Probing Free Nucleons with (Anti)neutrinos

R. Petti

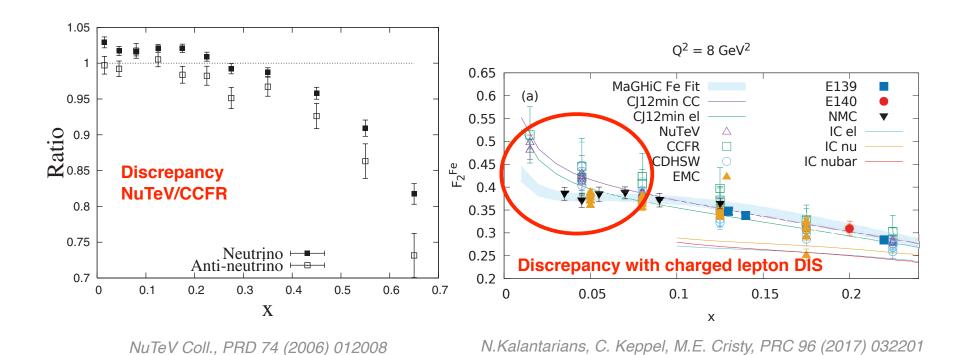
University of South Carolina, Columbia SC, USA

DIS 2022 May 5th, 2022, Santiago de Compostela, Spain

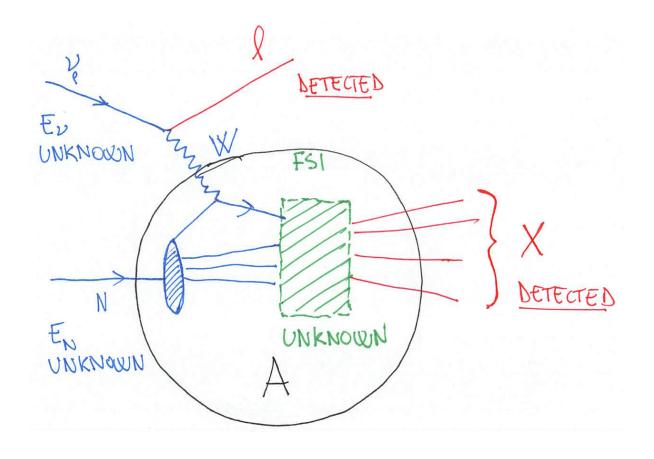
- **♦** Neutrinos desirable probe for EW physics and partonic/hadronic structure of matter:
 - ullet Clean probe (only weak interaction) complementary to e^\pm ;
 - Complete flavor separation in Charged Current interactions $(d/u, s/\bar{s}, \bar{d}/\bar{u})$
 - Separation of valence (xF_3) and sea (F_2) distributions, natural spin polarization.
 - ⇒ Potential only partially explored due to various limitations
- **♦** STATISTICS

Tiny cross-sections with limited beam intensities requires massive & coarse detectors.

- **↑** TARGETS


 Need of massive nuclear targets does not allow a precise control of the interactions.
- **♦** FLUXES

 Incoming (anti)neutrino energy unknown implies substantial flux uncertainties.
- ♦ NUCLEAR EFFECTS

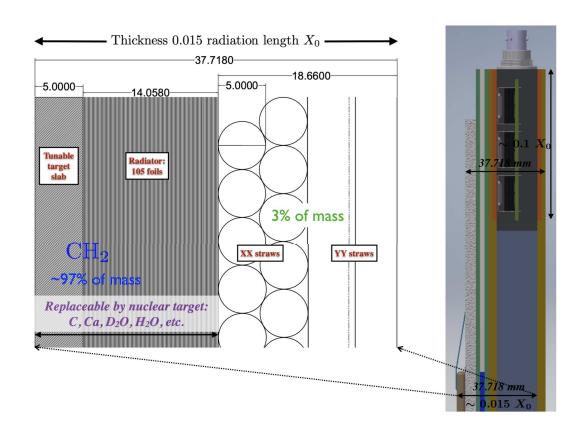

 Nuclear smearing affecting data unfolding:

 unknown target momentum & measured particles modified by final state interactions.

Roberto Petti

Many outstanding discrepancies among different measurements and between measurements and existing models

(Anti)neutrino-Nucleus scattering:

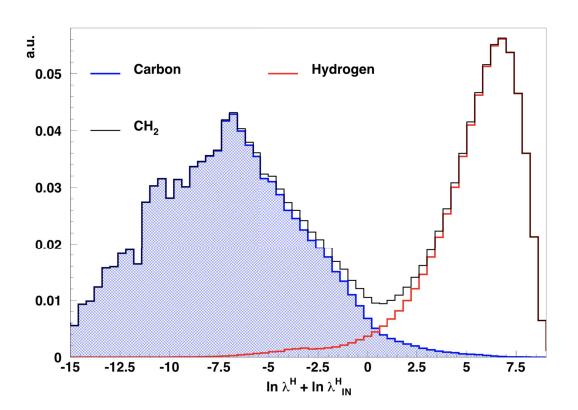

projectile of unknown energy hitting target of unknown energy with outgoing products undergoing unknown smearing

- → H target provides valuable physics measurements per se:
 - Proton structure from flavor-sensitive $\nu(\bar{\nu})$ -H CC interactions;
 - Isospin symmetry provides direct access to free neutron structure without nuclear corrections;
 - Understanding nucleon-level amplitudes is essential input for (anti)neutrino-nucleus cross-sections.
 - ⇒ Complementary information to charged lepton DIS & colliders
- → H target necessary tool for next-generation precision measurements on nuclei:
 - Hadronic target of known energy;
 - Exclusive topologies for precise determination of (anti)neutrino flux;
 - Control sample free from nuclear effects to calibrate (anti)neutrino energy scale.
 - ⇒ Without H target achievable precisions limited by nuclear smearing

"SOLID" HYDROGEN TARGET

- lacktriangle "Solid" Hydrogen concept: $\nu(\bar{\nu})$ -H from subtraction of CH $_2$ & C targets
 - Straw Tube Tracker designed for a control of ν -target(s) similar to e^{\pm} DIS experiments;
 - Thin $(1-2\% X_0)$ passive targets spread out within tracker of negligible mass: $\rho_{\text{avg}} \leq 0.18 \text{ g/cm}^3$;
 - Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;

Similar thickness 1-2% X_0 for <u>both</u> CH₂ and C


CH₂ and C targets alternated to guarantee same acceptance

Mass ratio optimized for subtraction

 \implies Typical fiducial mass achievable equivalent to about $\boxed{10 \text{ m}^3 \text{ LH}_2}$

"SOLID" HYDROGEN TARGET

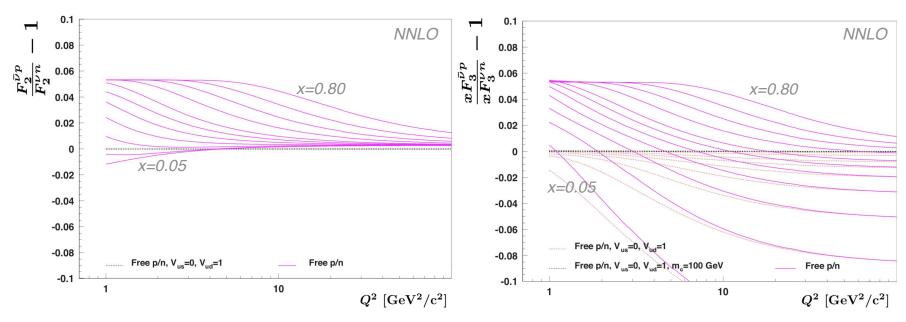
- lacktriangle "Solid" Hydrogen concept: $\nu(\bar{\nu})$ -H from subtraction of CH $_2$ & C targets
 - Straw Tube Tracker designed for a control of ν -target(s) similar to e^{\pm} DIS experiments;
 - Thin $(1-2\% X_0)$ passive targets spread out within tracker of negligible mass: $\rho_{\text{avg}} \leq 0.18 \text{ g/cm}^3$;
 - Model-independent data subtraction of dedicated C (graphite) target from main CH₂ target;

Kinematic selection (transverse plane) can reduce dilution factor for CC

Applicable to all inclusive & exclusive CC topologies with 80-95% purity and 75-96% efficiency before subtraction.

 \implies Viable & acceptable approximation to liquid H_2 detectors

arXiv:1910.05995 [hep-ex], 1809.08752 [hep-ph]

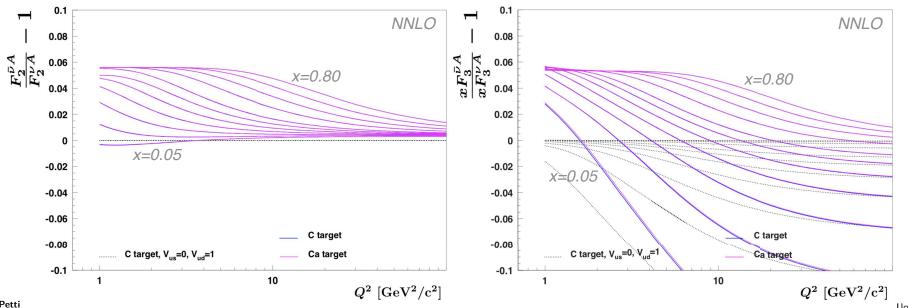

lacktriangle Structure function $F^{
u n}$ directly related to $F^{ar{
u}p}$ by

ISOSPIN SYMMETRY

Correction factors:

$$\mathcal{R}_2^{p/n}(x,Q^2) = \frac{F_2^{\bar{\nu}p}(x,Q^2)}{F_2^{\nu n}(x,Q^2)} - 1; \qquad \mathcal{R}_3^{p/n}(x,Q^2) = \frac{xF_3^{\bar{\nu}p}(x,Q^2)}{xF_3^{\nu n}(x,Q^2)} - 1$$

- Quark mixing (CKM): sensitivity to V_{us} and V_{ud} ;
- Strange sea quarks and charm production: sensitivity to $\boxed{m_c}$ and strange sea asymmetry.



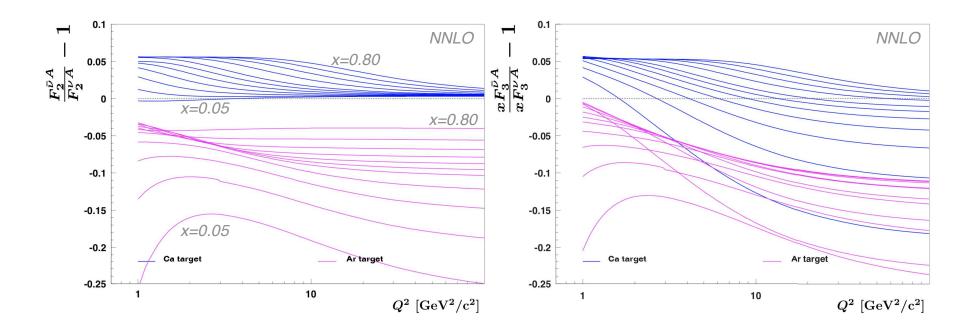
♦ Isospin symmetry can be verified with

ISOSCALAR TARGET

$$\mathcal{R}_2^{\mathcal{A}}(x,Q^2) = \frac{F_2^{\bar{\nu}A}(x,Q^2)}{F_2^{\nu A}(x,Q^2)} - 1; \qquad \mathcal{R}_3^{\mathcal{A}}(x,Q^2) = \frac{xF_3^{\bar{\nu}A}(x,Q^2)}{xF_3^{\nu A}(x,Q^2)} - 1$$

- Exploit C target in "solid" hydrogen: validation of $\mathcal{R}_{2,3}^{p/n}$ corrections to free neutrons;
- ullet Search for direct violations of the isospin (charge) symmetry from deviations in $\mathcal{R}_{2,3}^{A}$.
- lacktriangle If anomalous deviations in $\mathcal{R}_{2,3}^{\mathrm{A}}$ independent measurement with isoscalar 40 Ca target

Roberto Petti

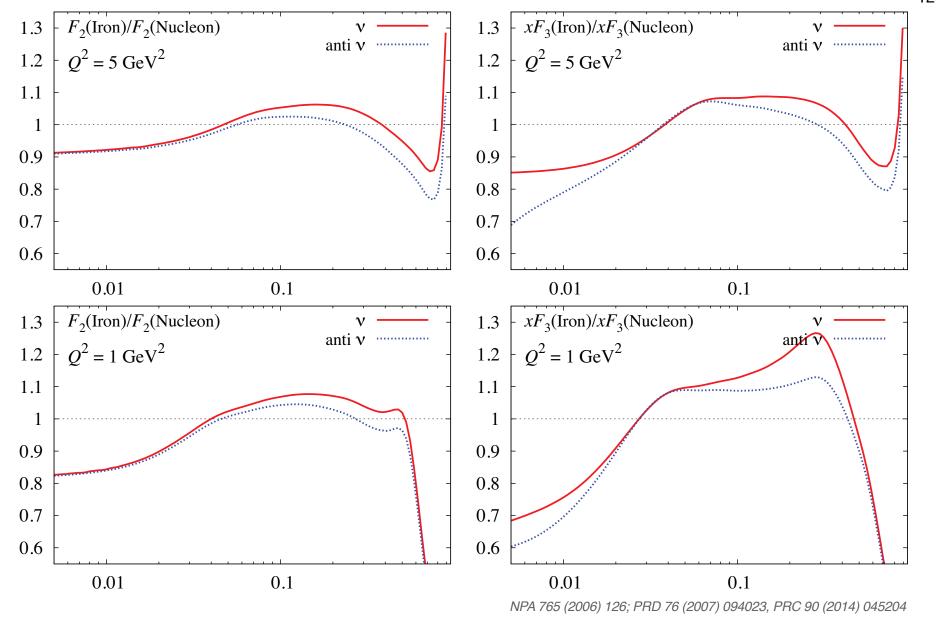

UofSC

♦ Comparison of Ca and Ar can probe

ISOSPIN DEPENDENCE

of nuclear effects:

- Same A=40: neutron excess in Ar $\beta=(Z-N)/A\sim -0.1$, Ca mostly isoscalar $\beta\sim -2.6\times 10^{-3}$;
- Insights on physics mechanisms responsible for isovector effects at both nucleon and nuclear level.
- Isovector effects relevant for LBL oscillation measurements with non-isoscalar nuclei: e.g. DUNE exploits tiny differences between ν and $\bar{\nu}$ CC on 40 Ar



 \bullet Availability of ν -H & $\bar{\nu}$ -H allows direct measurement of nuclear modifications of $F_{2,3}$:

$$R_{2,3}^A(x,Q^2) = \frac{F_{2,3}^{\nu A}}{ZF_{2,3}^{\nu p} + (A-Z)F_{2,3}^{\nu n}} \sim \frac{F_{2,3}^{\nu A}}{ZF_{2,3}^{\nu H} + (A-Z)F_{2,3}^{\bar{\nu} H}}(x,Q^2)$$

- Comparison with e/μ DIS results and nuclear models;
- Study flavor dependence of nuclear modifications (W^{\pm}/Z helicity, C-parity, Isospin);
- Effect of the axial-vector current.
- lacktriangle Study nuclear modifications to parton distributions in a broad range of x and Q^2 .
- ♦ Study non-perturbative contributions from High Twists, PCAC, etc. and quark-hadron duality in different structure functions F_2 , xF_3 , $R = F_L/F_T$.
- ◆ Nuclear modifications of nucleon form factors e.g. using NC elastic, CC quasi-elastic and resonance production.

Roberto Petti

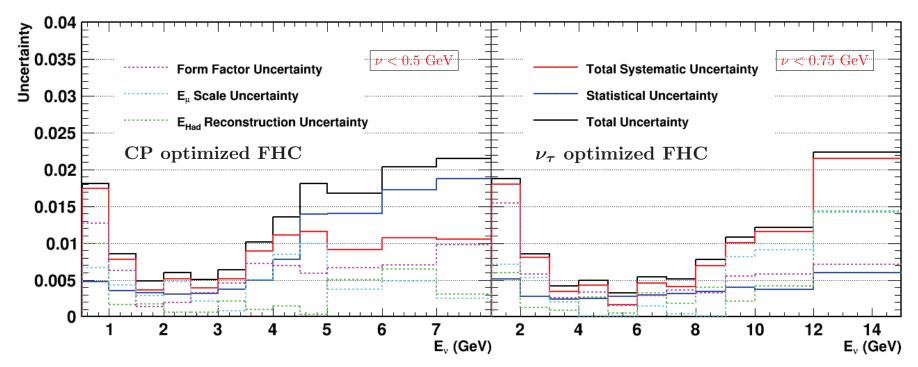
$$N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \, \Phi(E_{\nu}) \left[P_{\rm osc}(E_{\nu}) \right] \, \sigma_{\rm X}(E_{\nu}) \, R_{\rm phys}(E_{\nu}, E_{\rm vis}) \, R_{\rm det}(E_{\rm vis}, E_{\rm rec})$$

Measurements expected to be dominated by systematics with modern intense beams

 $|\Phi(E_{\nu})|$ Flux uncertainties affect virtually the measurement of every observable and are usually one of the leading systematics in neutrino scatterig experiments.

 \Longrightarrow Exclusive $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ and $\bar{\nu}_{\mu}p \to \mu^{+}n$ on H provide calibration samples

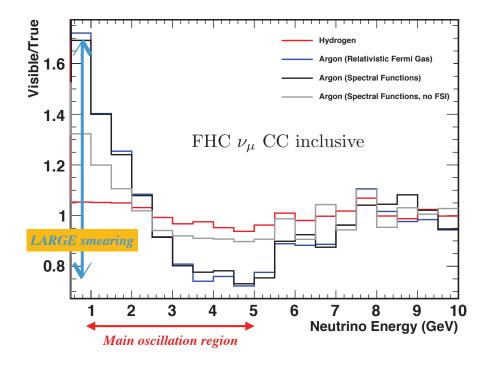
 $R_{
m det}$ Detector smearing controlled by Δp SCALE and reconstruction efficiencies.


 $R_{\rm phys}$ Smearing introduced by nuclear effects on initial and final state particles results in systematics on ΔE_{ν} SCALE since E_{ν} unknown on event-by-event basis.

 \Longrightarrow Inclusive ν_{μ} CC & $\bar{\nu}_{\mu}$ CC interactions on H provide calibration sample

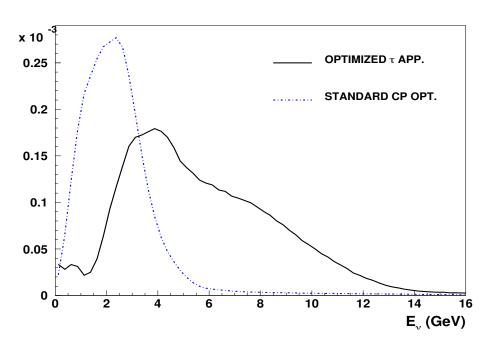
Roberto Petti

FLUX MEASUREMENTS WITH H


- Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ on H: $\nu < 0.5$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence.
- Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \to \mu^{+}n$ QE on H: $\nu < 0.25$ GeV: uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ on H.
- lacktriangle Absolute $\bar{\nu}_{\mu}$ flux from QE $\bar{\nu}_{\mu}p
 ightarrow \mu^{+}n$ on H with $Q^{2} < 0.05$ GeV²
 - ⇒ Substantial reduction of systematics vs. techniques using nuclear targets

PLB 795 (2019) 424, arXiv:1902.09480 [hep-ph]

$$N_{
m X}(E_{
m rec}) = \int_{E_{
u}} dE_{
u} \, \left[\Phi(E_{
u}) \, \left[P_{
m osc}(E_{
u}) \right] \, \left[\sigma_{
m X}(E_{
u}) \, \left[R_{
m phys}(E_{
u}, E_{
m vis}) \, \left[R_{
m det}(E_{
m vis}, E_{
m rec}) \, \right]
ight] \, \left[R_{
m osc}(E_{
u}) \, \left[R_{
m phys}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m vis}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}) \, \left[R_{
m osc}(E_{
u}, E_{
m osc}) \, \left$$


- lacktriangle Combination of u-H & u-H CC calibration sample for (anti)neutrino energy scale ΔE_{ν}
- ◆ Compare with CC inclusive interactions on nuclear target A ⇒ Similar detector acceptance
- ♦ Calibration using y distribution (minimal nuclear effects on σ)
- Understanding nuclear smearing required to reduce unfolding systematics

Roberto Petti

EXPECTED MEASUREMENTS IN DUNE

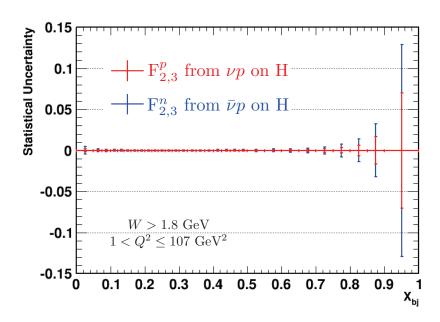
- ◆ STT inner tracker of SAND in DUNE ND and expected to take data from Day 1: default low-energy CP optimized beam and CH₂, C, & Ar targets.
- ♦ Various possibilities after initial run:
 - Replace some of the main CH₂ targets in STT with different materials;
 - High-energy beam optimized for ν_{τ} appearace & upgraded intensity (x 2).
- \implies General purpose ν & $\bar{\nu}$ physics facility with broad physics program

Interactions	CH_2	Н
Standard CP optimized (1.2 MW):		
$ u_{\mu}$ CC (FHC, 5 y)	32×10^6	3.1×10^6
$ar{ u}_{\mu}$ CC (RHC, 5 y)	12×10^6	$2.3{ imes}10^6$
Optimized $\nu_{ au}$ appearance (2.4 MW):		
$ u_{\mu}$ CC (FHC, 2 y)	62×10^6	6.0×10^6
$ar{ u}_{\mu}$ CC (RHC, 2 y)	22×10^6	4.0×10^{6}

- Availability of complementary hydrogen target necessary to reduce systematics from nuclear smearing and flux in next-generation precision measurements.
- "Solid" hydrogen concept can provide high statistics $\mathcal{O}(10^6)$ samples of ν -H & $\bar{\nu}$ -H interactions, giving access to the flavor content of free protons and neutrons.
- ◆ A combination of H and various nuclear targets within the same detector allows precision tests of isospin (charge) symmetry and a study of nuclear modifications of parton distributions and their flavor dependence.
- ♦ STT in SAND within the DUNE ND complex can enable a broad physics program complementary to ongoing fixed-target, collider and nuclear physics efforts
 - ⇒ Hundreds of diverse physics topics providing insights on various fields

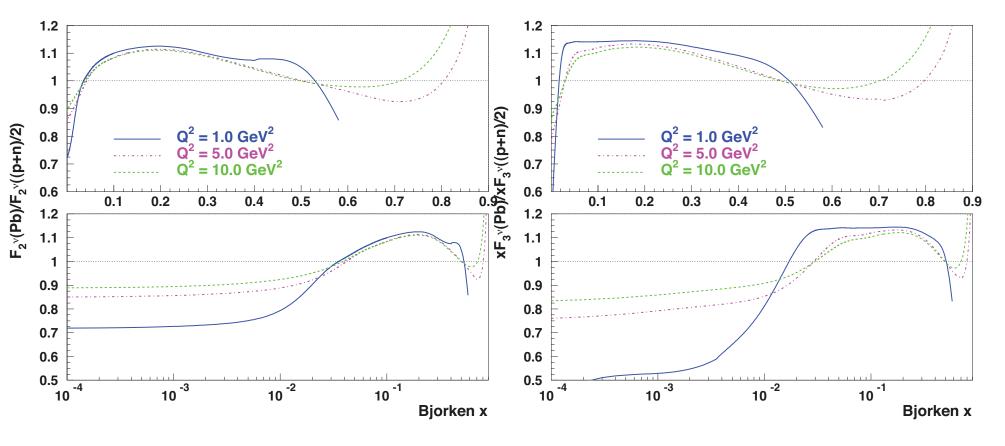
Backup slides

BROAD PHYSICS POTENTIAL


- ◆ SAND can constrain main systematics from targets, scales, flux, & nuclear effects
 - ⇒ Exploit the unique properties of the (anti)neutrino probe to study fundamental interactions & structure of nucleons and nuclei
- ◆ SAND can contribute to create a ND complex with a broad physics program complementary to ongoing fixed-target, collider and nuclear physics efforts:
 - Measurement of $\sin^2 \theta_W$ and electroweak physics;
 - Precision tests of isospin physics & sum rules (Adler, GLS);
 - Measurements of strangeness content of the nucleon $(s(x), \bar{s}(x), \Delta s, \text{ etc.})$;
 - Studies of QCD and structure of nucleons and nuclei;
 - Precision tests of the structure of the weak current: PCAC, CVC;
 - Measurement of nuclear physics and (anti)-neutrino-nucleus interactions; etc.
 - Precision measurements as probes of New Physics (BSM);
 - Searches for New Physics (BSM): sterile neutrinos, NSI, NHL, etc.....
 - ⇒ Hundreds of diverse physics topics offering insights on various fields
- ◆ No additional requirements: same control of targets & fluxes to study LBL systematics

ADLER SUM RULE & ISOSPIN PHYSICS

◆ The Adler integral provides the ISOSPIN of the target and is derived from current algebra:


$$S_A(Q^2) = \int_0^1 \frac{dx}{2x} \left(F_2^{\bar{\nu}p} - F_2^{\nu p} \right) = I_p$$

- At large Q^2 (quarks) sensitive to $(s-\bar{s})$ asymmetry, isospin violations, heavy quark production
- Apply to nuclear targets and test nuclear effects (S. Kulagin and RP, PRD 76 (2007) 094023)
- \implies Precision test of S_A at different Q^2 values

- Only measurement available from BEBC based on 5,000 νp and 9,000 $\bar{\nu}p$ (D. Allasia et al., ZPC 28 (1985) 321)
- ♦ Direct measurement of $F_{2,3}^{\nu n}/F_{2,3}^{\nu p}$ free from nuclear uncertainties and comparisons with e/μ DIS $\implies d/u$ at large x and verify limit for $x \to 1$ (Synergy with 12 GeV JLab program)

Process	u(ar u)-H	
Standard CP optimized:		
$ u_{\mu}$ CC (5 y)	$3.4{ imes}10^6$	
$ar{ u}_{\mu}$ CC (5 y)	$2.5{ imes}10^6$	
Optimized $ u_{ au}$ appearance:		
$ u_{\mu}$ CC (2 y)	$6.5{ imes}10^6$	
$ u_{\mu}$ CC (2 y)	$4.3{ imes}10^6$	

Ratio of Charged Current structure functions on $^{207} Pb$ and isoscalar nucleon (p+n)/2

NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 90 (2014) 045204