

DIS2022, Santiago de Compostela, May 6th 2022

DIS: a unique microscope

Fundamentals of QCD in a clean environment

- Bjorken scaling
- QCD evolution & the rise of the gluon at HERA
- New regimes of QCD: saturation, CGC...
- Nuclear Theory: from models to first principles

DIS: a unique microscope

Fundamentals of QCD in a clean environment

- Bjorken scaling
- QCD evolution & the rise of the gluon at HERA
- New regimes of QCD: saturation, CGC...
- Nuclear Theory: from models to first principles

DIS: a unique microscope

A precise mapping of the proton/nuclei

- PDFs at high precision → crucial for hadron colliders
- HERA: high-precision at hadron colliders is possible
- Beyond PDFs: TMDs, 3D tomography...
- Mass/spin of the proton

Fundamentals of QCD in a clean environment

- Bjorken scaling
- QCD evolution & the rise of the gluon at HERA
- New regimes of QCD: saturation, CGC...
- Nuclear Theory: from models to first principles

DIS: a unique microscope

A high-energy probe

- EW physics in DIS
- Precision SM parameters
- Higgs couplings
- BSM models

A precise mapping of the proton/nuclei

- PDFs at high precision → crucial for hadron colliders
- HERA: high-precision at hadron colliders is possible
- Beyond PDFs: TMDs, 3D tomography...
- Mass/spin of the proton

This talk:

Some <u>illustrative</u> examples of the richness of the DIS program, emphasising their connection to a broader HE picture

Caveats

- Examples drawn mostly from topics I am familiar with. Apologies if your favourite subject is not here!
- Mostly focus on DIS now, but with an eye on the future.
 - "Future of DIS//new facilities" → J. d'Hondt, M. d'Onofrio's talks

PDFs: at the core of any hadron collider

From scaling violations to physics at the few percent

PDFs: at the core of any hadron collider

An incredible synergy between DIS and HH

QCD works over many order of magnitudes, in a very precise way. No obvious signs of breakdown

Combining DIS + HH: luminosities with few percent error possible in the bulk of the EW region

PDFs: DIS vs hadron-hadron

LHC bringing in more and more constraining power, but DIS here to stay

HERA legacy dataset:

- very robust, extremely well-understood dataset. Solid backbone
- LHC: often more complex observables/analysis, tensions (Z pt, jets...)
- DIS: QCD theory under better control...

- In general, perturbative expansion much better behaved in DIS
- ggH is an extreme case, but larger K-factors at the LHC [→ M. Bonvini's talk]
- LHC: more differential, complex observables, often quite delicate
- Understanding of source of large K-factors not yet fully-satisfactory

The perturbative expansion in DIS and @LHC

Consequences for PDFs

Data set	Points	NLO χ^2/N_{pts}	NNLO χ^2/N_{pts}
$D \varnothing W$ asymmetry	14	0.94(2.53)	0.86 (14.7)
$\sigma_{t\bar{t}} \ [93]$ - [94]	17	1.34 (1.39)	0.85 (0.87)
LHCb 7+8 TeV $W + Z$ [95,96]	67	1.71 (2.35)	1.48 (1.55)
LHCb 8 TeV $Z \rightarrow ee$ [97]	17	2.29(2.89)	1.54 (1.78)
CMS 8 TeV W [98]	22	1.05 (1.79)	0.58 (1.30)
CMS 7 TeV $W + c$ [99]	10	0.82 (0.85)	0.86 (0.84)
ATLAS 7 TeV jets $R = 0.6$ [18]	140	1.62 (1.59)	1.59 (1.68)
ATLAS 7 TeV $W + Z$ [20]	61	5.00 (7.62)	1.91 (5.58)
CMS 7 TeV jets $R = 0.7 [100]$	158	1.27(1.32)	1.11 (1.17)
ATLAS 8 TeV $Z p_T$ [75]	104	2.26(2.31)	1.81 (1.59)
CMS 8 TeV jets $R = 0.7 [101]$	174	1.64 (1.73)	1.50 (1.59)
ATLAS 8 TeV $t\bar{t} \to l + j \text{ sd } [102]$	25	1.56 (1.50)	1.02 (1.15)
ATLAS 8 TeV $t\bar{t} \to l^+ l^- \text{ sd } [103]$	5	0.94 (0.82)	0.68 (1.11)
ATLAS 8 TeV high-mass DY [73]s	48	1.79(1.99)	1.18 (1.26)
ATLAS 8 TeV W^+W^- + jets [104]	30	1.13 (1.13)	0.60 (0.57)
CMS 8 TeV $(d\sigma_{\bar{t}t}/dp_{T,t}dy_t)/\sigma_{\bar{t}t}$ [105]	15	2.19(2.20)	1.50 (1.48)
ATLAS 8 TeV W^+W^- [106]	22	3.85 (13.9)	2.61 (5.25)
CMS $2.76 \text{ TeV jets } [107]$	81	1.53 (1.59)	1.27(1.39)
CMS 8 TeV $\sigma_{\bar{t}t}/dy_t$ [108]	9	1.43 (1.02)	1.47(2.14)
ATLAS 8 TeV double differential Z [74]	59	2.67(3.26)	1.45 (5.16)
Total, LHC data in MSHT20	1328	1.79 (2.18)	1.33 (1.77)
Total, non-LHC data in MSHT20	3035	1.13 (1.18)	1.10 (1.18)
Total, all data	4363	1.33 (1.48)	1.17 (1.36)

Example of subtleties: CMS jets and NNLO

[Chen, Gehrmann, Glover, Huss, Mo (2022)]

- CMS 8 TeV dijet data, differential in $p_{t,avg}$, $y^* = |\Delta y|/2$ and $y_b = |y_1 + y_2|/2$
- Strongest constraining power among jets, but strong pull for gluon at $x\sim0.3$
- Tension with legacy DIS/DY → discarded

 NNPDF4.0: single-differential CMS 8TeV. Underlying TH: best prediction available at the time of fitting → NNLOQCD+NP, only leading-colour contributions

$$\delta \sigma_{\text{NNLO}} = A N_c^2 + B n_f N_c + C n_f^2 + D N_c^0 + E \frac{n_f}{N_c} + \frac{G}{N_c^2}$$

• Recently: full-colour calculations available [Czakon, van Hameren, Mitov, Poncelet (2019); Chen, Gehrmann, Glover, Huss, Mo (2022)]

Example of subtleties: CMS jets and NNLO

Full-colour analysis

$$\delta\sigma_{\text{NNLO}} = A N_c^2 + B n_f N_c + C n_f^2 + D N_c^0 + E \frac{n_f}{N_c} + \frac{G}{N_c^2}$$

- Sets without CMS8 jet data seem to fit better
- Jury still out, but this example shows that the LHC can be tricky...
- General comment:
 robust TH uncertainty in
 the PDFs most welcome
 [→ talks by Z. Kassabov, J.
 McGowan, M. Bonvini]

PDFs: important information still missing

UHE neutrinos, prompt ∨ flux → small-x, charm

Any progress in these directions welcome

PDFs: also a theory problem...

N³LO PDFs not available → order mismatch

ggH theory error budget

PDFs: also a theory problem...

N³LO PDFs not available → order mismatch

ggH theory error budget

[Becchetti, Bonciani, del Duca, Hirschi, Moriello, Schweitzer; Bonetti, Panzer, Smirnov, Tancredi, Melnikov]

Missing N³LO PDFs, as well as α_s+PDFs uncertainty: significant

[Recent progress towards N³LO → talks by J. McGowan, K. Schönwald]

Inclusive Drell-Yan at N3LO

In the EW region Q~100 GeV: ~2-3% N3LO vs per-mill NNLO

[Duhr, Dulat, Mistlberger (2020-21)]

Band only overlap at large $Q^2 \rightarrow$ trouble in the high-precision region?

Neutral-current DY: flavour decomposition

Per-mille NNLO: unnaturally small. Very large cancellations

qq

- Individual channels (μ =Q) much larger than final result, delicate cancellation pattern
- Individual channels: perturbative convergence
- N³LO ``natural", tiny PDFs changes can significantly affect this picture

N3LO PDFs issues: evolution

N³LO: evolution and the problems of small-x

NNLO: an issue at low-mass, not quite so at the EW scale. N3LO?

$$\chi_0(M) = \frac{C_A}{\pi} \left[2\psi(1) - \psi(M) - \psi(1 - M) \right] \rightarrow$$

$$\gamma_{\rm LL}(N) = \frac{\bar{\alpha}_s}{N} + 0 \cdot \alpha_s^2 + 0 \cdot \alpha_s^3 + 2\zeta_3 \frac{\bar{\alpha}_s^4}{N^4} , \quad \bar{\alpha}_s = \alpha_s C_A/\pi$$

Spurious leading pole in 0, starting at N^3LO (vs pole at $N\sim0.3$).

Is this an issue for precision physics (at the EW scale and beyond)?

- How dangerous is the spurious N³LO growth?
- Are subleading terms under control?
- To which extent DGLAP evolution washes out small-x effects?
- Control-sample with effectively no evolution (i.e. <u>DIS vs LHC-only fits</u>)?

Small-x physics and high-energy colliders

Proper understanding of small-x crucial for precision EW physics at future hadron colliders

What is the impact of sub-leading terms?

How robust is this picture?

[Bonvini, Marzani (2018)]

Small-x physics: beyond standard evolution

Small-x physics extremely interesting in its own merit.

QCD in a new regime

- A lot of recent progress towards making predictions more precise and accurate → see B. Xiao's talk
- Effects larger in pA, A^{1/3} enhancement of the saturation scale
- Also can be studied from diffraction, in a relative clean fashion [see E. lancu's talk]

Can we study the onset of saturation and its connection to (resummed) DGLAP with as little modelling as possible, in a clean (=protons, perturbative) setting?

Beyond PDFs: TMDs

A lot of progress... In a nutshell

- better determinations
- better theoretical understanding (from phenomenological models to first principles)

Understanding the intrinsic transverse momentum of partons plays an important role for highest-precision LHC studies...

[Bacchetta, Bozzi, Radici, Signore (2019)]

Beyond PDFs: TMDs and the W mass

Legacy LHC measurement: W mass.

- Best handle at the LHC: W transverse momentum distribution
- Require (sub) per-mill control over p_t spectra → impossible theoretically
- Idea: calibrate Z using data, only need to control differences between Z and W → PDFs, EW
- Right now: $\Delta m_{W,ATLAS} = ~19$ MeV [CDF: ~10 MeV, EW precision: ~8 MeV]

Good control of flavour-dependence of intrinsic k_t crucial \rightarrow TMD

	ΔM_{W^+}			ΔM_{W^-}		
Set	$ m_T $	$p_{T\ell}$		$ m_T $	$p_{T\ell}$	$p_{T u}$
1	0	1_	-2	-2	3	-3
2	0	-6	0	-2	0	-5
3	-1	9	0	-2	4	-10
4	0	0	-2	-2	-4	-10
5	0	4	$\mid 1 \mid$	-1	-3	-6
6	1	0	$\mid 2 \mid$	-1	4	-4
7	2	-1	$\mid 2 \mid$	-1	0	-8
8	0	2	8	1	7	8
9	0	$\mid 4 \mid$	-3	-1	0	7

- Shifts uncomfortably large...
- Better control would be very welcome
- ... especially after the CDF new measurement

Towards a 3D image of the proton

Eventually, we want to map the full 3D structure of the proton → Wigner's functions

Interesting in its own merit, but in the long run may be important for general studies at hadron colliders, beyond QCD

- PS, bread and butter of colliders, are getting better and better = under quantifiable theoretical control [→ see M. Dasgupta's talk]
- Non-perturbative bit still from phenomenological models. Ideally, rely less and less on models, and more and more on data
- Example: MPI. VBF Higgs: +5% at low pt [NNLO QCD: 4-7%]
- Still very far from tomography-informed MPI, but a lot of progress on tomography expected from the EIC...

DIS and HEP theory

- The simplest, yet non-trivial example of hadron collider
- Many techniques developed for DIS then successfully applied to the LHC
- Crucial results in pQCD [QCD evolution...]
- Tools [nested sums, iterated integrals...] widely used for state-of-the-art calculations
- Clean settings for NP studies, solid grounds in QFT (this is less the case for hadron-hadron colliders...)

DIS: the first N3LO inclusive calculation...

- Good perturbative convergence (away from small-x)
- Naive α_s power counting works well
- Crucial for high-precision fits

DIS: ... and the first fully-exclusive one

- Also in this case good convergence
- Testing grounds for similar calculations at hadron colliders

DIS in disguise: VBF@LHC

Double-DIS approximation very good

DIS in disguise: VBF@LHC

Using DIS in a clever way:

NNLO exclusive

N³LO inclusive

• Double–DIS approximation very good... although careful at Glauber phases, π^2/N_c^2 is not small [Melnikov, Penin (2019)]

DIS in disguise: t-channel single top

A similar argument holds for t-channel single-top

- Also requires massless → massive DIS transitions [Berger, Gao, Li, Liu, Zhu (2016)]
- Double-DIS approximation very good... although careful at Glauber phases, π^2/N_c^2 is not small [\rightarrow see C. Brønnum-Hansen's talk]

Non-linear evolution in disguise

Unitarity: parton evolution ↔ forward scattering of elastic amplitudes

High-enough logarithmic order: sensitive to full Balitsky-JIMWLK evolution

[formalism spelled out in Caron-Huot (2013) + del Duca, Falcioni, Gardi, Maher, Milloy, Vernazza (2013-2022); Fadin, Lipatov (2018)]

Non-linear evolution in disguise

• 2→2 QCD scattering amplitudes@3L recently computed [Chakraborty, Gambuti, von Manteuffel, Tancredi, FC (2021)]

Everything as predicted!

Can test Regge factorisation at NNLL

$$\mathcal{H}_{\mathrm{ren},\pm} = Z_g^2 \, e^{L\mathbf{T}_t^2 au_g} \sum_{n=0}^3 \bar{\alpha}_s^n \sum_{k=0}^n L^k \mathcal{O}_k^{\pm,(n)} \mathcal{H}_{\mathrm{ren}}^{(0)},$$
 Regge trajectory

Multi-Reggeon interactions (SLC)

$$\mathcal{O}_{0}^{-,(0)} = 1, \quad \mathcal{O}_{0}^{-,(1)} = 2\mathcal{I}_{1}^{g},$$

$$\mathcal{O}_{0}^{-,(2)} = \left[2\mathcal{I}_{2}^{g} + (\mathcal{I}_{1}^{g})^{2}\right] + \mathcal{C}^{-,(2)}[(\mathbf{T}_{s-u}^{2})^{2} - \frac{N_{c}^{2}}{4}],$$

$$\mathcal{O}_{1}^{-,(3)} = \mathcal{C}_{1}^{-,(3)}\mathbf{T}_{s-u}^{2}[\mathbf{T}_{t}^{2}, \mathbf{T}_{s-u}^{2}] + \mathcal{C}_{2}^{-,(3)}[\mathbf{T}_{t}^{2}, \mathbf{T}_{s-u}^{2}]\mathbf{T}_{s-u}^{2},$$

LHC: almost DIS2, but not always...

QCD with intrinsic heavy quarks:

- collinear factorisation violated at NNLO in hadron-hadron (i.e. $R+V+ren = \infty$)
- no problem in DIS

[Doria, Frenkel, Taylor (1980); many subsequent studies. See e.g. Melnikov, Napoletano, Tancredi, FC (2020) for a modern derivation and discussion]

A new twist to an old story: intrinsic charm!

DISCOVERY OF INTRINSIC CHARM

MORE THAN 3 σ EVIDENCE

Evidence for intrinsic charm in DIS + LHC data

- How to properly deal with it at NNLO at the LHC unclear
- DIS: solid foundation → guide and benchmark

[→ see K. Kudashkin's talk and G. Magni's poster]

DIS as a high-energy probe

DIS in the past did probe EW interactions (NC vs CC, γ /Z interference...)

Future DIS facilities: clean environment (low pile-up, controlled bkgd...) for precision EW studies

A famous example: b/c Higgs Yukawa

- S/B ~ 3!
- Constrain signal strength to 0.8% (bb) and 7.4% (cc)

 Not the only one! W-mass in the t-channel, top polarisation, radiation zeros, hidden sectors, axions... rich program at future facilities

→ see J. d'Hondt & M. d'Onofrio's talks

Conclusion I

"Interesting physics" ≠ "BSM"

... as any physicist not working on particle physics would tell you

- If a collider can deliver new discoveries, that's of course great
- Looking at the future: the era of ``guaranteed new physics deliveries" (like the Higgs for the LHC) may well be over
- But there is a rich set of unexplored areas in the SM that are worth pursuing

Many interesting open questions in QCD. For example

- Mass/spin proton/nuclei
- The structure of the proton [PDFs, TMDs, tomography...]
- Nuclear physics: from models to first principles
- QCD evolution and new phases of QCD (saturation, QGP...)

• ...

Future DIS facilities (EIC, LHeC, FCC-eh) would shed light on these issues

Conclusion II

DIS: the simplest hadron collider machine

- In this case: simple ↔ powerful (clean, well-understood)
- Hard to overstate the importance of accurate, precise and reliable determinations of the structure of the proton for the HE program at hadron colliders → legacy DIS data augmented with LHC information, interesting cross-talks

Extreme regions (small/large-x) and individual quarks remain elusive \rightarrow limiting factor for different physics programs

- HE DIS: clean probe of EW scale and beyond
- Interesting synergies with other experiments
- Many interesting QCD questions
- Techniques developed for DIS have much broader applications

DIS: very interesting and important role in the HEP landscape

Thank you very much for your attention!

Backup

N3LO: inclusive results

To a large extent, inclusive N³LO for $2 \rightarrow 1$ processes has been solved

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (2016-...); Duhr, Dulat, Mistlberger (2020-21)]

 E_{COM} [TeV]

N3LO: PDFs

N³LO PDFs not available → order mismatch

	*
1	
V	7

$Q/{\rm GeV}$	$\rm K_{\rm QCD}^{\rm N^3LO}$	$\delta(\text{scale})$	$\delta(\text{PDF}+\alpha_S)$	$\delta(\text{PDF-TH})$
30	0.952	$+1.5\% \\ -2.5\%$	±4.1%	$\pm 2.7\%$
50	0.966	$^{+1.1\%}_{-1.6\%}$	$\pm 3.2\%$	$\pm 2.5\%$
70	0.973	$+0.89\% \\ -1.1\%$	$\pm 2.7\%$	$\pm 2.4\%$
90	0.978	$+0.75\% \\ -0.89\%$	$\pm 2.5\%$	$\pm 2.4\%$
110	0.981	$+0.65\% \\ -0.73\%$	$\pm 2.3\%$	$\pm 2.3\%$
130	0.983	$+0.57\% \\ -0.63\%$	$\pm 2.2\%$	$\pm 2.2\%$
150	0.985	$+0.50\% \\ -0.54\%$	$\pm 2.2\%$	$\pm 2.2\%$

Error: estimate from previous orders

$$\delta(\text{PDF-TH}) = \frac{1}{2} \left| \frac{\sigma_{W^{\pm}}^{(2), \text{ NNLO-PDFs}} - \sigma_{W^{\pm}}^{(2), \text{ NNLO-PDFs}}}{\sigma_{W^{\pm}}^{(2), \text{ NNLO-PDFs}}} \right|$$

- ~ 2% PDF-TH error in the EW region
- significant fraction of the error budget
- same order of ``standard" PDF+ α_s

N3LO PDFs issues: evolution

N³LO: evolution and the problems of small-x

- N³LO calculation underway [Herzog, Moch, Ruijl, Ueda, Vermaseren, Vogt, in progress]
- N³LO: rapid small-x growth → perturbative instabilities@N³LO
- NLL resummation known, but large subleading effects [Bonvini, Marzani (2018)]

NNLO: an issue at low-mass, not quite so at the EW scale

N3LO PDFs issues: data

 Collider data crucial to reduce perturbative uncertainty → fully-consistent N³LO fit would require top, Z pt, jets @ N³LO

N³LO for PDFs: status and prospects

- DIS 🗸
- DY 🗸
- Z pt: ~ (unknown, but should be possible)
- Top: ~ (unknown, but should be possible given current understanding)
- Jets:
 X (unknown, and there may be serious problems...)