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A high-energy probe 
•EW physics in DIS 
•Precision SM 

parameters 
•Higgs couplings 
•BSM models

Fundamentals of QCD in a clean environment 
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•New regimes of QCD: saturation, CGC… 
•Nuclear Theory: from models to first principles



This talk:

Caveats 
•Examples drawn mostly from topics I am familiar with. Apologies if your favourite 

subject is not here! 
•Mostly focus on DIS now, but with an eye on the future.                                  

``Future of DIS//new facilities’’ → J. d’Hondt, M. d’Onofrio’s talks

Some illustrative examples of the richness of 
the DIS program, emphasising their connection 

to a broader HE picture
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Figure 3.2: HERA kinematic range

can safely trust it, provided that we stay in the kinematic region shown in Fig.
3.2.

3.2.2 The geometric scaling window

In order to study the geometric scaling at HERA, first of all we have to know the
kinematic region where the scaling behaviour holds. The goal of this section is
just the determination of this kinematic range.
As a warm-up, we want to reproduce the original geometric scaling observation [1].
To this purpose, we have generated a grid of 1685 points in the

(
x,Q2

)
plane, with

the condition x < 0.01. At HERA this bound implies x ∈
[
1.14 · 10−6, 0.01

]
and

Q2 ∈
[
0.05 GeV2, 450 GeV2

]
. Since the natural variables in our theories are not x

and Q2 but rather ξ and t, we have chosen our points equally spaced in logarithmic
units. Our sample is shown in Fig. 3.3, where we have also depicted two (fixed
coupling) geometric lines, Q2 · xλ = 10 and Q2 · xλ = 0.01. Note that we have
followed carefully the contours of the HERA triangle, in order to be absolutely
sure about the output of the net.

As a starting point for our analysis we use the fixed coupling form for the
saturation line. For λ we use the same value of [1], that is λ = 0.29. We hence plot

x

Q2
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Figure 2.1: Schematic picture of parton saturation

in the large-Nc (see Appendix A) approximation and at leading log 1/x [7]. In
the large-Nc limit the Balitsky hierarchy decouples and its first term reduces to
the Kovchegov equation. Thus, this equation is usually referred as the Balitsy-
Kovchegov (BK) equation. An alternative approach is the Jalilian-Marian-Iancu-
McLerran-Weigert-Kovner-Leonidov (JIMWKL) hierarchy [6], that describes the
change of the correlation functions of the colour charge density in the hadron
wavefunction. This equation can be derived in the Color-Glass-Condensate (CGC)
approach, an effective theory in which one consider the radiation of soft gluons in
a strong background field. In the large Nc the JIMWKL hierarchy decouples and
becomes equivalent to the BK equation.

An exhaustive presentation of all these derivation goes beyond the scope of
this thesis. In the following we will limit ourselves to the Kovchegov theory, which
is by far the simplest and it is model independent. Moreover, its link with the
BFKL theory is transparent. To see this, we must derive the BFKL equation in
the colour dipole formalism [21]. This part is hence organised as follows. In section
2.2 we introduce the colour dipole approach to DIS and within that context we
give a precise definition of geometric scaling. Then in section 2.3 we use the dipole
formalism to derive the BFKL equation and we evaluate the leading order kernel.
This derivation is generalized in section 2.4 to multiple interactions, leading to
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change of the correlation functions of the colour charge density in the hadron
wavefunction. This equation can be derived in the Color-Glass-Condensate (CGC)
approach, an effective theory in which one consider the radiation of soft gluons in
a strong background field. In the large Nc the JIMWKL hierarchy decouples and
becomes equivalent to the BK equation.

An exhaustive presentation of all these derivation goes beyond the scope of
this thesis. In the following we will limit ourselves to the Kovchegov theory, which
is by far the simplest and it is model independent. Moreover, its link with the
BFKL theory is transparent. To see this, we must derive the BFKL equation in
the colour dipole formalism [21]. This part is hence organised as follows. In section
2.2 we introduce the colour dipole approach to DIS and within that context we
give a precise definition of geometric scaling. Then in section 2.3 we use the dipole
formalism to derive the BFKL equation and we evaluate the leading order kernel.
This derivation is generalized in section 2.4 to multiple interactions, leading to
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• High-mass neutral current Drell-Yan measurements at LHC 
• Measurements compared to NNLO pQCD predictions with FEWZ 3.1 
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PDFs: at the core of any hadron collider

HEP Lecture 9 15

Proton structure function
F2(x,Q2).
Open triangles: SLAC data
Solid squares:
a) BCDMS data
x values (from below):

0.275, 0.225, 0.180, 0.140,
0.100, 0.070

b) EMC data
x values (from below):
0.250, 0.175, 0.125, 0.080

the individual  x ranges are
scaled by a factor of 1.5 to
separate them from each other.

Note the slight  Q2 dependence:
scaling violation!

[NNPD
F31]

Figure 5.9: The relative uncertainty on the luminosities of Fig. 5.8, plotted as a function of the invariant
mass MX and the rapidity y of the final state; the left plots show results for NNPDF3.0 and the right
plots for NNPDF3.1 (upper four rows). The bottom row shows results for the up-antidown luminosity.
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From scaling violations to physics at the few percent



PDFs: at the core of any hadron collider

Figure 2.1: The kinematic coverage of the NNPDF3.1 dataset in the
�
x,Q

2
�
plane.
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[N
NP

D
F3

1]

DIS

HH
QCD works over many order of 
magnitudes, in a very precise way. 
No obvious signs of breakdown

An incredible synergy between DIS and HH

Combining DIS + HH: luminosities 
with few percent error possible in 
the bulk of the EW region

Figure 5.9: The relative uncertainty on the luminosities of Fig. 5.8, plotted as a function of the invariant
mass MX and the rapidity y of the final state; the left plots show results for NNPDF3.0 and the right
plots for NNPDF3.1 (upper four rows). The bottom row shows results for the up-antidown luminosity.
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PDFs: DIS vs hadron-hadron

Figure 7.10. Same as Fig. 7.1 now comparing the baseline to PDFs determined from DIS data only, or removing all
HERA data.

82

LHC bringing in more and 
more constraining power, 

but DIS here to stay

HERA legacy dataset: 
•very robust, extremely well-understood dataset. Solid backbone 
•LHC: often more complex observables/analysis, tensions (Z pt, jets…) 
•DIS: QCD theory under better control…



The perturbative expansion in DIS and @LHC

N3LO DIS

Perturbatively very stable!
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Figure 19: The flavour-singlet structure function F2,s(x,Q2) at our standard reference point Q2
0 �

40 GeV2 (left) and at the low scaleQ2
1 � 2 GeV2 (right) up to the third order. All curves have been

normalized to the respective leading-order results F LO
2,s = �e2�qs given by Eqs. (5.3) and (5.6).

The corresponding results for the singlet structure function F2,s at a low scale, Q2
1 � 2 GeV2

with αs = 0.35 and nf = 3 active flavours, are shown in the right part of Fig. 19 for the (again
order-independent, see above) quark and gluon distributions [11, 17]

xqs(x,Q2
1 ) = 0.6 x�0.1(1� x)3 (1+10 x0.8 ) ,

xg(x,Q2
1 ) = 1.2 x�0.1(1� x)4 (1+1.5 x) . (5.6)

If all other parameters were kept equal, the N3LO corrections (with respect to F LO
2,s = �e2� qs as

shown in the figure) would be larger by a factor of about five here simply due to the increase in
the coupling constant. The modified quark and gluon distributions, though, especially their much
flatter small-x behaviour — x�0.1 in Eq. (5.6) instead of x�0.3 in Eq. (5.3), lead to a qualitatively
different pattern at small x. While the three-loop corrections remain below 2% in the range 0.07 <

x < 0.57 and below 10% at 3 · 10�4
< x < 0.73, they rise sharply towards lower x at x <⇠ 10�3.

Consequently, the perturbative expansion of F2,s at low scales appears to be out of control at
x < 10�4. This rise for x ! 0 is very similar to that of FL,s in Ref. [17] where the relative third-
order (N2LO) corrections are however much larger over the full x-range.

Finally we need to address the relative importance of our new three-loop coefficient functions
c(3)

2,i and the yet unknown four-loop splitting functions P(3). Together these two sets of quantities
form the N3LO approximation for F2 once, as usual in order to resum large Q2

/µ2
f logarithms,
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Figure 16: The perturbative expansion of the non-singlet structure function F2,ns up to three loops
(N3LO). On the left all curves are normalized to the leading-order result F LO

2,ns = qns given by
Eq. (5.2), on the right we show the relative effects of the two-loop and three-loop corrections.
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Figure 17: As Fig. 16, but for FL where the terms up to order αn+1
s form the NnLO approximation.

Also here the left plot is normalized to qns, facilitating a direct comparison with F2,ns.
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[Vermaseren,Vogt,Moch 2005]

Marco Bonvini N3LO: DIS prospects and Higgs in pp 9

HIGGS BOSON

▸ Precise measurement 

▸ 3.8 sigma deviation 

▸ 1500 papers about new 
physics on the arXiv 

▸ SM fails

Data Theory
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[Anastasiou et al; Mistlberger]

•In general, perturbative expansion much better behaved in DIS  
•ggH is an extreme case, but larger K-factors at the LHC [→ M. Bonvini’s talk] 
•LHC: more differential, complex observables, often quite delicate 
•Understanding of source of large K-factors not yet fully-satisfactory



The perturbative expansion in DIS and @LHC
Consequences for PDFs

Data set Points NLO �
2
/Npts NNLO �

2
/Npts

DØ W asymmetry 14 0.94 (2.53) 0.86 (14.7)
�tt [93]- [94] 17 1.34 (1.39) 0.85 (0.87)

LHCb 7+8 TeV W + Z [95, 96] 67 1.71 (2.35) 1.48 (1.55)
LHCb 8 TeV Z ! ee [97] 17 2.29 (2.89) 1.54 (1.78)

CMS 8 TeV W [98] 22 1.05 (1.79) 0.58 (1.30)
CMS 7 TeV W + c [99] 10 0.82 (0.85) 0.86 (0.84)

ATLAS 7 TeV jets R = 0.6 [18] 140 1.62 (1.59) 1.59 (1.68)
ATLAS 7 TeV W + Z [20] 61 5.00 (7.62) 1.91 (5.58)

CMS 7 TeV jets R = 0.7 [100] 158 1.27 (1.32) 1.11 (1.17)
ATLAS 8 TeV Z pT [75] 104 2.26 (2.31) 1.81 (1.59)

CMS 8 TeV jets R = 0.7 [101] 174 1.64 (1.73) 1.50 (1.59)
ATLAS 8 TeV tt̄ ! l + j sd [102] 25 1.56 (1.50) 1.02 (1.15)
ATLAS 8 TeV tt̄ ! l

+
l
� sd [103] 5 0.94 (0.82) 0.68 (1.11)

ATLAS 8 TeV high-mass DY [73]s 48 1.79 (1.99) 1.18 (1.26)
ATLAS 8 TeV W

+
W

�+ jets [104] 30 1.13 (1.13) 0.60 (0.57)
CMS 8 TeV (d�t̄t/dpT,tdyt)/�t̄t [105] 15 2.19 (2.20) 1.50 (1.48)

ATLAS 8 TeV W
+
W

� [106] 22 3.85 (13.9) 2.61 (5.25)
CMS 2.76 TeV jets [107] 81 1.53 (1.59) 1.27 (1.39)
CMS 8 TeV �t̄t/dyt [108] 9 1.43 (1.02) 1.47 (2.14)

ATLAS 8 TeV double di↵erential Z [74] 59 2.67 (3.26) 1.45 (5.16)
Total, LHC data in MSHT20 1328 1.79 (2.18) 1.33 (1.77)

Total, non-LHC data in MSHT20 3035 1.13 (1.18) 1.10 (1.18)
Total, all data 4363 1.33 (1.48) 1.17 (1.36)

Table 2: �2/Npts at NLO and NNLO for the fit to the new LHC and Tevatron data included in the
MSHT20 fit. The corresponding fit qualities are also given for the total LHC and non-LHC data included
in MSHT20, as well as the overall fit across all data. In brackets are the predictions obtained using the
MMHT14 PDFs (also at ↵S(M2

Z
) = 0.118).

case of Drell-Yan data, in di↵erent mass bins. For these sets the improvement after refitting

is often considerable, and the prediction from the MMHT14 PDFs can be very poor. The

improvement with refitting for these data sets is mainly achieved by changes in the details of

the flavour content of the quarks and antiquarks. However, overall improvement also results

from changes in the gluon distribution and in the common shape of the quark distributions as

a function of x. In most cases the fit quality is clearly better at NNLO than at NLO, with

the data sensitive to the fine detail of the shape corrections in both the PDFs and the hard

cross sections at NNLO. It is clear from the totals for the LHC and non-LHC data, that the

description of the former is clearly improved from NLO to NNLO, whereas the latter improves

only marginally.

We now discuss individual data sets in turn.
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… but more in general, QCD ``cleaner’’ in DIS



Example of subtleties: CMS jets and NNLO

•CMS 8 TeV dijet data, differential in pt,avg, y*=|Δy|/2 and yb=|y1+y2|/2 

•Strongest constraining power among jets, but strong pull for gluon at x~0.3 

•Tension with legacy DIS/DY → discarded 

•NNPDF4.0: single-differential CMS 8TeV. Underlying TH: best prediction 
available at the time of fitting → NNLOQCD+NP, only leading-colour 
contributions

[Chen, Gehrmann, Glover, Huss, Mo (2022)]

•Recently: full-colour calculations available [Czakon, van Hameren, Mitov, Poncelet 
(2019); Chen, Gehrmann, Glover, Huss, Mo (2022)]
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[→ see talk by J. Mo]



Example of subtleties: CMS jets and NNLO
•Full-colour analysis
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Figure 11. Comparison of the triple di↵erential dijet distributions at leading colour
NNLO⌦NP⌦EW using NNPDF40 nnlo as 01180 (red), NNPDF31 nnlo as 0118 (grey) and
MMHT2014 nnlo (green) as the PDF.

MMHT2014 [81] PDF sets, which were both determined prior to the CMS measurement.

Leading-colour NNLO⌦NP⌦EWK predictions obtained with these three PDFs are com-

pared to the CMS data in Figure 11, illustrating that NNPDF4.0 di↵ers substantially from

the other two PDF sets especially in the tail regions. This pattern is already present in the

predictions at LO and NLO, which are not shown in the figure. The best description of the

data in the low yb bins in terms of shape and normalization is provided by the MMHT2014

PDF set. For the high yb bins MMHT2014 overshoots the data, while the NNPDF sets

describe the data better here, with NNPDF3.1 describing the data especially well in the

low y
⇤ bin. To maintain consistency with the previous sections, and to adhere to the most

up-to-date PDF set, we will nevertheless use the NNPDF4.0 PDFs in the following.

5.2 Results

Full-colour NNLO predictions for the triple di↵erential dijet cross section at 8TeV are

shown in Figure 12, where they are compared to the CMS data [80]. Predictions and data

are normalized to the previously available NLO results, and NP and EWK corrections are

– 18 –

•Sets without CMS8 jet 
data seem to fit better 

•Jury still out, but this 
example shows that the 
LHC can be tricky… 

•General comment: 
robust TH uncertainty in 
the PDFs most welcome 
[→ talks by Z. Kassabov, J. 
McGowan, M. Bonvini]



PDFs: important information still missing
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PARTONIC LUMINOSITIES
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Figure 19. Upper panels: partonic luminosities in pp collisions, as a function of the partonic
invariant mass m, at centre-of-mass energies of 13 TeV (left) and 100 TeV (right). The �� (scaled
by 102), qq̄ and gg luminosities appear from bottom to top. Lower panels: the relative uncertainties
of the luminosities. Our luminosity definition is given in Eq. (11.1).

Figure 20. Momentum fraction (top) and its relative uncertainty (bottom) carried by the photon,
as a function of the factorisation scale µ.

each factor of 10 increase in µ. Eventually, neglecting electroweak corrections, the photon

momentum fraction saturates at a value that is independent of ↵ and ↵s, however this

occurs at trans-Planckian scales.

– 55 –

γγ luminosity is 
about 1000 times 
smaller than  

luminosity
qq̄

10%

High-mass searches require 
large-x PDFs Interesting ideas for constraining 

2nd generation Yukawa require 
good s, c and d̅/d control

[F. Yu (2016)]

UHE neutrinos, prompt ν 
flux → small-x, charm

Any progress in these 
directions welcome



PDFs: also a theory problem…
N3LO PDFs not available → order mismatch

2.2.1.1 Gluon fusion

In this section we document cross section predictions for a standard model Higgs boson produced through
gluon fusion in 27 TeV pp collisions. To derive predictions we include contributions based on pertur-
bative computations of scattering cross sections as studied in Ref. [47]. We include perturbative QCD
corrections through next-to-next-to-next-to-leading order (N3LO), electroweak (EW) and approximated
mixed QCD-electroweak corrections as well as effects of finite quark masses. The only modification
with respect to YR4 [45] is that we now include the exact N3LO heavy top effective theory cross section
of Ref. [48] instead of its previous approximation. The result of this modification is only a small change
in the central values and uncertainties. To derive theoretical uncertainties we follow the prescriptions
outlined in Ref. [47]. We use the following inputs:

ECM 27 TeV
mt(mt) 162.7 GeV
mb(mb) 4.18 GeV

mc(3 GeV) 0.986 GeV
↵S(mZ) 0.118

PDF PDF4LHC15_nnlo_100 [49]

(5)

All quark masses are treated in the MS scheme. To derive numerical predictions we use the program
iHixs [50].

Sources of uncertainty for the inclusive Higgs boson production cross section have been assessed
recently in refs. [47, 51, 52, 45]. Several sources of theoretical uncertainties were identified.
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Fig. 1: The figure shows the linear sum of the different sources of relative uncertainties as a function
of the collider energy. Each coloured band represents the size of one particular source of uncertainty as
described in the text. The component �(PDF+↵S) corresponds to the uncertainties due to our imprecise
knowledge of the strong coupling constant and of parton distribution functions combined in quadrature.

– Missing higher-order effects of QCD corrections beyond N3LO (�(scale)).
– Missing higher-order effects of electroweak and mixed QCD-electroweak corrections at and be-

yond O(↵S↵) (�(EW)).
– Effects due to finite quark masses neglected in QCD corrections beyond NLO (�(t,b,c) and �(1/mt)).
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ggH theory error budget

2019
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Missing N3LO PDFs, as well as αs+PDFs uncertainty: significant

ggH theory error budget

2.2.1.1 Gluon fusion

In this section we document cross section predictions for a standard model Higgs boson produced through
gluon fusion in 27 TeV pp collisions. To derive predictions we include contributions based on pertur-
bative computations of scattering cross sections as studied in Ref. [47]. We include perturbative QCD
corrections through next-to-next-to-next-to-leading order (N3LO), electroweak (EW) and approximated
mixed QCD-electroweak corrections as well as effects of finite quark masses. The only modification
with respect to YR4 [45] is that we now include the exact N3LO heavy top effective theory cross section
of Ref. [48] instead of its previous approximation. The result of this modification is only a small change
in the central values and uncertainties. To derive theoretical uncertainties we follow the prescriptions
outlined in Ref. [47]. We use the following inputs:
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mc(3 GeV) 0.986 GeV
↵S(mZ) 0.118

PDF PDF4LHC15_nnlo_100 [49]

(5)

All quark masses are treated in the MS scheme. To derive numerical predictions we use the program
iHixs [50].

Sources of uncertainty for the inclusive Higgs boson production cross section have been assessed
recently in refs. [47, 51, 52, 45]. Several sources of theoretical uncertainties were identified.
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Fig. 1: The figure shows the linear sum of the different sources of relative uncertainties as a function
of the collider energy. Each coloured band represents the size of one particular source of uncertainty as
described in the text. The component �(PDF+↵S) corresponds to the uncertainties due to our imprecise
knowledge of the strong coupling constant and of parton distribution functions combined in quadrature.

– Missing higher-order effects of QCD corrections beyond N3LO (�(scale)).
– Missing higher-order effects of electroweak and mixed QCD-electroweak corrections at and be-

yond O(↵S↵) (�(EW)).
– Effects due to finite quark masses neglected in QCD corrections beyond NLO (�(t,b,c) and �(1/mt)).
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Inclusive Drell-Yan at N3LO
In the EW region Q~100 GeV: ~2-3% N3LO vs per-mill NNLO

Band only overlap at large Q2 → trouble in the high-precision region?
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of

Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.
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Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content

– 7 –

of the proton into quarks and gluons. If these cancellations play a role in the observed

perturbative convergence pattern, then it implies that one cannot decouple the study of

the perturbative convergence from the structure of the proton encoded in the PDFs. We

will return to this point below, when we discuss the e↵ect of PDFs on our cross section

predictions.
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Figure 5: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 5 shows the production cross section for an o↵-shell W boson normalised to the

prediction at N3LO for a larger range of virtualities (Q  2TeV). We see that for larger

values of the virtuality (Q > 550GeV) the bands derived from scale variation at NNLO

and N3LO start to overlap. We also observe a more typical shrinking of the scale variation

bands as well as a small correction at N3LO.

Figure 6: The cross sections for producing a lepton-neutrino pair via an o↵-shell W boson

as a function of the invariant mass of the final state, or equivalently the virtuality of the

W boson, cf. eq. (2.1).

Figure 6 shows the nominal production cross section of a lepton-neutrino pair at the

LHC at 13 TeV centre of mass energy, as defined in eq. (2.1).

Figure 7 shows the variation of K-factors as a function of the energy of the hadron

collider for Q = 100 GeV. The orange, blue and red bands correspond to predictions

with the perturbative cross section truncated at NLO, NNLO and N3LO, and the size

of the band is obtained by performing a 7-point variation of (µF , µR) around the central

scale µcent = Q. We observe that the NLO, NNLO and N3LO K-factors are relatively

independent of the centre of mass energy. Furthermore, we see that the bands due to scale

– 8 –
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Neutral-current DY: flavour decomposition
Per-mille NNLO: unnaturally small. Very large cancellations

5

FIG. 3 Dependence of the cross section on either µF or µR with the other scale held fixed.

the two. Finally, we believe that our findings warrant
a critical revision of the strategy to assess perturbative
uncertainties and the consequences thereof on PDF de-
termination etc.
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•Individual channels (μ=Q) much larger than 
final result, delicate cancellation pattern 

•Individual channels: perturbative convergence 

•N3LO ``natural’’, tiny PDFs changes can 
significantly affect this picture



N3LO PDFs issues: evolution
N3LO: evolution and the problems of small-x

NNLO: an issue at low-mass, not quite so at the EW scale. N3LO?

• How dangerous is the spurious N3LO growth? 
• Are subleading terms under control? 
• To which extent DGLAP evolution washes out small-x effects? 
• Control-sample with effectively no evolution (i.e. DIS vs LHC-only fits)?
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Spurious leading pole in 0, starting at N3LO (vs pole at N~0.3). 

Is this an issue for precision physics (at the EW scale and beyond)?
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Small-x physics and high-energy colliders
Proper understanding of small-x crucial for precision 

EW physics at future hadron colliders 2
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FIG. 1. All-order e↵ects on the Higgs cross section computed at N3LO, as a function of
p
s. The plot of the left shows the

impact of small-x resummation, while the one of the right of large-x resummation. The bands represent PDF uncertainties.

and at small-x [90, 91]. This opens up the possibility of
achieving fully consistent resummed results. While we
presently concentrate on the Higgs production cross sec-
tion, our technique is fully general and can be applied
to other important processes, such as the Drell-Yan pro-
cess or heavy-quark production. We leave further phe-
nomenological analyses to future work.

Let us start our discussion by introducing the factor-
ized Higgs production cross section
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where �0 is the lowest-order partonic cross section, Lij

are parton luminosities (convolutions of PDFs), Cij are
the perturbative partonic coe�cient functions, ⌧ = m2

H
/s

is the squared ratio between the Higgs mass and the col-
lider center-of-mass energy, and the sum runs over all
parton flavors. Henceforth, we suppress the dependence
on renormalization and factorization scales µR, µF. More-
over, because the Higgs couples to the gluon via a heavy-
flavor loop, (1) also implicitly depends on any heavy vir-
tual particle mass.

The general method to consistently combine large-
and small-x resummation of partonic coe�cient functions
Cij(x,↵s) was developed in [86]. The basic principle is
the definition of each resummation such that they do
not interfere with each other. This statement can be
made more precise by considering Mellin (N) moments
of (1). The key observation is that while in momen-
tum (x) space coe�cient functions are distributions, their
Mellin moments are analytic functions of the complex
variable N and therefore, they are (in principle) fully de-
termined by the knowledge of their singularities. Thus,
high-energy and threshold resummations are consistently

combined if they mutually respect their singularity struc-
ture. In [86], where an approximate N3LO result for Cij

was obtained by expanding both resummations to O(↵3
s),

the definition of the large-x logarithms from threshold re-
summation was improved in order to satisfy the desired
behavior, and later this improvement was extended to
all orders in [45], leading to the so-called  -soft resum-
mation scheme. Thanks to these developments, double-
resummed partonic coe�cient functions can be simply
written as the sum of three terms [92]

Cij(x,↵s) = Cfo
ij (x,↵s)+�C lx

ij (x,↵s)+�Csx
ij (x,↵s), (2)

where the first term is the fixed-order calculation, the
second one is the threshold-resummed  -soft contribu-
tion minus its expansion (to avoid double counting with
the fixed-order), and the third one is the resummation of
small-x contributions, again minus its expansion. Note
that not all partonic channels contribute to all terms
in (2). For instance, the qg contribution is power-
suppressed at threshold but it does exhibit logarithmic
enhancement at small x.
Our result brings together the highest possible accu-

racy in all three contributions. The fixed-order piece is
N3LO [18–22], supplemented with the correct small-x be-
havior, as implemented in the public code ggHiggs [49,
86, 93]. Threshold-enhanced contributions are accounted
for to next-to-next-to-next-to-leading logarithmic accu-
racy (N3LL) in the  -soft scheme, as implemented in
the public code TROLL [45, 49]. Finally, for high-energy
resummation we consider the resummation of the lead-
ing non-vanishing tower of logarithms (here LLx) to the
coe�cient functions [63, 84], which we have now imple-
mented in the code HELL [87, 88]. The technical details
of the implementation will be presented elsewhere [94].
Additionally, on top of scale variations, subleading terms
can be varied in both resummed contributions, thus al-

[Bonvini, Marzani (2018)]

What is the impact of 
sub-leading terms? 

How robust is this 
picture?



Small-x physics: beyond standard evolution
Small-x physics extremely interesting in its own merit. 

QCD in a new regime

•A lot of recent progress towards 
making predictions more precise and 
accurate → see B. Xiao’s talk  

•Effects larger in pA, A1/3 enhancement of 
the saturation scale 

•Also can be studied from diffraction, in a 
relative clean fashion [see E. Iancu’s talk]
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Figure 2.1: Schematic picture of parton saturation

in the large-Nc (see Appendix A) approximation and at leading log 1/x [7]. In
the large-Nc limit the Balitsky hierarchy decouples and its first term reduces to
the Kovchegov equation. Thus, this equation is usually referred as the Balitsy-
Kovchegov (BK) equation. An alternative approach is the Jalilian-Marian-Iancu-
McLerran-Weigert-Kovner-Leonidov (JIMWKL) hierarchy [6], that describes the
change of the correlation functions of the colour charge density in the hadron
wavefunction. This equation can be derived in the Color-Glass-Condensate (CGC)
approach, an effective theory in which one consider the radiation of soft gluons in
a strong background field. In the large Nc the JIMWKL hierarchy decouples and
becomes equivalent to the BK equation.

An exhaustive presentation of all these derivation goes beyond the scope of
this thesis. In the following we will limit ourselves to the Kovchegov theory, which
is by far the simplest and it is model independent. Moreover, its link with the
BFKL theory is transparent. To see this, we must derive the BFKL equation in
the colour dipole formalism [21]. This part is hence organised as follows. In section
2.2 we introduce the colour dipole approach to DIS and within that context we
give a precise definition of geometric scaling. Then in section 2.3 we use the dipole
formalism to derive the BFKL equation and we evaluate the leading order kernel.
This derivation is generalized in section 2.4 to multiple interactions, leading to

Can we study the onset of saturation and its connection to (resummed) DGLAP 
with as little modelling as possible, in a clean (=protons, perturbative) setting?



Beyond PDFs: TMDs

A lot of progress… In a nutshell 
•better determinations 
•better theoretical understanding (from phenomenological models to first principles)

Understanding the intrinsic transverse momentum of partons plays an important 
role for highest-precision LHC studies…



Beyond PDFs: TMDs and the W mass
Legacy LHC measurement: W mass.  
• Best handle at the LHC: W transverse momentum distribution 
• Require (sub) per-mill control over pt spectra → impossible theoretically 
• Idea: calibrate Z using data, only need to control differences between Z and W → PDFs, EW 
• Few per-mill distortion of spectra ↔ O(10 MeV) shift in mW 

• Right now: ΔmW,ATLAS = ~19 MeV [CDF: ~10 MeV, EW precision: ~8 MeV]

Good control of flavour-dependence of intrinsic kt crucial → TMD• Take the “Z-equivalent” flavour-dependent 
parameter sets and compute low-statistics (135M) 
mT, pTl, pTn distributions


➡ pseudodata


• Take the flavour-independent parameter set and 
compute high-statistics (750M) mT, pTl, pTn  
distributions for 30 different values of MW


➡  templates 

• perform the template fit procedure and compute 
the shifts induced by flavour effects


• transverse mass: zero or few MeV shifts, generally 
favouring lower values for W- (preferred by EW fit)


• lepton pt: quite important shifts (envelope up to 15 
MeV)


• neutrino pt: same order of magnitude (or bigger) as 
lepton pt 

Impact on the determination of MW

NLL+LO QCD analysis obtained through a modified version of the 

DYRes code [Catani, deFlorian, Ferrera, Grazzini (2015)]


Statistical uncertainty: 2.5 MeV
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FIG. 5: Shifts induced on mW by the choice of di↵erent PDF sets, obtained through a template-fit performed on the
transverse mass mT (left) and the lepton pT (right) observables (figure from Ref. [39]).

In order to estimate the impact of the flavour dependence, it is necessary to first identify the “Z-equivalent”
sets of parameters, i.e., those sets in agreement with the Z transverse momentum distribution measured at hadron
colliders. To this extent:

• a single flavour-independent (i.e., using a version of Eq. (6) without a-dependence) qT -spectrum for the Z
boson is produced based on the parameters presented in Ref. [22];

• each bin of this flavour-independent spectrum is assigned an uncertainty equal to the one quoted by the CDF

and ATLAS experiments;

• several flavour-dependent sets for ga in Eq. (6) are generated randomly within a variation range consistent
with the information obtained in previous TMD fits (in particular, taking into account the estimate for the
flavour-independent contribution to the non-perturbative part of the evolution obtained in Ref. [22]);

• a flavour-dependent set is defined “Z-equivalent” if the associated qT spectrum for the Z has a ��2
 1 with

respect to one generated by the flavour-independent set.

The flavour-dependent sets for CDF and ATLAS who pass this filter are treated as the pseudodata of the template-fit
procedure, while the flavour-independent one is used for the generation of the templates at high statistics. The
number of events corresponds to 135M for the pseudodata and 750M for the templates. Only 9 sets out of the 30
ones which are “Z-equivalent” both with respect to CDF and ATLAS uncertainties have been investigated. The values
of the flavour-dependent parameters for each set are given in Tab. II. A summary of the shifts obtained through
this procedure is given in Tab. III.

Set uv dv us ds s
1 0.34 0.26 0.46 0.59 0.32
2 0.34 0.46 0.56 0.32 0.51
3 0.55 0.34 0.33 0.55 0.30
4 0.53 0.49 0.37 0.22 0.52
5 0.42 0.38 0.29 0.57 0.27
6 0.40 0.52 0.46 0.54 0.21
7 0.22 0.21 0.40 0.46 0.49
8 0.53 0.31 0.59 0.54 0.33
9 0.46 0.46 0.58 0.40 0.28

TABLE II: Values of the gaNP parameter in Eq. 6 for the flavours a = uv, dv, us, ds, s = c = b = g. Units are GeV2.

The statistical uncertainty of the template-fit procedure has been estimated by considering statistically equivalent
those templates for which ��2 = �2

��2
min  1. Overall, the quoted statistical uncertainty on the results in Tab. III

is ±2.5 MeV.
Being the transverse mass mildly sensitive to the modeling of the W± transverse momentum, the corresponding

shifts are compatible with zero considering the statistical uncertainty of the template-fit procedure. On the contrary,

1

�MW+ �MW�

Set mT pT ` pT⌫ mT pT ` pT⌫

1 0 -1 -2 -2 3 -3

2 0 -6 0 -2 0 -5

3 -1 9 0 -2 4 -10

4 0 0 -2 -2 -4 -10

5 0 4 1 -1 -3 -6

6 1 0 2 -1 4 -4

7 2 -1 2 -1 0 -8

8 0 2 8 1 7 8

9 0 4 -3 -1 0 7

TABLE I: ATLAS 7 TeV

�MW+ �MW�

Set mT pT ` pT⌫ mT pT ` pT⌫

1 0 -1 -2 -2 3 -3

2 0 -6 0 -2 0 -5

3 -1 9 0 -2 4 -10

4 0 0 -2 -2 -4 -10

5 0 4 1 -1 -3 -6

6 1 0 2 -1 4 -4

7 2 -1 2 -1 0 -8

8 0 2 8 1 7 8

9 0 4 -3 -1 0 7

TABLE II: LHCb 13 TeV

1

�MW+ �MW�

Set mT pT ` pT⌫ mT pT ` pT⌫

1 0 -1 -2 -2 3 -3

2 0 -6 0 -2 0 -5

3 -1 9 0 -2 -4 -10

4 0 0 -2 -2 -4 -10

5 0 4 1 -1 -3 -6

6 1 0 2 -1 4 -4

7 2 -1 2 -1 0 -8

8 0 2 8 1 7 8

9 0 4 -3 -1 0 7

TABLE I: ATLAS 7 TeV

�MW+ �MW�

Set mT pT ` pT⌫ mT pT ` pT⌫

1 -1 -5 7 -1 -3 8

2 -1 -15 6 0 5 10

3 -1 1 8 -1 -7 5

4 -1 -15 6 0 -4 5

5 -1 -4 6 -1 -7 5

6 -1 -5 7 0 2 9

7 -1 -15 6 -1 -6 5

8 -1 0 8 0 3 10

9 -1 -7 7 0 4 10

TABLE II: LHCb 13 TeV
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] •Shifts uncomfortably large… 

•Better control would be very welcome 

•… especially after the CDF new 
measurement



Towards a 3D image of the protonNext Step in High-Energy Scattering:
Going 3D
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Eventually, we want to map the 
full 3D structure of the proton → 
Wigner’s functions

Interesting in its own merit, but in the long run may be important for general 
studies at hadron colliders, beyond QCD 
• PS, bread and butter of colliders, are getting better and better = under quantifiable 

theoretical control [→ see M. Dasgupta’s talk] 

• Non-perturbative bit still from phenomenological models. Ideally, rely less and less on 
models, and more and more on data 

• Example: MPI. VBF Higgs: +5% at low pt [NNLO QCD: 4-7%] 
• Still very far from tomography-informed MPI, but a lot of progress on tomography 

expected from the EIC…



DIS and HEP theory

•The simplest, yet non-trivial example of hadron collider 
•Many techniques developed for DIS then successfully applied to the LHC 
•Crucial results in pQCD [QCD evolution…] 
•Tools [nested sums, iterated integrals…] widely used for state-of-the-art 

calculations 
•Clean settings for NP studies, solid grounds in QFT (this is less the case for 

hadron-hadron colliders…)



DIS: the first N3LO inclusive calculation…
N3LO DIS

Perturbatively very stable!
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Figure 19: The flavour-singlet structure function F2,s(x,Q2) at our standard reference point Q2
0 �

40 GeV2 (left) and at the low scaleQ2
1 � 2 GeV2 (right) up to the third order. All curves have been

normalized to the respective leading-order results F LO
2,s = �e2�qs given by Eqs. (5.3) and (5.6).

The corresponding results for the singlet structure function F2,s at a low scale, Q2
1 � 2 GeV2

with αs = 0.35 and nf = 3 active flavours, are shown in the right part of Fig. 19 for the (again
order-independent, see above) quark and gluon distributions [11, 17]

xqs(x,Q2
1 ) = 0.6 x�0.1(1� x)3 (1+10 x0.8 ) ,

xg(x,Q2
1 ) = 1.2 x�0.1(1� x)4 (1+1.5 x) . (5.6)

If all other parameters were kept equal, the N3LO corrections (with respect to F LO
2,s = �e2� qs as

shown in the figure) would be larger by a factor of about five here simply due to the increase in
the coupling constant. The modified quark and gluon distributions, though, especially their much
flatter small-x behaviour — x�0.1 in Eq. (5.6) instead of x�0.3 in Eq. (5.3), lead to a qualitatively
different pattern at small x. While the three-loop corrections remain below 2% in the range 0.07 <

x < 0.57 and below 10% at 3 · 10�4
< x < 0.73, they rise sharply towards lower x at x <⇠ 10�3.

Consequently, the perturbative expansion of F2,s at low scales appears to be out of control at
x < 10�4. This rise for x ! 0 is very similar to that of FL,s in Ref. [17] where the relative third-
order (N2LO) corrections are however much larger over the full x-range.

Finally we need to address the relative importance of our new three-loop coefficient functions
c(3)

2,i and the yet unknown four-loop splitting functions P(3). Together these two sets of quantities
form the N3LO approximation for F2 once, as usual in order to resum large Q2

/µ2
f logarithms,
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Figure 16: The perturbative expansion of the non-singlet structure function F2,ns up to three loops
(N3LO). On the left all curves are normalized to the leading-order result F LO

2,ns = qns given by
Eq. (5.2), on the right we show the relative effects of the two-loop and three-loop corrections.
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[Vermaseren,Vogt,Moch 2005]

Marco Bonvini N3LO: DIS prospects and Higgs in pp 9

•Good perturbative convergence (away from small-x) 

•Naive αs power counting works well 

•Crucial for high-precision fits

[Moch,Vermaseren,Vogt (2005)]



DIS: … and the first fully-exclusive one4
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Figure 2. Predictions at LO (blue left-hatched), NLO (green right-hatched), NNLO (orange left-hatched) and N3LO (red cross-
hatched) are compared to ZEUS data from Ref. [45] for Q2, ⌘j , E

T
j and Bjorken-x for single jet production in e+p collisions.

The bands correspond to scale uncertainties as described in the main text.

servables at a future LHeC collider [41] and constitutes
an important step to a fully di↵erential N3LO calculation
of vector-boson fusion Higgs production at the LHC.
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•Also in this case good convergence 

•Testing grounds for similar calculations at hadron colliders



DIS in disguise: VBF@LHC
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•Double-DIS approximation very good



DIS in disguise: VBF@LHC

•Double-DIS approximation very good… although careful at Glauber phases, 
π2/Nc2 is not small [Melnikov, Penin (2019)]

Using DIS in a clever way:
4
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FIG. 2: From left to right, di↵erential cross sections for the transverse momentum distributions for the two leading jets, pt,j1
and pt,j2 , for the Higgs boson, pt,H , and the distribution for the rapidity separation between the two leading jets, �yj1,j2 .

interpretation is that since NNLO e↵ects redistribute jets
from higher to lower pt’s (cf. the plots for pt,j1 and pt,j2),
they reduce the cross section for any observable defined
with VBF cuts. As pt,H grows larger, the forward jets
tend naturally to get harder and so automatically pass
the pt thresholds, reducing the impact of NNLO terms.

As observed above for the total cross section with VBF
cuts, the NNLO di↵erential corrections are sizeable and
often outside the uncertainty band suggested by NLO
scale variation. One reason for this might be that NLO
is the first order where the non-inclusiveness of the jet
definition matters, e.g. radiation outside the cone modi-
fies the cross section. Thus NLO is, in e↵ect, a leading-
order calculation for the exclusive corrections, with all
associated limitations.

To further understand the size of the NNLO correc-
tions, it is instructive to examine a NLO plus parton
shower (NLOPS) calculation, since the parton shower
will include some approximation of the NNLO correc-
tions. For this purpose we have used the POWHEG VBF
H+2-jet calculation [20], showered with PYTHIA version
6.428 with the Perugia 2012 tune [35]. The POWHEG part
of this NLOPS calculation uses the same PDF, scale
choices and electroweak parameters as our full NNLO
calculation. The NLOPS results are included in Fig. 2,
at parton level, with multi-parton interactions (MPI)
switched o↵. They di↵er from the NLO by an amount
that is of a similar order of magnitude to the NNLO
e↵ects. This lends support to our interpretation that fi-
nal (and initial)-state radiation from the hard partons
is responsible for a substantial part of the NNLO correc-
tions. However, while the NLOPS calculation reproduces
the shape of the NNLO corrections for some observables

(especially pt,H), there are others for which this is not
the case, the most striking being perhaps �yj1,j2 . Par-
ton shower e↵ects were also studied in Ref. [36], using
the MC@NLO approach [37]. Various parton showers
di↵ered there by up to about 10%.

In addition to the NNLO contributions, precise phe-
nomenological studies require the inclusion of EW con-
tributions and non-perturbative hadronisation and MPI
corrections. The former are of the same order of magni-
tude as our NNLO corrections [13]. Using Pythia 6.428
and Pythia 8.185 we find that hadronisation corrections
are between �2 and 0%, while MPI brings up to +5%
at low pt’s. The small hadronisation corrections appear
to be due to a partial cancellation between shifts in pt

and rapidity. We leave a combined study of all e↵ects
to future work. The code for our calculation will also be
made public.

With the calculation presented in this letter, di↵er-
ential VBF Higgs production has been brought to the
same NNLO level of accuracy that has been available for
some time now for the ggH [38, 39] and VH [40] produc-
tion channels. This constitutes the first fully di↵erential
NNLO 2 ! 3 hadron-collider calculation, an advance
made possible thanks to the factorisable nature of the
process. The NNLO corrections are non-negligible, 4–
7%, almost an order of magnitude larger than the cor-
rections to the inclusive cross section. Their size might
even motivate a calculation one order higher, to N3LO,
to match the precision achieved recently for the ggH to-
tal cross section [41]. With the new “projection-to-Born”
approach introduced here, we believe that this is within
reach. It would also be of interest to obtain NNLO plus
parton shower predictions, again matching the accuracy

3

FIG. 2. Estimate of the impact of missing higher orders cor-
rections in PDFs, using equations (4) and (6) with Q0 = 5, 8
and 10 GeV.

The uncertainty estimates obtained with the two di↵er-
ent methods described by equations (4) and (6) is shown
in figure 2 as a function of center-of-mass energy, and for
a range of Q0 values.

One should note that the uncertainty estimates given
in equations (4) and (6) do not include what is usually re-
ferred to as PDF uncertainties. While we are here calcu-
lating missing higher order uncertainties to NNLO PDF
sets, typical PDF uncertainties correspond to uncertain-
ties due to errors on the experimental data and limita-
tions of the fitting procedure. These can be evaluated for
example with the PDF4LHC15 prescription [21], and are
of about 2% at 13 TeV, which is larger than the correc-
tions discussed above. One can also combine them with
↵s uncertainties, which are at the 5h level.

Let us now discuss in more detail phenomenological
consequences of the N3LO corrections to VBF Higgs pro-
duction. We present results for a wide range of energies
in proton-proton collisions. The central factorisation and
renormalisation scales are set to the squared momentum
of the corresponding vector boson. To estimate miss-
ing higher-order uncertainties, we use a seven-point scale
variation, varying the scales by a factor two up and down
while keeping 0.5 < µR/µF < 2

µR,i = ⇠µRQi , µF,i = ⇠µFQi , (7)

where ⇠µR , ⇠µF 2
�

1

2
, 1, 2

 
and i = 1, 2 corresponds to

the upper and lower hadronic sectors.
Our implementation of the calculation is based on the

inclusive part of proVBFH which was originally developed
for the di↵erential NNLO VBF calculation [9]. We have
used the phase space from POWHEG’s two-jet VBF Higgs
calculation [22]. The matrix element is derived from
structure functions obtained with the parametrised DIS
coe�cient functions [13, 14, 16, 23–29], evaluated using
HOPPET v1.2.0-devel [30].
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FIG. 3. Dependence of the cross section on the renormali-
sation and factorisation scales for each order in perturbation
theory.

For our computational setup, we use a diagonal CKM
matrix with five light flavours ignoring top-quarks in
the internal lines and final states. Full Breit-Wigner
propagators for the W , Z and the narrow-width ap-
proximation for the Higgs boson are applied. We use
the PDF4LHC15 nnlo mc PDF [21, 31–33] and four-loop
evolution of the strong coupling, taking as our initial con-
dition ↵s(MZ) = 0.118. We set the Higgs mass to MH =
125.09 GeV, in accordance with the experimentally mea-
sured value [34]. Electroweak parameters are obtained
from their PDG [35] values and tree-level electroweak re-
lations. As inputs we use MW = 80.385 GeV, MZ =
91.1876 GeV and GF = 1.16637⇥ 10�5 GeV�2. For the
widths of the vector bosons we use �W = 2.085 GeV and
�Z = 2.4952 GeV.
To study the convergence of the perturbative series, we

show in figure 3 the inclusive cross section obtained at 13
TeV with µR = µF = ⇠Q for ⇠ 2 [1/4, 4]. Here we observe
that at N3LO the scale dependence becomes extremely
flat over the full range of renormalisation and factorisa-
tion scales. We note that similarly to the results obtained
in the the gluon-fusion channel [12], the convergence im-
proves significantly at N3LO, with the N3LO prediction
being well inside of the NNLO uncertainty band, while
at lower orders there is a pattern of limited overlap of
theoretical uncertainties.

In figure 4 (left), we give the cross section as a func-
tion of center-of-mass energy. We see that at N3LO the
convergence of the perturbative series is very stable, with
corrections of about 1h on the NNLO result. The scale
uncertainty is dramatically reduced, going at 13 TeV
from 7h at NNLO to 1.4h at N3LO. A detailed break-
down of the cross section and scale uncertainty obtained
at each order in QCD is given in table I for

p
s = 13, 14

and 100 TeV.
The center and right plots of figure 4 show the Higgs

transverse momentum and rapidity distributions at each
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[Dreyer, Karlberg (2016)]

NNLO exclusive
N3LO inclusive



DIS in disguise: t-channel single top

•Double-DIS approximation very good… although careful at Glauber phases, 
π2/Nc2 is not small [→ see C. Brønnum-Hansen’s talk]

A similar argument holds for t-channel single-top

•Also requires massless → massive DIS transitions [Berger, Gao, Li, Liu, Zhu (2016)]

3

verse mass HT = (m2
t + p

2

T,top)
1/2. The scale choice with

transverse mass can further stabilize predictions in the
tail at high pT , in qualitative agreement with the obser-
vation in Ref. [10], namely the collinear logarithm grows
with the center of mass energy of the hadronic system in
the heavy-quark line.

Dependence of the ratios on scale choice in 4FS is seen
most significantly for the overall normalizations similar
to that in Fig. 1. NLO corrections in the 4FS have less
impact on the shape of the distributions especially with
the choice of larger scales.
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FIG. 2. Di↵erential distribution in transverse momentum of
a top quark at 13 TeV. (a): normalized cross sections with
the nominal scale choices for both schemes (note below the
horizontal dashed line, a di↵erent linear scale is used); (b) and
(c): ratio of NNLO(NLO) to the respective NLO(LO) predic-
tions of absolute cross sections with various scale choices in
5FS(4FS).

We turn next to a direct comparison of predictions
of kinematic distributions at the highest order of each
scheme. The normalized distribution on the transverse
momentum of the top quark is shown in Fig. 3 (a). We
normalize the distribution to the individual total cross
sections in order to concentrate on the shape of the dis-
tribution. For each distribution we plot ratios of the
NNLO predictions in 5FS and NLO predictions in 4FS
to a common reference of NNLO prediction in 5FS with
the nominal scale choice µ5F = mt/4. We find remark-
able agreement in shapes between the two schemes at a

level of a few percent for the kinematic region in trans-
verse momentum considered. The principal di↵erences
are seen close to the boundary of phase space, e.g., at
the smallest and highest transverse momenta. The pre-
diction of the two schemes di↵er by at most 2% for the
nominal scale choices. The spread of all predictions is
within 5% even if alternative scale choices of µ5F = mt/2
and µ4F = mt/2 are chosen.
A similar comparison for the absolute distributions and

for an extended pT range is shown in Fig. 3 (b). It is in-
teresting that the two schemes converge in the tail region
of large transverse momentum, and that the normaliza-
tion of the 4FS is o↵ exactly in the region sensitive to
resummed contributions from higher orders. For the ra-
pidity distribution, the spread of all predictions is at the
permille level up to a rapidity value of 2.4, and increases
to at most 2% for larger values. This occurs because at
high rapidities NNLO corrections from the light quark
line become significant and are only included in the 5FS
calculations.

FIG. 3. Comparisons of the transverse momentum of the top
quark at 13 TeV for NNLO(NLO) predictions in 5FS(4FS),
presented as ratios to a common reference, for normalized and
absolute distributions in (a) and (b) respectively.

We further consider the e↵ects on the transverse mo-
mentum distribution of independent variations of the
renormalization scale (µr) and the factorization scale
(µf ). In Fig. 4(a) we plot ratios of the predictions to
those with the nominal scale choice when µr or µf is in-

results for top anti-quark production at the LHC. Conclusions concerning the size of QCD

corrections and scale variations are similar to those for the top quark.

We display the sum and ratio of the top quark and anti-quark production cross sections

in Fig. 14 and Fig. 15, for 7 and 8 TeV with the scale on left-vertical axis, and 13 and 14

TeV with the scale on right-vertical axis. In both figures the scale variations are calculated

by setting scales in top quark and anti-quark production be the same and changing them

simultaneously. The behavior can be understood inasmuch as the QCD corrections in top

quark and anti-quark production are strongly correlated, as shown in Figs. 12 and 13. The

cross section ratios in Fig. 15 are rather stable against QCD corrections. They change by at

most 1% from LO to NNLO if the same PDFs are used. The di↵erences induced by PDFs at

di↵erent orders are larger than the QCD corrections in general. For completeness we provide

numerical values of predictions with CT14 NNLO PDFs in Table 1.
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Figure 12: Inclusive cross sections for t-channel single top quark production at LO, NLO

and NNLO with CT14 NNLO PDFs (left) and CT14 PDFs at same order (right), at the LHC

with di↵erent center of mass energies. Error bars represent scale uncertainties obtained by

varying the renormalization and factorization scale from µF = µR = mt/2 to 2mt.

We show dependence of the total inclusive cross sections and their ratios on di↵erent

choices of PDFs in Figs. 16 and 17, all calculated at NNLO and with NNLO PDFs. The

PDFs sets include CT14 [91], MMHT2014 [92], and NNPDF3.0 [93], all with ↵s(MZ) =

0.118, and ABM12 [94] with the default ↵s(MZ) values. The error bars represent the 1�

PDF uncertainties of individual groups. The MMHT2014 results have the smallest PDF

uncertainties among all groups. The spread of predictions from di↵erent PDFs are especially

large for the top anti-quark production. The spread can reach more than 10%, as shown

– 20 –

[Berger, Gao + Yuan, Zhu (2016-20)]



Non-linear evolution in disguise
•Unitarity: parton evolution ↔ forward scattering of elastic amplitudes

•High-enough logarithmic order: sensitive to full Balitsky-JIMWLK evolution

64 High energy QCD

Now we are ready to state the main result of the dipole approach to BFKL.
Define

nk (b0, ξ0, ξ, b1, b2, ..., bk) =
δkZ(b0, ξ0, ξ, u

δu(b1)δu(b2)...δu(bk)

∣∣∣∣
u=1

, (2.47)

then nk represents the inclusive probability for the process b0 → b1 +b2 + ...+bk,
obtained through an evolution in rapidity. Here inclusive means that we sum over
all the possible dipole emissions.

Let us now go back to gluon-language. Then nk gives the probability that a
gluon b0 of rapidity ξ0 evolves to a collection of k gluons with rapidities ξ0 < ξi ≤ ξ
through all the possible intermediate emissions of gluons. In particular, note that
n1 is nothing but our resummed gluon ladder! Moreover, this is exactly our ladder,
hence in this case the large Nc limit is not an approximation.
In Fig. 2.14 we show some of the typical Feynman graphs resummed by nk. These
diagrams are usually referred as fan graphs.

Representation of n1, n2, n3. The yellow blob is the BFKL kernel Γ.

Figure 2.14: Ladder and fan graphs
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Gauge theory amplitudes Regge limit Amplitudes @ NNLL IR factorisation Conclusion

Structure of the Multi-Reggeon exchanges

If we restrict to NNLL in the amplitudes

The emission of more than 3 Reggeons is forbidden

NLO corrections to Ĥ do not contribute to the NNLL

Ĥ3!1 or Ĥ1!3 can be applied at most twice

To all loop orders, M̂(�,NNLL) is the sum of

3 ! 3

h j3|
�
Ĥ3!3

�
k |i3i

3 ! 3

3 ! 1

h j1|Ĥ3!1

�
Ĥ3!3

�
k |i3i

1 ! 3

3 ! 3

3 ! 1

h j1|Ĥ3!1

�
Ĥ3!3

�
k
Ĥ1!3|i1i

Giulio Falcioni University of Edinburgh

Gauge theory scattering amplitudes in the high-energy limit

[formalism spelled out in Caron-Huot (2013) + del Duca, Falcioni, Gardi, Maher, Milloy, Vernazza (2013-2022); 
Fadin, Lipatov (2018)]



Non-linear evolution in disguise
•2→2 QCD scattering amplitudes@3L recently computed [Chakraborty, Gambuti, von 

Manteuffel, Tancredi, FC (2021)]

Can test Regge factorisation at NNLL

5

at NLL/NNLL for the even/odd amplitude), the problem
simplifies dramatically. Indeed, this case can be dealt
with using LO BFKL theory [69, 73–76].

The only missing ingredient to fully characterize the
signature even/odd amplitudes at NLL/NNLL and test
Regge factorisation to this accuracy is the three-loop
gluon Regge trajectory. Currently, it is only known in
N = 4 SYM [14, 16], and in pure gluodynamics under
some assumptions on the trajectory itself [15, 17]. The
three-loop calculation presented in this letter allows us
to extract the trajectory in full QCD, closing this gap.

Before presenting our results, we note that the defini-
tion itself of a Regge trajectory is subtle at NNLL [16, 74–
76]. In this letter, for definiteness we follow the “Regge-
cut” scheme of ref. [16]. In particular, we write1

Hren,± = Z2
g eLT2

t⌧g

3X

n=0

↵̄n
s

nX

k=0

Lk
O

±,(n)
k H(0)

ren, (26)

where ⌧g =
P

n=1 ↵̄
n
s ⌧n is the gluon Regge trajectory

and Zg =
P

n=0 ↵̄
n
sZ

(n)
g is a scalar factor accounting for

collinear singularities [74] whose explicit value is given
in the Supplemental Material. The non-vanishing odd

signature color operators O�,(n)
k read up to NNLL [74]

O
�,(0)
0 = 1, O

�,(1)
0 = 2Ig

1 , (27)

O
�,(2)
0 =

h
2Ig

2 + (Ig
1 )

2
i
+ C�,(2)[(T2

s�u)
2 � N2

c
4 ],

O
�,(3)
1 = C�,(3)

1 T2
s�u[T

2
t ,T

2
s�u] + C�,(3)

2 [T2
t ,T

2
s�u]T

2
s�u,

while the even signature ones are up to NLL [74]

O
+,(1)
0 = i⇡ C+,(1) T2

s�u, O
+,(2)
1 = i⇡ C+,(2) [T2

t ,T
2
s�u],

O
+,(3)
2 = i⇡ C+,(3) [T2

t , [T
2
t ,T

2
s�u]]. (28)

In these equations, the coe�cients C±,(L) describe the
Regge cut contribution and are known [73, 74]. Ig

j are
the perturbative expansion coe�cients of the gluon im-
pact factor and can be extracted from a one- and two-loop
calculation [27]. For convenience, we report both C±,(L)

and Ig
1,2 in the Supplemental Material. As we noted ear-

lier, the NNLL Regge trajectory instead requires a full
three-loop calculation. To present our result for it, we
define

K(↵s(µ)) = �1

4

Z µ2

1

d�2

�2
�K

�
↵s(�

2)
�
, (29)

together with its perturbative expansion K =P
n=1 Ki↵̄i

s whose coe�cients are given in Supplemental

1 In this section, we set the renormalization scale to µ2 = �t.

Material. The expansion coe�cients of the gluon Regge
trajectory ⌧i can then be written as

⌧1 = K1 +O(✏),

⌧2 = K2 �
56nf

27
+Nc

✓
404

27
� 2⇣3

◆
+O(✏),

⌧3 = K3 +N2
c

✓
16⇣5 +

40⇣2⇣3
3

� 77⇣4
3

� 6664⇣3
27

� 3196⇣2
81

+
297029

1458

◆
+

nf

Nc

✓
�4⇣4 �

76⇣3
9

+
1711

108

◆

+Ncnf

✓
412⇣2
81

+
2⇣4
3

+
632⇣3
9

� 171449

2916

◆

+ n2
f

✓
928

729
� 128⇣3

27

◆
+O(✏), (30)

where the higher orders in ✏ can be found in the Supple-
mental material. As expected, the nf -independent part
of the trajectory agrees with ref. [17]. Also, the highest
transcendental-weight terms of our result agree with the
N = 4 SYM result [14, 16], as predicted by the maxi-
mal transcendentality principle [77–80]. On its own, the
result (30) is not particularly illuminating. However, we
have found the same trajectory using both the calcula-
tion outlined in this letter and our previous qq0 ! qq0

three-loop calculation [19]. This provides an impor-
tant test of QCD Regge factorisation at the three-loop
level. We also stress that now all the ingredients for
a NLL/NNLL analysis of the signature-even/odd elastic
amplitudes are known. In particular, we can now fully
predict the yet unknown qg ! qg three-loop amplitude
to NNLL accuracy. Explicitly checking these predictions
against a full calculation will provide a highly non-trivial
test of the universality of Regge factorisation in QCD.

CONCLUSION

In this letter we have presented the first computation
of the helicity amplitudes for the scattering of four glu-
ons up to three loops in full QCD. We obtained compact
results for the finite part of all independent helicity
configurations in terms of harmonic polylogarithms up
to weight six and we verified that the IR poles of our an-
alytic amplitudes follow the predicted universal pattern
up to three loops, which includes dipole and quadruple
correlations. We also considered the high-energy (Regge)
limit of our amplitudes, and extracted the full three-loop
QCD gluon Regge trajectory. This was the last missing
building block to describe single-Reggeon exchanges at
NNLL accuracy.

Acknowledgements. We thank G. Falcioni, E.
Gardi, N. Maher, C. Milloy, and L. Vernazza for dis-
cussions on the scheme of ref. [16], and for compar-
ing unpublished results for the three-loop gluon Regge

Regge trajectory
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transcendental-weight terms of our result agree with the
N = 4 SYM result [14, 16], as predicted by the maxi-
mal transcendentality principle [77–80]. On its own, the
result (30) is not particularly illuminating. However, we
have found the same trajectory using both the calcula-
tion outlined in this letter and our previous qq0 ! qq0

three-loop calculation [19]. This provides an impor-
tant test of QCD Regge factorisation at the three-loop
level. We also stress that now all the ingredients for
a NLL/NNLL analysis of the signature-even/odd elastic
amplitudes are known. In particular, we can now fully
predict the yet unknown qg ! qg three-loop amplitude
to NNLL accuracy. Explicitly checking these predictions
against a full calculation will provide a highly non-trivial
test of the universality of Regge factorisation in QCD.

CONCLUSION

In this letter we have presented the first computation
of the helicity amplitudes for the scattering of four glu-
ons up to three loops in full QCD. We obtained compact
results for the finite part of all independent helicity
configurations in terms of harmonic polylogarithms up
to weight six and we verified that the IR poles of our an-
alytic amplitudes follow the predicted universal pattern
up to three loops, which includes dipole and quadruple
correlations. We also considered the high-energy (Regge)
limit of our amplitudes, and extracted the full three-loop
QCD gluon Regge trajectory. This was the last missing
building block to describe single-Reggeon exchanges at
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Multi-Reggeon 
interactions (SLC)

Everything as predicted!



LHC: almost DIS2, but not always…
DIS Hadron-hadron

vs

QCD with intrinsic heavy quarks:  

•collinear factorisation violated at NNLO in hadron-hadron (i.e. R+V+ren = ∞) 

•no problem in DIS
[Doria, Frenkel, Taylor (1980); many subsequent studies. See e.g. Melnikov, Napoletano, Tancredi, 
FC (2020) for a modern derivation and discussion]



A new twist to an old story: intrinsic charm!

Evidence for intrinsic charm in DIS + LHC data 

•How to properly deal with it at NNLO at the LHC unclear 

•DIS: solid foundation → guide and benchmark

Towards 1% PDFs theoretical uncertainties
[Juan Rojo, Monday]

Global fit ! methodology matters
[Roy Stegeman, Tuesday]

DIS module YADSIM [Felix Hekhorn,
Wednesday; talks by Jun Gao]

Global fit ! DIS module ! VFNS (ACOT,
FONLL,etc) ! heavy flavor mass e↵ects

Heavy flavor mass e↵ects ! Collins, ACOT,
Forte, Ball, etc.

Most of the structure functions are computed
at ↵2

S

Not all matching coe�cients are computed at
↵2

s

Charm in the Proton

[Giacomo Magni, poster]
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[→ see K. Kudashkin’s talk and G. Magni’s poster]



DIS as a high-energy probe

Future DIS facilities: clean environment (low pile-up, controlled bkgd…) for 
precision EW studies 

•A famous example: b/c Higgs Yukawa

•S/B ~ 3! 

•Constrain signal strength to 0.8% (bb) 
and 7.4% (cc)

DIS in the past did probe EW interactions (NC vs CC, γ/Z interference…)

•Not the only one! W-mass in the t-channel, top polarisation, radiation zeros, 
hidden sectors, axions… rich program at future facilities

→ see J. d’Hondt & M. d’Onofrio’s talks



Conclusion I

… as any physicist not working on particle physics would tell you 
•If a collider can deliver new discoveries, that’s of course great 
•Looking at the future: the era of ``guaranteed new physics deliveries’’ (like 

the Higgs for the LHC) may well be over 
•But there is a rich set of unexplored areas in the SM that are worth pursuing

``Interesting physics’’ ≄ ``BSM’’

Many interesting open questions in QCD. For example 
•Mass/spin proton/nuclei 
•The structure of the proton [PDFs, TMDs, tomography…] 
•Nuclear physics: from models to first principles 
•QCD evolution and new phases of QCD (saturation, QGP…) 
•…

Future DIS facilities (EIC, LHeC, FCC-eh) would shed light on these issues 



Conclusion II
DIS: the simplest hadron collider machine

•In this case: simple ↔ powerful (clean, well-understood)

•Hard to overstate the importance of accurate, precise and reliable 
determinations of the structure of the proton for the HE program at hadron 
colliders → legacy DIS data augmented with LHC information, interesting 
cross-talks 

Extreme regions (small/large-x) and individual quarks remain elusive → 
limiting factor for different physics programs

•HE DIS: clean probe of EW scale and beyond 
•Interesting synergies with other experiments 
•Many interesting QCD questions  
•Techniques developed for DIS have much broader applications



DIS: very interesting and important 
role in the HEP landscape

Thank you very much for your attention!



Backup



N3LO: inclusive results
To a large extent, inclusive N3LO for 2 → 1 processes has been solved

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (2016-…); 
Duhr, Dulat, Mistlberger (2020-21)]
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of

Figure 3: The cross sections for producing a W+ (left) or W� (right) as a function of the

virtuality Q normalised to the N3LO prediction. The uncertainty bands are obtained by

varying µF and µR around the central scale µcent = Q. The dashed magenta line indicates

the physical W boson mass, Q = mW .

virtual photon production in ref. [10], hinting once more towards a universality of the

QCD corrections to these processes.
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Figure 4: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q/2. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 4 shows the scale variation of the cross section with a di↵erent choice for the

central scale, µcent = Q/2. It is known that for Higgs production a smaller choice of the

factorisation scale leads to an improved convergence pattern and the bands from scale

variations are strictly contained in one another. We observe here that the two scale choices

share the same qualitative features.

The fact that the scale variation bands do not overlap puts some doubt on whether

it gives a reliable estimate of the missing higher orders in perturbation theory, or whether

other approaches should be explored (cf., e.g., refs. [85, 86]). In ref. [10] it was noted that

for virtual photon production there is a particularly large cancellation between di↵erent

initial state configurations. We observe here the same in the case of W boson production.

This cancellation may contribute to the particularly small NNLO corrections and scale

variation bands, and it may be a consequence of the somewhat arbitrary split of the content
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FIG. 3: The gluon fusion cross-section at all perturbative or-
ders through N3LO in the scale interval [mH

4 ,mH ] as a func-

tion of the center-of-mass energy
p
S.

top-quark is infinitely heavy and can be integrated out,
see eq. (2). Moreover, we assumed that all other quarks
have a zero Yukawa coupling. Finite quark mass e↵ects
are important, but it is su�cient that they are inlcuded
through NLO or NNLO. Indeed, finite quark-mass e↵ects
have been computed fully through NLO in QCD [30],
while subleading top-quark mass corrections have been
computed at NNLO systematically as an expansion in
the inverse top-quark mass [34]. In these references it
was observed that through NLO finite quark mass ef-
fects amount to about 8% of the K-factor. At NNLO,
the known 1

mtop
corrections a↵ect the cross-section at

the ⇠ 1% level. A potentially significant contribution
at NNLO which has not yet been computed in the lit-
erature originates from diagrams with both a top and
bottom quark Yukawa coupling. Assuming a similar per-
turbative pattern as for top-quark only diagrams in the
e↵ective theory, eq. (2), higher-order e↵ects could be of
the order of 2%. We thus conclude that the computation
of the top-bottom interference through NNLO is highly
desired in the near future.

Finally, the computation of the hadronic cross-section
relies crucially on the knowledge of the strong coupling
constant and the parton densities. After our calculation,
the uncertainty coming from these quantities has become
dominant. Further progress in the determination of par-
ton densities must be anticipated in the next few years
due to the inclusion of LHC data in the global fits and the
impressive advances in NNLO computations, improving
the theoretical accuracy of many standard candle pro-
cesses.

To conclude, we have presented in this Letter the
computation of the gluon-fusion Higgs production cross-
section through N3LO in perturbative QCD. While a
thorough study of the impact of electroweak and quark
mass e↵ects is left for future work, we expect that the re-
maining theoretical uncertainty on the inclusive Higgs
production cross-section is expected to be reduced to
roughly half, which will bring important benefits in the
study of the properties of the Higgs boson at the LHC
Run 2. Besides its direct phenomenological impact, we
believe that our result is also a major advance in our un-
derstanding of perturbative QCD, as it opens the door to
push the theoretical predictions for large classes of inclu-
sive processes to N3LO accuracy, like Drell-Yan produc-
tion, associated Higgs production and Higgs production
via bottom fusion. Moreover, on the more technical side,
our result constitutes the first independent validation of
the gluon splitting function at NNLO [14], because the
latter is required to cancel all the infrared poles in the
inclusive cross-section. In addition, we expect that the
techniques developed throughout this work are not re-
stricted to inclusive cross-sections, but it should be pos-
sible to extend them to certain classes of di↵erential dis-
tributions, like rapidity distributions for Drell-Yan and
Higgs production, thereby paving the way to a new era
of precision QCD.
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FIG. 1 Variation of the hadronic cross section with the
hadronic centre-of-mass energy. The upper figure shows
nominal values, in the lower figure all predictions are nor-
malised to the central value of the N3LO prediction. LO,
NLO, NNLO and N3LO corrections are shown in green,
yellow, blue and red respectively. The bands correspond
to scale variation uncertainties as described in the text.

counterterm for the strong coupling constant has been de-
termined through five loops in Refs. [58–62]. The renor-
malisation constant for the Yukawa coupling is identical
to the quark mass renormalisation constant of QCD in
the MS-scheme [19, 60, 63–65]. IR divergences are ab-
sorbed into the definition of the PDFs using mass factori-
sation at N3LO [66–68]. The mass factorisation involves
convoluting lower-order partonic cross sections with the
three-loop splitting functions of Refs. [69–71]. We have
computed all the convolutions analytically in z space us-
ing the PolyLogTools package [72]. We observe that
all divergences cancel after UV renormalisation and mass
factorisation. We emphasise that this is not only a strong
cross check of our result, but, together with the results of
Ref. [28] for gluon-initiated processes, this is the first time
that the complete set of three-loop splitting functions of
Refs. [69, 70] has been confirmed by an independent an-
alytic computation. Moreover, this is the first time that
the universality of QCD factorisation has been confirmed
for hadron collisions for all partonic initial states.

The analytic cancellation of all ultraviolet and infrared
singularities provides a strong check of our results. In ad-
dition, we have reproduced the soft-virtual N3LO cross
section of Ref. [73] and the physical kernel constraints
of Ref. [74–76] for the next-to-soft term of the bottom-
quark-initiated cross section. We have also checked that
all logarithmic terms in the renormalisation and factori-
sation scales produced from the cancellation of the UV

and IR poles satisfy the DGLAP evolution equation. Fi-
nally, we have also recomputed the NLO and NNLO cross
sections, and we have checked that through NNLO our re-
sults are in perfect agreement with the literature results
implemented in the code Sushi [77]. Analytic results
for the partonic coe�cient functions will be presented in
ref. [78].

BOTTOM-QUARK FUSION AT N3LO IN QCD

In this section we present our phenomenological re-
sults for inclusive cross section for bottom-quark fusion
at N3LO in QCD. We assume a Higgs mass of mH =
125.09 GeV. The strong coupling is ↵s(m2

Z
) = 0.118 and

is evolved to the renormalisation scale µr using the four-
loop QCD beta function in the MS-scheme assuming five
massless quark flavours. The Yukawa coupling between
the Higgs boson and the bottom quark is proportional to
the bottom-quark mass in the MS-scheme, and we evolve
it from mb(mb) = 4.18 GeV [79] to the same renormali-
sation scale µr using four-loop running [65].

Fig. 1 shows the inclusive cross section at a proton-
proton collider as a function of the hadronic centre-of-
mass energy. The predictions are obtained by convolut-
ing the partonic cross sections with the PDF4LHC15

NNLO PDFs in the 5FS [80]1 as in eq. (1). The cen-
tral value corresponds to the commonly used choice of
the renormalisation and factorisation scales (µr, µf ) =
(mH ,mH/4) following for example refs. [19, 83]. The
band is obtained by varying µr and µf indepen-
dently within the intervals µr 2 [mh, 2mh] and µf 2
[mh/8,mh/2] with the restriction that 1/2  4µf/µr 
2. We observe that cross section predictions based on
successive perturbative orders are contained within the
bands of the lower order predictions over a wide range
of hadronic centre of mass energies. The dependence
on the renormalisation and factorisation scales of the
hadronic cross section is reduced as the perturbative or-
der is increased. We therefore believe that the resid-
ual scale dependence provides a reliable estimate of the
missing higher orders beyond N3LO. Let us comment
on the unconventionally small choice of the factorisation
scale, µf = mH/4. At NLO it was observed [83–86]

1
It was pointed out in Ref. [24] that multiple di↵erent values for

the bottom quark mass were used in the construction of the

PDF4LHC15 sets and an alternative PDF was derived. A PDF

set where bottom mass e↵ects are consistently included into the

pdf4lhc nnlo mc set is avilable from Ref. [81] (see also Ref. [82]).

We find that using the PDF set of Ref. [81] introduces a O(1%)

shift of the central value of our cross section. Since the modifi-

cation using the alternative PDF set is small we choose to use

the o�cial PDF4LHC15 sets of Ref. [80] in our predictions for

generality. For further discussion of bottom quark mass e↵ects

we refer to Ref. [78].
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N3LO: PDFs
N3LO PDFs not available → order mismatch
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Figure 8: Sources of uncertainty as a function of Q for the W+ (left) and W� (right)

K-factors. �(PDF), �(PDF+↵S) and the sum of �(PDF+↵S) and �(PDF-TH) are shown

in orange, red and green respectively. The dashed magenta line indicates the physical W

boson mass, Q = mW .

Figure 8 displays the uncertainties �(PDF), �(PDF+↵S) and �(PDF-TH) as a function

of Q in orange, red and green respectively. In particular, the green band indicates the sum

�(PDF+↵S)+�(PDF-TH). Our findings for �(PDF) are compatible with the results of for

example refs. [84, 87] where PDF e↵ects on W boson cross sections were discussed in more

detail. We observe that the estimate for �(PDF-TH) plays a significant role especially for

low values of Q. The traditional PDF uncertainty has a stronger impact for larger values

of Q. Overall, we observe that the relative size of �(PDF) and �(PDF-TH) is large in

comparison to the e↵ect of varying the scales. We conclude that future improvements in

the precision of the prediction of this observable will have to tackle the problem of the

uncertainties discussed here. In particular, we emphasize that the relatively large size of

�(PDF-TH) can potentially have a substantial impact on the central value of the N3LO

correction, especially for smaller values of Q. As discussed above, there are large intricate

cancellations between di↵erent initial state channels at N3LO. This implies that a small

relative change of quark vs. gluon parton densities at N3LO may have an enhanced e↵ect

on the perturbative cross section as a result. We can only wonder if the usage of true

N3LO parton densities could lead to N3LO predictions that are fully contained in the scale

variation band of the previous order. However, in the absence of N3LO PDFs, we can

only stress the importance estimating an uncertainty due to the missing N3LO PDFs and

suggest �(PDF-TH) as a possible estimator.

4 Predictions for cross section ratios

In the previous section, we have seen that the conventional variation of the perturbative

scales by a factor of 2 does not give a reliable estimate of the size of the missing higher

orders. This motivates us to study the ratios of cross sections for the production of gauge

bosons with virtuality Q:

RXY (Q) =
�X(Q)

�Y (Q)
, X, Y 2 {W±, �⇤} . (4.1)
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Figure 7: The cross sections for producing a W+ (left) or W� (right) as a function of

the hadronic centre of mass energy for Q = 100 GeV. The uncertainty bands are obtained

by varying µF and µR around the central scale µcent = Q (see text for details).

variation at NNLO and N3LO do not overlap for a large range of center of mass energies.

However, the gap is narrowed at the extreme end of the range of energies considered here.

Parton distribution functions are extracted from a large set of measurements and are

consequently subject to an uncertainty related to the input as well as to the methodology

used to extract the PDFs. Here, we follow the prescription of ref. [84] for the compu-

tation of PDF uncertainties �(PDF) using the Monte Carlo method. Furthermore, also

the strong coupling constant is an input parameter for our computation. The PDF set

PDF4LHC15 nnlo mc uses ↵S = 0.118 as a central value and two additional PDF sets are

available that allow for the correlated variation of the strong coupling constant in the

partonic cross section and the PDF sets to ↵up

S = 0.1195 and ↵down

S = 0.1165. This sets

allow us to deduce an uncertainty �(↵S) on our cross section following the prescription of

ref. [84]. We combine the PDF and strong coupling constant uncertainties in quadrature

to give

�(PDF + ↵S) =
p
�(PDF)2 + �(↵S)2 . (3.3)

In our computation we use NNLO-PDFs, because currently there is no available PDF

set extracted from data with N3LO accuracy. It is tantalising to speculate if the observed

convergence pattern is related to the mismatch in perturbative order used for the PDFs and

the partonic cross section. We estimate the potential impact of this mismatch on our cross

section predictions using a prescription introduced in ref. [5] that studies the variation of

the NNLO cross section as NNLO- or NLO-PDFs are used. This defines the PDF theory

uncertainty

�(PDF-TH) =
1

2

�����
�(2), NNLO-PDFs

W± � �(2), NLO-PDFs

W±

�(2), NNLO-PDFs

W±

����� . (3.4)

Here, the factor 1

2
is introduced as it is expected that this e↵ect becomes smaller at N3LO

compared to NNLO.
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• ~ 2% PDF-TH error in the EW region 

• significant fraction of the error budget 

• same order of ``standard’’ PDF+αs

3

z ! 0 [65, 66]. Finally, we have also checked that all
logarithmic terms in the renormalisation and factorisa-
tion scales produced from the cancellation of the UV and
IR poles satisfy the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation [67–69].

PHENOMENOLOGICAL RESULTS

In this section we present our phenomenological re-
sults for lepton-pair production via an o↵-shell photon at
N3LO in QCD. The strong coupling is ↵s(m2

Z) = 0.118,
and we evolve it to the renormalisation scale µr using the
four-loop QCD beta function in the MS-scheme assuming
Nf = 5 active, massless quark flavours. In the remainder
of this section we present our results for the cross section
as a function of the invariant mass of the lepton pair, and
we discuss the sources of uncertainty that a↵ect it.

Q/GeV KN
3
LO

QCD �(scale) �(PDF+↵S) �(PDF-TH)
�
(0)
Z+�⇤

�
(0)
�⇤

30 0.952 +1.5%
�2.5% ±4.1% ±2.7% 1.01

50 0.966 +1.1%
�1.6% ±3.2% ±2.5% 1.09

70 0.973 +0.89%
�1.1% ±2.7% ±2.4% 2.16

90 0.978 +0.75%
�0.89% ±2.5% ±2.4% 415

110 0.981 +0.65%
�0.73% ±2.3% ±2.3% 7.4

130 0.983 +0.57%
�0.63% ±2.2% ±2.2% 3.5

150 0.985 +0.50%
�0.54% ±2.2% ±2.2% 2.6

TABLE I Numerical predictions for the QCD
K-factor at N3LO.

Tab. I contains numerical values for the QCD K-factor,
i.e., the ratio of the N3LO cross section over the NNLO
cross section. We observe that for all values of the invari-
ant mass Q considered, the cross section receives negative
corrections at the percent level at LHC center-of-mass
energies. We include numerical estimates of the size of
the three uncertainties discussed. The central values and
scale variation bands for the K-factor are obtained with
the zeroth member of the PDF4LHC15 nnlo mc set. We
define

KN
3
LO

QCD
=

�(3)(µf = µr = Q)

�(2)(µf = µr = Q)
,

�(X) =
�X(�(3))

�(3)(µf = µr = Q)
,

(2)

where �(n)(µf = µr = Q) is the hadronic cross section
including perturbative corrections up to nth order evalu-
ated for µF = µR = Q and �X(�(n)) is the absolute un-
certainty of the cross section from source X as described
below. Furthermore, we show in the last column of tab. I
the ratio of the leading order cross section to produce a

lepton pair via Z boson and virtual photon exchange [70–
73] over exclusively virtual photon exchange.
Let us now analyse the two sources of uncertainty re-

lated to the PDFs (PDF+↵S an PDF-TH) and the de-
pendence of the cross section on the renormalisation and
factorisation scales. Fig. 1 displays the impact of our im-
precise knowledge of parton distribution functions and
the strong coupling constant on our abilities to predict
the DY cross section. Let us first explain how we eval-
uate �(PDF+↵S). The PDFs and the strong coupling
constant cannot be computed from first principle but
they need to be extracted from measurements. In order
to study the PDF uncertainties we use the Monte-Carlo
replica method following the PDF4LHC recommenda-
tion [74] that uses 100 di↵erent PDF sets to compute the
68 % confidence level interval. The strong coupling con-
stant uncertainty is computed using two correlated PDF
sets provided by ref. [74] and is then combined in quadra-
ture with the PDF uncertainty to give �(PDF + ↵S).
The uncertainty obtained in this way does not yet in-
clude the fact that currently all PDF sets are extracted
by comparing experimental to predictions at (at most)
NNLO level, nor do they include the next order in the
DGLAP equation. A fully consistent N3LO calculation,
however, would require the use of a complete set of N3LO
PDFs. We include an uncertainty reflecting the fact that
currently there are no N3LO PDF sets available. The
estimate of this uncertainty was obtained following the
recipe introduced in Ref. [18] that uses half the change of
the NNLO cross section in changing from NLO to NNLO
PDFs as a measure of uncertainty. As shown in Fig. 1
each of the two uncertainties is of the order of ±2% over
the whole range of invariant masses considered.
Fig. 2 shows the value of the NLO, NNLO and N3LO

cross sections normalised to the central N3LO value as
a function of the invariant mass Q2 of the lepton pair.
The bands indicate the dependence of the cross section
at di↵erent orders on the choice of the renormalisation
and factorisation scales. We choose Q as a central scale
and increase and decrease both scales independently by
a factor of two with respect to the central scale while
maintaining 1

2
 µR/µF  2. We observe that at N3LO

the cross section depends only very mildly on the choice
of the scale. In particular, for small and very large invari-
ant masses the dependence on the scale is substantially
reduced by inclusion of N3LO corrections compared to
NNLO. Remarkably, however, we find that for invariant
masses 50 GeV . Q . 400 GeV, the bands obtained by
varying the renormalisation and factorisation scales at
NNLO and N3LO do not overlap for the choice of the
central scale Q that is conventionally chosen in the liter-
ature. This is in stark contrast to the case of the N3LO
corrections to the inclusive cross section for Higgs pro-
duction in gluon and bottom-quark fusion [17, 19, 20],
where the band obtained at N3LO was always strictly
contained in the NNLO band (for reasonable choices of

γ*

W+

Error: estimate from previous orders



N3LO PDFs issues: evolution
N3LO: evolution and the problems of small-x
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Figure 2. The resummed and matched splitting functions at LO+LL (dotted green), NLO+NLL (dashed
purple) and NNLO+NLL (dot-dot-dashed blue) accuracy: Pgg (upper left), Pgq (upper right), Pqg (lower
left) and Pqq (lower right). The fixed-order results at LO (dotted) NLO (dashed) and NNLO (dot-dot-
dashed) are also shown (in black). The results also include an uncertainty band, as described in the text.
The plots are for –s = 0.2 and nf = 4 in the Q0MS scheme. We note that di�erence between Q0MS and
MS for the fixed-order results is immaterial at this accuracy.

techniques described in Ref. [61] and improved as described in the previous sections. Moreover, we
also show new results for the coe�cient functions with massive quarks.

5.1 Splitting functions

Let us start with DGLAP evolution. With respect to our previous work [61] we have made sub-
stantial changes in the resummation of the anomalous dimensions, mostly due to the treatment of
running coupling e�ects, as described in Sect. 3. Additionally, we are now able to match the NLL
resummation of the splitting functions to their fixed-order expressions up to NNLO, as presented
in Sect. 4.

In Fig. 2 we show the fixed-order splitting functions at LO (black dotted), NLO (black dashed)
and NNLO (black dot-dot-dashed) compared to resummed results at LO+LL (green dotted),
NLO+NLL (purple dashed) and NNLO+NLL (blue dot-dot-dashed). In principle, we also have
the technology for matching LL resummation to NLO, but this is of very limited interest, so we
do not show these results here (they can be obtained from the HELL-x code). The gluon splitting
functions Pgg and Pgq are shown in the upper plots, and the quark ones Pqg and Pqq are shown
in the lower plots (the latter two start at NLL so the LO+LL curve is absent there). All splitting
functions are multiplied by x for a clearer visualization. The scheme of the resummed splitting
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] • N3LO calculation underway [Herzog, Moch, Ruijl, 
Ueda, Vermaseren, Vogt, in progrress] 

• N3LO: rapid small-x growth → perturbative 
instabilities@N3LO 

• NLL resummation known, but large subleading 
effects [Bonvini, Marzani (2018)]

�6 �4 �2 0 2 4 6

y

0.6

0.8

1.0

1.2

1.4

1.6

(d
L
g
g
/
d
y
)
/
(d
L
g
g
/
d
y
)
[r
ef
]

NNPDF31sx, LHC 13 TeV, MX = 10 GeV

NNLO

NNLO+NLLx

�6 �4 �2 0 2 4 6

y

0.6

0.8

1.0

1.2

1.4

1.6

(d
L
q
g
/
d
y
)
/
(d
L
q
g
/
d
y
)
[r
ef
]

NNPDF31sx, LHC 13 TeV, MX = 10 GeV

NNLO

NNLO+NLLx

Figure 6.3. The double di↵erential PDF luminosities as a function of µ = MX and y, Eq. (6.1),
comparing the gluon-gluon (left plots) and quark-antiquark (right plots) luminosities between the NNLO
and NNLO+NLLx fits normalized to the central value of the former. We show the results as a function
of y for MX = 10, 30, 100 GeV (top to bottom).
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Figure 6.3. The double di↵erential PDF luminosities as a function of µ = MX and y, Eq. (6.1),
comparing the gluon-gluon (left plots) and quark-antiquark (right plots) luminosities between the NNLO
and NNLO+NLLx fits normalized to the central value of the former. We show the results as a function
of y for MX = 10, 30, 100 GeV (top to bottom).
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Lgg

NNLO: an issue at low-mass, not quite so at the EW scale
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Multiple independent handles on the gluon PDF

Juan Rojo                                                                                                       Proton Structure and PDFs, DIS2019

NNPDF3.1, Q=100 GeV

• Collider data crucial to reduce perturbative 
uncertainty → fully-consistent N3LO fit 
would require top, Z pt, jets @ N3LO

N3LO for PDFs: status and prospects 
• DIS ✔ 
• DY ✔ 
• Z pt: ~ (unknown, but should be possible) 
• Top: ~ (unknown, but should be possible given current understanding) 
• Jets: ✘ (unknown, and there may be serious problems…)


