



# CORE

a Compact Detector for the Electron-Ion Collider



# CORE — an effort of a small but enthusiastic proto-collaboration



#### CORE - a COmpact detectoR for the EIC

R. Alarcon,<sup>1</sup> M. Baker,<sup>2</sup> V. Baturin,<sup>3</sup> P. Brindza,<sup>3</sup> S. Bueltmann,<sup>3</sup> M. Bukhari,<sup>4</sup> R. Capobianco,<sup>5</sup> E. Christy,<sup>2</sup> S. Diehl,<sup>5,6</sup> M. Dugger,<sup>1</sup> R. Dupré,<sup>7</sup> R. Dzhygadlo,<sup>8</sup> K. Flood,<sup>9</sup> K. Gnanvo,<sup>2</sup> L. Guo,<sup>10</sup> T. Hayward,<sup>5</sup> M. Hattawy,<sup>3</sup> M. Hoballah,<sup>7</sup> M. Hohlmann,<sup>11</sup> C. E. Hyde a,<sup>3</sup> Y. Ilieva,<sup>12</sup> W. W. Jacobs,<sup>13</sup> K. Joo,<sup>5</sup> G. Kalicy,<sup>14</sup> A. Kim,<sup>5</sup> V. Kubarovsky,<sup>2</sup> A. Lehmann,<sup>15</sup> W. Li,<sup>16</sup> D. Marchand,<sup>7</sup> H. Marukyan,<sup>17</sup> M. J. Murray,<sup>18</sup> H. E. Montgomery,<sup>2</sup> V. Morozov,<sup>19</sup> I. Mostafanezhad,<sup>9</sup> A. Movsisyan,<sup>17</sup> E. Munevar,<sup>20</sup> C. Muñoz Camacho,<sup>7</sup> P. Nadel-Turonski<sup>b</sup>,<sup>16</sup> S. Niccolai,<sup>7</sup> K. Peters,<sup>8</sup> A. Prokudin,<sup>2,21</sup> J. Richards,<sup>5</sup> B. G. Ritchie,<sup>1</sup> U. Shrestha,<sup>5</sup> B. Schmookler,<sup>16</sup> G. Schnell,<sup>22</sup> C. Schwarz,<sup>8</sup> J. Schwiening,<sup>8</sup> P. Schweitzer,<sup>5</sup> P. Simmerling,<sup>5</sup> H. Szumila-Vance,<sup>2</sup> S. Tripathi,<sup>23</sup> N. Trotta,<sup>5</sup> G. Varner,<sup>23</sup> A. Vossen,<sup>24</sup> E. Voutier,<sup>7</sup> N. Wickramaarachchi,<sup>14</sup> and N. Zachariou<sup>25</sup>

<sup>1</sup>Arizona State University, Tempe Arizona 85287 <sup>2</sup> Thomas Jefferson National Accelerator Laboratory, Newport News VA 23606 <sup>3</sup>Old Dominion University, Norfolk Virginia 23529 <sup>4</sup>Jazan University, Gizan 45142, Saudi Arabia <sup>5</sup> University of Connecticut, Storrs Connecticut 06269 <sup>6</sup>Justus Liebig Universitaet Giessen, Giessen, Germany <sup>7</sup> Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France <sup>8</sup>GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany <sup>9</sup>Nalu Scientific, Honolulu Hawaii 96822 <sup>10</sup>Florida International University, Miami Florida 33199 <sup>11</sup>Florida Institute of Technology, Melbourne, Florida 32901 <sup>12</sup> University of South Carolina, Columbia South Carolina 29208 <sup>13</sup>CEEM, Indiana University, Bloomington Indiana 47405 <sup>14</sup> Catholic University of America, Washington D.C. 20064 <sup>15</sup>Erlangen-Nuremberg University, 91058 Germany <sup>16</sup>CFNS, Stony Brook University, Stony Brook, New York 11794 <sup>17</sup>A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Yerevan Armenia <sup>18</sup> University of Kansas, Lawrence Kansas 66045 <sup>19</sup>Oak Ridge National Laboratory, Oak Ridge Tennessee 37830 <sup>20</sup> Universidad Distrital Francisco José de Caldas, Bogotá Colombia <sup>21</sup>Penn State University Berks, Reading Pennsylvania 19610 <sup>22</sup> University of the Basque Country UPV/EHU & Ikerbasque, Bilbao, Spain <sup>23</sup> University of Hawaii, Honolulu Hawaii 96822 <sup>24</sup>Duke University, Durham North Carolina 27708 <sup>25</sup> University of York, Heslington, York, YO10 5DD, UK (Dated: December 1, 2021)

# CORE — an effort of a small but enthusiastic proto-collaboration



#### CORE - a COmpact detectoR for the EIC

R. Alarcon,<sup>1</sup> M. Baker,<sup>2</sup> V. Baturin,<sup>3</sup> P. Brindza,<sup>3</sup> S. Bueltmann,<sup>3</sup> M. Bukhari,<sup>4</sup> R. Capobianco,<sup>5</sup> E. Christy,<sup>2</sup> S. Diehl,<sup>5,6</sup> M. Dugger,<sup>1</sup> R. Dupré,<sup>7</sup> R. Dzhygadlo,<sup>8</sup> K. Flood,<sup>9</sup> K. Gnanvo,<sup>2</sup> L. Guo,<sup>10</sup> T. Hayward,<sup>5</sup> M. Hattawy,<sup>3</sup> M. Hoballah,<sup>7</sup> M. Hohlmann,<sup>11</sup> C. E. Hyde a,<sup>3</sup> Y. Ilieva,<sup>12</sup> W. W. Jacobs,<sup>13</sup> K. Joo,<sup>5</sup> G. Kalicy,<sup>14</sup> A. Kim,<sup>5</sup> V. Kubarovsky,<sup>2</sup> A. Lehmann,<sup>15</sup> W. Li,<sup>16</sup> D. Marchand,<sup>7</sup> H. Marukyan,<sup>17</sup> M. J. Murray,<sup>18</sup> H. E. Montgomery,<sup>2</sup> V. Morozov,<sup>19</sup> I. Mostafanezhad,<sup>9</sup> A. Movsisyan,<sup>17</sup> E. Munevar,<sup>20</sup> C. Muñoz Camacho,<sup>7</sup> P. Nadel-Turonskib,<sup>16</sup> S. Niccolai,<sup>7</sup> K. Peters,<sup>8</sup> A. Prokudin,<sup>2,21</sup> J. Richards,<sup>5</sup> B. G. Ritchie,<sup>1</sup> U. Shrestha,<sup>5</sup> B. Schmookler,<sup>16</sup> G. Schnell,<sup>22</sup> C. Schwarz,<sup>8</sup> J. Schwiening,<sup>8</sup> P. Schweitzer,<sup>5</sup> P. Simmerling,<sup>5</sup> H. Szumila-Vance,<sup>2</sup> S. Tripathi,<sup>23</sup> N. Trotta,<sup>5</sup> G. Varner,<sup>23</sup> A. Vossen,<sup>24</sup> E. Voutier,<sup>7</sup> N. Wickramaarachchi,<sup>14</sup> and N. Zachariou<sup>25</sup>

<sup>1</sup>Arizona State University, Tempe Arizona 85287 <sup>2</sup> Thomas Jefferson National Accelerator Laboratory, Newport News VA 23606 <sup>3</sup>Old Dominion University, Norfolk Virginia 23529 <sup>4</sup>Jazan University, Gizan 45142, Saudi Arabia <sup>5</sup> University of Connecticut, Storrs Connecticut 06269 <sup>6</sup>Justus Liebig Universitaet Giessen, Giessen, Germany <sup>7</sup> Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France <sup>8</sup>GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany <sup>9</sup>Nalu Scientific, Honolulu Hawaii 96822 <sup>10</sup>Florida International University, Miami Florida 33199 <sup>11</sup>Florida Institute of Technology, Melbourne, Florida 32901 <sup>12</sup> University of South Carolina, Columbia South Carolina 29208 <sup>13</sup>CEEM, Indiana University, Bloomington Indiana 47405 <sup>14</sup> Catholic University of America, Washington D.C. 20064 <sup>15</sup>Erlangen-Nuremberg University, 91058 Germany <sup>16</sup>CFNS, Stony Brook University, Stony Brook, New York 11794 <sup>17</sup>A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Yerevan Armenia <sup>18</sup> University of Kansas, Lawrence Kansas 66045 <sup>19</sup>Oak Ridge National Laboratory, Oak Ridge Tennessee 37830 <sup>20</sup> Universidad Distrital Francisco José de Caldas, Bogotá Colombia <sup>21</sup>Penn State University Berks, Reading Pennsylvania 19610 <sup>22</sup> University of the Basque Country UPV/EHU & Ikerbasque, Bilbao, Spain <sup>23</sup> University of Hawaii, Honolulu Hawaii 96822 <sup>24</sup>Duke University, Durham North Carolina 27708 <sup>25</sup> University of York, Heslington, York, YO10 5DD, UK (Dated: December 1, 2021)

### CORE — an effort of a small but enthusiastic proto-collaboration



#### CORE - a COmpact detectoR for the EIC

R. Alarcon,<sup>1</sup> M. Baker,<sup>2</sup> V. Baturin,<sup>3</sup> P. Brindza,<sup>3</sup> S. Bueltmann,<sup>3</sup> M. Bukhari,<sup>4</sup> R. Capobianco,<sup>5</sup> E. Christy,<sup>2</sup> S. Diehl,<sup>5,6</sup> M. Dugger,<sup>1</sup> R. Dupré,<sup>7</sup> R. Dzhygadlo,<sup>8</sup> K. Flood,<sup>9</sup> K. Gnanvo,<sup>2</sup> L. Guo,<sup>10</sup> T. Hayward,<sup>5</sup> M. Hattawy,<sup>3</sup> M. Hoballah,<sup>7</sup> M. Hohlmann,<sup>11</sup> C. E. Hyde a,<sup>3</sup> Y. Ilieva,<sup>12</sup> W. W. Jacobs,<sup>13</sup> K. Joo,<sup>5</sup> G. Kalicy,<sup>14</sup> A. Kim,<sup>5</sup> V. Kubarovsky,<sup>2</sup> A. Lehmann,<sup>15</sup> W. Li,<sup>16</sup> D. Marchand,<sup>7</sup> H. Marukyan,<sup>17</sup> M. J. Murray,<sup>18</sup> H. E. Montgomery,<sup>2</sup> V. Morozov,<sup>19</sup> I. Mostafanezhad,<sup>9</sup> A. Movsisyan,<sup>17</sup> E. Munevar,<sup>20</sup> C. Muñoz Camacho,<sup>7</sup> P. Nadel-Turonskib,<sup>16</sup> S. Niccolai,<sup>7</sup> K. Peters,<sup>8</sup> A. Prokudin,<sup>2,21</sup> J. Richards,<sup>5</sup> B. G. Ritchie,<sup>1</sup> U. Shrestha,<sup>5</sup> B. Schmookler,<sup>16</sup> G. Schnell,<sup>22</sup> C. Schwarz,<sup>8</sup> J. Schwiening,<sup>8</sup> P. Schweitzer,<sup>5</sup> P. Simmerling,<sup>5</sup> H. Szumila-Vance,<sup>2</sup> S. Tripathi,<sup>23</sup> N. Trotta,<sup>5</sup> G. Varner,<sup>23</sup> A. Vossen,<sup>24</sup> E. Voutier,<sup>7</sup> N. Wickramaarachchi,<sup>14</sup> and N. Zachariou<sup>25</sup>

<sup>1</sup>Arizona State University, Tempe Arizona 85287 <sup>2</sup> Thomas Jefferson National Accelerator Laboratory, Newport News VA 23606 <sup>3</sup>Old Dominion University, Norfolk Virginia 23529 <sup>4</sup>Jazan University, Gizan 45142, Saudi Arabia <sup>5</sup> University of Connecticut, Storrs Connecticut 06269 <sup>6</sup>Justus Liebig Universitaet Giessen, Giessen, Germany <sup>7</sup> Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France <sup>8</sup>GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany <sup>9</sup>Nalu Scientific, Honolulu Hawaii 96822 <sup>10</sup>Florida International University, Miami Florida 33199 <sup>11</sup>Florida Institute of Technology, Melbourne, Florida 32901 <sup>12</sup> University of South Carolina, Columbia South Carolina 29208 <sup>13</sup>CEEM, Indiana University, Bloomington Indiana 47405 <sup>14</sup> Catholic University of America, Washington D.C. 20064 <sup>15</sup>Erlangen-Nuremberg University, 91058 Germany <sup>16</sup>CFNS, Stony Brook University, Stony Brook, New York 11794 <sup>17</sup>A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Yerevan Armenia <sup>18</sup> University of Kansas, Lawrence Kansas 66045 <sup>19</sup>Oak Ridge National Laboratory, Oak Ridge Tennessee 37830 <sup>20</sup> Universidad Distrital Francisco José de Caldas, Bogotá Colombia <sup>21</sup>Penn State University Berks, Reading Pennsylvania 19610 <sup>22</sup> University of the Basque Country UPV/EHU & Ikerbasque, Bilbao, Spain <sup>23</sup> University of Hawaii, Honolulu Hawaii 96822 <sup>24</sup>Duke University, Durham North Carolina 27708 <sup>25</sup> University of York, Heslington, York, YO10 5DD, UK (Dated: December 1, 2021)

#### Main EIC physics goals: EIC White Paper



- proton spin: polarized quarks (ΔΣ) &
   gluons (ΔG)
   (semi-)inclusive DIS
- 3d imaging
  - transverse-momentum structure: transverse-momentum distributions (TMDs) → semi-inclusive DIS
  - Tomographic (spatial) images of the proton: generalized parton distributions
     (GPDs) → exclusive reactions
- QCD matter at extreme gluon density
  - coherent diffraction on heavy nuclei
- quark hadronization









#### Main EIC physics goals: EIC White Paper & NAS EIC Science Case



- proton spin: polarized quarks (ΔΣ) &
   gluons (ΔG) (semi-)inclusive DIS
- 3d imaging
  - transverse-momentum structure: transverse-momentum distributions (TMDs) → semi-inclusive DIS
  - Tomographic (spatial) images of the proton: generalized parton distributions (GPDs) → exclusive reactions
- QCD matter at extreme gluon density
  - coherent diffraction on heavy nuclei
- quark hadronization

- origin of mass:
  - spatial distribution of energy density and pressure
- origin of spin:
  - gluon spin
  - quark and gluon orbital angular momentum
- gluons in nuclei:
  - gluons and nuclear binding
  - gluon saturation in nuclei
  - coherent diffraction off heavy nuclei

G. Schnell 4

### CORE & call for EIC detector proposals



- general call for detector proposals (deadline 12/2021); review report in 03/2022
- CORE addresses the EIC White Paper & NAS Report science case, and meets/exceeds
  design requirements of Yellow Report (YR) [Tab. 3.1 of <a href="https://physdiv.jlab.org/DetectorMatrix">https://physdiv.jlab.org/DetectorMatrix</a>]
  - CORE physics program would thus match the physics performance of any simulation based on these requirements, e.g., presented in the YR
- central CORE detector is compatible with either the IR layout of the EIC CDR
  - can be placed at IR6 or IR8
  - CORE only requires a magnet-free space of 4m increase in luminosity, forward acceptance and decrease in chromaticity compared to CDR (assumes 4.5 m)
  - CORE is synergetic with a secondary focus at IR8
- CORE with distinct complementarity to the YR reference detector: offers unique opportunities for science beyond the EIC White Paper

# CORE detector at a glance



#### COmpact detectoR for Eic (CORE)



#### CORE detector at a glance





**Dual-radiator RICH** 



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/all-Si tracker, and a higher luminosity
  - size makes it cost effective with ample space for supports and services
  - affordable to use the best possible EM calorimetry in the barrel region



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/all-Si tracker, and a higher luminosity
  - size makes it cost effective with ample space for supports and services
  - affordable to use the best possible EM calorimetry in the barrel region
- hermetic detector, in particular, full EM calorimetry within -4 < η < 4
  - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes)



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/all-Si tracker, and a higher luminosity
  - size makes it cost effective with ample space for supports and services
  - affordable to use the best possible EM calorimetry in the barrel region
- hermetic detector, in particular, full EM calorimetry within -4 < η < 4
  - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes)
- DIRC for barrel PID & TOF PID for electron endcap



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker, and a higher luminosity
  - size makes it cost effective with ample space for supports and services
  - affordable to use the best possible EM calorimetry in the barrel region
- hermetic detector, in particular, full EM calorimetry within -4 < η < 4
  - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes)
- DIRC for barrel PID & TOF PID for electron endcap
- Belle-II-like K<sub>L</sub>—μ (KLM) system in flux return for neutral-hadron and muon ID
  - beneficial for, e.g., jets reconstructed from individual particles



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker, and a higher luminosity
  - size makes it cost effective with ample space for supports and services
  - affordable to use the best possible EM calorimetry in the barrel region
- hermetic detector, in particular, full EM calorimetry within -4 < η < 4
  - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes)
- DIRC for barrel PID & TOF PID for electron endcap
- Belle-II-like K<sub>L</sub>—μ (KLM) system in flux return for neutral-hadron and muon ID
  - beneficial for, e.g., jets reconstructed from individual particles
- in general, mostly low-risk and cost-efficient solutions without compromising physics goals but rather extending physics reach of YR reference detector



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker





- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker
  - central tracking complemented with forward tracker behind dRICH



- primary purpose: assist dRICH ring finder
- large distance to IP:
  - great lever arm for large-η particle tracking
    - improved momentum resolution
  - inner disk tracker (IDT) to increase acceptance



- ompact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker
    - ⇒ (sub-)%-level momentum resolution in most of η coverage





- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker
    - sufficient vertex resolution to tag charm



G. Schnell

DIS 2022



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker
    - ⇒ sufficient vertex resolution to tag charm





G. Schnell



- compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius
  - enables high-resolution tracking together w/ all-Si tracker
    - ⇒ sufficient vertex resolution to tag charm



number of D<sup>0</sup>, purity of D<sup>0</sup> sample after vertex constraints:

 $|v_k-v_{\pi}| < 50 \mu m$ ,  $|v_e-v_{\pi}| > 50 \mu m$ 

Already with simple vertex constraints a rather clean D<sup>0</sup> sample (purity of 87–97%) with high efficiency can be achieved. Performance is sufficient for both asymmetry and cross-section measurements.

Further improvements from refined analysis, e.g.,  $K/\pi$ -momentum ranking for higher-momenta  $D^0$ , easily possible.



#### electron hemisphere (η < 0)</li>

- best EMcal for e/ $\pi$  ID is PbWO (2% $\sqrt{E}$  + 1%)
  - used to cover full electron hemisphere
- endcap: non-projective & barrel: projective
- endcap EMcal is small & light
   can be cantilevered from behind to reduce supports, improving hermeticity
- hadron hemisphere  $(\eta > 0)$ 
  - W-shashlik (6%√E + 2%)
  - hadron endcap: 20 X<sub>0</sub> non-projective
     forward part of the barrel: 25 X<sub>0</sub> projective
  - excellent position resolution ( $\gamma/\pi^0$  at high E)





#### electron hemisphere (η < 0)</li>

- best EMcal for e/ $\pi$  ID is PbWO (2% $\sqrt{E}$  + 1%)
  - used to cover full electron hemisphere
- endcap: non-projective & barrel: projective
- endcap EMcal is small & light
   can be cantilevered from behind to reduce supports, improving hermeticity

#### • hadron hemisphere $(\eta > 0)$

- W-shashlik (6%√E + 2%)
- hadron endcap: 20 X<sub>0</sub> non-projective forward part of the barrel: 25 X<sub>0</sub> projective
- excellent position resolution ( $\gamma/\pi^0$  at high E)



[example, not actual CORE module]

- W-shashlik with interleaved layers of
  - 1.25mm W/Cu alloy (80% / 20%)
  - 2mm scintillator



- deeply virtual Compton scattering (DVCS):
   e A → e γ A
  - transverse momentum transfer essential for transverse imaging
  - can infer momentum transfer from scattered proton (nucleus) in far-forward detectors ("Roman pots")
    - → limitations from hadron-beam effects
  - OR: use well reconstructed e & γ
     kinematics; with equal or even better resolution at CORE compared to YR
     → forward hadron detection in addition improves exclusivity / BG suppression



- deeply virtual Compton scattering (DVCS):
   e A → e γ A
  - transverse momentum transfer essential for transverse imaging
  - can infer momentum transfer from scattered proton (nucleus) in far-forward detectors ("Roman pots")
    - ⇒ limitations from hadron-beam effects
  - OR: use well reconstructed e & γ
     kinematics; with equal or even better resolution at CORE compared to YR
     → forward hadron detection in addition improves exclusivity / BG suppression

C. Hyde's WG6 talk on We





G. Schnell



- deeply virtual Compton scattering (DVCS):
   e A → e γ A
  - transverse momentum transfer essential for transverse imaging
  - can infer momentum transfer from scattered proton (nucleus) in far-forward detectors ("Roman pots")
    - → limitations from hadron-beam effects
  - OR: use well reconstructed e & γ
     kinematics; with equal or even better resolution at CORE compared to YR
     → forward hadron detection in addition improves exclusivity / BG suppression
- similar arguments for exclusive meson production



→ Diffraction maxima up to
 0.075 GeV² will be visible (in IR6)

# CORE: some notable features — hadron calorimetry & muons



- $\eta > 1.2$ : Hcal based on STAR FCS
  - 520 STAR FCS modules are re-used for the outer ring
  - original STAR FCS has 36 Fe/Sci layers
     (20+3 mm); new modules will have 44
  - divided into two parts that can be moved out to the sides



#### CORE: some notable features — hadron calorimetry & muons



- η > 1.2 : Hcal based on STAR FCS
  - 520 STAR FCS modules are re-used for the outer ring
  - original STAR FCS has 36 Fe/Sci layers
     (20+3 mm); new modules will have 44
  - divided into two parts that can be moved out to the sides
- η < 1.2 : neutral hadron and muon ID detector based on the Belle II KLM
  - layers of orthogonal scintillator readout strips interleaved with the solenoid return steel
  - high detection efficiency and good angular resolution





G. Schnell

#### CORE: some notable features — hadron calorimetry & muons



 $M_{\mu+\mu}$  [GeV]

- $\eta > 1.2$ : Hcal based on STAR FCS
  - 520 STAR FCS modules are re-used for the outer ring
  - original STAR FCS has 36 Fe/Sci layers (20+3 mm); new modules will have 44
  - divided into two parts that can be moved out to the sides
- η < 1.2 : neutral hadron and muon ID detector based on the Belle II KLM
  - layers of orthogonal scintillator readout strips interleaved with the solenoid return steel
  - high detection efficiency and good angular resolution



p [GeV]

#### **CORE:** electron kinematics



- high-resolution calorimetry allows for precision DIS on protons and nuclei
  - electron method
     sufficient for most
     y=(q•P)/(k•P)
     q ... virtual photon
     k ... incoming lepton
     P ... incoming proton
  - only at low y, need alternative methods like
     Jaquet-Blondel (JB) or double-angle (DA) method
- low-x region (large y) with %-level precision



#### **CORE:** electron kinematics

- high-resolution calorimetry allows for precision DIS on protons and nuclei
  - electron method
     sufficient for most
     y=(q•P)/(k•P)
     q ... virtual photon
     k ... incoming lepton
     P ... incoming proton
  - only at low y, need alternative methods like
     Jaquet-Blondel (JB) or double-angle (DA) method
- low-x region (large y) with %-level precision



#### CORE: some notable features — PID



- dual-radiator RICH (aerogel+gas) in hadron endcap
  - smaller version of the eRD14 design (most dimensions scaled by a factor 2, though length of the gas along the beam only reduced from 1.6 m to 1.2 m)
- high-performance DIRC in the barrel
  - can re-use bars from BaBar
  - thanks to small size of DIRC, affordable to build new (thinner) bars
    - ⇒ significant reduction of multiple scattering and radiator material (by ~40%)
- time-of-flight (TOF) for electron endcap
  - most hadrons have small momentum
     TOF system sufficient, while highly compact, radiation hard & B-field tolerant





#### CORE: some notable features — PID



combination of electron and hadron PID provides substantial pion suppression



- remaining pion / electron ratio is at the level of 0.1% or better for standard DIS kinematics
- emphasizes purity of electron reconstruction; important for, e.g., parity-violating DIS
- complementarity between EIC detectors





 hadron PID system covers important part of phase space for semi-inclusive DIS

Threshold mode





- hadron PID system covers important part of phase space for semi-inclusive DIS
  - no obvious gaps in phase space

[e.g., 
$$P_{hT}$$
 vs.  $z=(p_h \cdot P)/(q \cdot P)$ ]:



hreshold mode



 for TMD physics, it is not the transverse momentum in lab frame that matters!



→ momentum coverage in DIRC does not seriously impact PhT coverage







- excellent coverage both in P<sub>hT</sub>
   and z (here shown for pions)
- with very competitive resolution









28



DIS 2022



- excellent coverage both in P<sub>hT</sub>
   and z (here shown for pions)
- with very competitive resolution









28



DIS 2022

### CORE: some notable features — PID (for exclusive processes)





- exclusively produced hadrons in general more energetic
   decay products well covered by PID acceptance
- in electron endcap, TOF covers the kaons only at lowest electron beam energies
  - ightharpoonup with the excellent invariant-mass resolution of the tracker, the  $\phi$  yield can be extracted using sideband subtraction

### Secondary focus at IR8





QFFDS02A Quadrupole

QFFDS01B Quadrupole

QFFDS01A Quadrupole

BXSP01 Diople

- CORE & IR8 far-forward region compatible with secondary focus
  - much improved tagging of target remnants
  - new physics opportunities

# Secondary focus at IR8





- basically all daughter nuclei from <sup>238</sup>U can be detected & identified with IR8 secondary focus
- spectroscopy of short-lived rare isotopes from boosted photons in ZDC (w/ sufficient resol.)

# instead of summary: CORE — what next?



- March 21, 2022: Report from the EIC Detector Proposal Advisory Panel (DPAP)
  - ECCE-like detector as "EIC Detector 1"
  - panel also supports a second detector at IR8:
    - "an IR with a secondary focus can significantly broaden the physics scope and output of the EIC"
    - "a second detector could also be more specialized towards a particular physics area"
      - ⇒ CORE is a strong contender of being first choice for second detector

### instead of summary: CORE — what next?



- March 21, 2022: Report from the EIC Detector Proposal Advisory Panel (DPAP)
  - ECCE-like detector as "EIC Detector 1"
  - panel also supports a second detector at IR8:
    - "an IR with a secondary focus can significantly broaden the physics scope and output of the EIC"
    - "a second detector could also be more specialized towards a particular physics area"
      - → CORE is a strong contender of being first choice for second detector
- a CORE study group for a 2nd detector formed
  - open to everyone's participation
  - clearly ample opportunity to take leading roles

### instead of summary: CORE — what next?



- March 21, 2022: Report from the EIC Detector Proposal Advisory Panel (DPAP)
  - ECCE-like detector as "EIC Detector 1"
  - panel also supports a second detector at IR8:
    - "an IR with a secondary focus can significantly broaden the physics scope and output of the EIC"
    - "a second detector could also be more specialized towards a particular physics area"
      - ⇒ CORE is a strong contender of being first choice for second detector
- a CORE study group for a 2nd detector formed
  - open to everyone's participation
  - clearly ample opportunity to take leading roles



#### Key aspects of a compact detector



- Lower cost (without compromising any physics capabilities)
  - performance of many subsystems (DIRC, EMcal, etc) does not depend on overall system size or location
  - compact detector simply has fewer modules, making it more cost-effective

#### Lower risk

- a smaller new solenoid is not only less expensive but has lower technical and schedule risks
- a shorter detector is easier to integrate into the IR, as it leaves more space for accelerator infrastructure near the collision point and reduces challenges related to solenoid compensation
- Synergies with IR8 (and the physics opportunities enabled by a secondary focus)
  - lower cost equivalent subsystems makes it affordable to invest in key capabilities
  - an example is a PbWO<sub>4</sub> EMcal for eta < 0, which makes it possible to reconstruct DVCS kinematics using the photon, while only tagging the proton or ion (fragments) in the Roman pots</li>
    - in combination with the low-pT acceptance with a 2<sup>nd</sup> focus creates new opportunities for imaging of ions beyond He

#### Complementarity

 a compact 3 T solenoid can in combination with an all-Si tracker provide excellent tracking resolution, and is technologically complementary to the hybrid tracker in a 1.5 T BaBar solenoid in Detector 1