CORE a Compact Detector for the Electron-Ion Collider # CORE — an effort of a small but enthusiastic proto-collaboration #### CORE - a COmpact detectoR for the EIC R. Alarcon,¹ M. Baker,² V. Baturin,³ P. Brindza,³ S. Bueltmann,³ M. Bukhari,⁴ R. Capobianco,⁵ E. Christy,² S. Diehl,^{5,6} M. Dugger,¹ R. Dupré,⁷ R. Dzhygadlo,⁸ K. Flood,⁹ K. Gnanvo,² L. Guo,¹⁰ T. Hayward,⁵ M. Hattawy,³ M. Hoballah,⁷ M. Hohlmann,¹¹ C. E. Hyde a,³ Y. Ilieva,¹² W. W. Jacobs,¹³ K. Joo,⁵ G. Kalicy,¹⁴ A. Kim,⁵ V. Kubarovsky,² A. Lehmann,¹⁵ W. Li,¹⁶ D. Marchand,⁷ H. Marukyan,¹⁷ M. J. Murray,¹⁸ H. E. Montgomery,² V. Morozov,¹⁹ I. Mostafanezhad,⁹ A. Movsisyan,¹⁷ E. Munevar,²⁰ C. Muñoz Camacho,⁷ P. Nadel-Turonski^b,¹⁶ S. Niccolai,⁷ K. Peters,⁸ A. Prokudin,^{2,21} J. Richards,⁵ B. G. Ritchie,¹ U. Shrestha,⁵ B. Schmookler,¹⁶ G. Schnell,²² C. Schwarz,⁸ J. Schwiening,⁸ P. Schweitzer,⁵ P. Simmerling,⁵ H. Szumila-Vance,² S. Tripathi,²³ N. Trotta,⁵ G. Varner,²³ A. Vossen,²⁴ E. Voutier,⁷ N. Wickramaarachchi,¹⁴ and N. Zachariou²⁵ ¹Arizona State University, Tempe Arizona 85287 ² Thomas Jefferson National Accelerator Laboratory, Newport News VA 23606 ³Old Dominion University, Norfolk Virginia 23529 ⁴Jazan University, Gizan 45142, Saudi Arabia ⁵ University of Connecticut, Storrs Connecticut 06269 ⁶Justus Liebig Universitaet Giessen, Giessen, Germany ⁷ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ⁸GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany ⁹Nalu Scientific, Honolulu Hawaii 96822 ¹⁰Florida International University, Miami Florida 33199 ¹¹Florida Institute of Technology, Melbourne, Florida 32901 ¹² University of South Carolina, Columbia South Carolina 29208 ¹³CEEM, Indiana University, Bloomington Indiana 47405 ¹⁴ Catholic University of America, Washington D.C. 20064 ¹⁵Erlangen-Nuremberg University, 91058 Germany ¹⁶CFNS, Stony Brook University, Stony Brook, New York 11794 ¹⁷A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Yerevan Armenia ¹⁸ University of Kansas, Lawrence Kansas 66045 ¹⁹Oak Ridge National Laboratory, Oak Ridge Tennessee 37830 ²⁰ Universidad Distrital Francisco José de Caldas, Bogotá Colombia ²¹Penn State University Berks, Reading Pennsylvania 19610 ²² University of the Basque Country UPV/EHU & Ikerbasque, Bilbao, Spain ²³ University of Hawaii, Honolulu Hawaii 96822 ²⁴Duke University, Durham North Carolina 27708 ²⁵ University of York, Heslington, York, YO10 5DD, UK (Dated: December 1, 2021) # CORE — an effort of a small but enthusiastic proto-collaboration #### CORE - a COmpact detectoR for the EIC R. Alarcon,¹ M. Baker,² V. Baturin,³ P. Brindza,³ S. Bueltmann,³ M. Bukhari,⁴ R. Capobianco,⁵ E. Christy,² S. Diehl,^{5,6} M. Dugger,¹ R. Dupré,⁷ R. Dzhygadlo,⁸ K. Flood,⁹ K. Gnanvo,² L. Guo,¹⁰ T. Hayward,⁵ M. Hattawy,³ M. Hoballah,⁷ M. Hohlmann,¹¹ C. E. Hyde a,³ Y. Ilieva,¹² W. W. Jacobs,¹³ K. Joo,⁵ G. Kalicy,¹⁴ A. Kim,⁵ V. Kubarovsky,² A. Lehmann,¹⁵ W. Li,¹⁶ D. Marchand,⁷ H. Marukyan,¹⁷ M. J. Murray,¹⁸ H. E. Montgomery,² V. Morozov,¹⁹ I. Mostafanezhad,⁹ A. Movsisyan,¹⁷ E. Munevar,²⁰ C. Muñoz Camacho,⁷ P. Nadel-Turonskib,¹⁶ S. Niccolai,⁷ K. Peters,⁸ A. Prokudin,^{2,21} J. Richards,⁵ B. G. Ritchie,¹ U. Shrestha,⁵ B. Schmookler,¹⁶ G. Schnell,²² C. Schwarz,⁸ J. Schwiening,⁸ P. Schweitzer,⁵ P. Simmerling,⁵ H. Szumila-Vance,² S. Tripathi,²³ N. Trotta,⁵ G. Varner,²³ A. Vossen,²⁴ E. Voutier,⁷ N. Wickramaarachchi,¹⁴ and N. Zachariou²⁵ ¹Arizona State University, Tempe Arizona 85287 ² Thomas Jefferson National Accelerator Laboratory, Newport News VA 23606 ³Old Dominion University, Norfolk Virginia 23529 ⁴Jazan University, Gizan 45142, Saudi Arabia ⁵ University of Connecticut, Storrs Connecticut 06269 ⁶Justus Liebig Universitaet Giessen, Giessen, Germany ⁷ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ⁸GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany ⁹Nalu Scientific, Honolulu Hawaii 96822 ¹⁰Florida International University, Miami Florida 33199 ¹¹Florida Institute of Technology, Melbourne, Florida 32901 ¹² University of South Carolina, Columbia South Carolina 29208 ¹³CEEM, Indiana University, Bloomington Indiana 47405 ¹⁴ Catholic University of America, Washington D.C. 20064 ¹⁵Erlangen-Nuremberg University, 91058 Germany ¹⁶CFNS, Stony Brook University, Stony Brook, New York 11794 ¹⁷A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Yerevan Armenia ¹⁸ University of Kansas, Lawrence Kansas 66045 ¹⁹Oak Ridge National Laboratory, Oak Ridge Tennessee 37830 ²⁰ Universidad Distrital Francisco José de Caldas, Bogotá Colombia ²¹Penn State University Berks, Reading Pennsylvania 19610 ²² University of the Basque Country UPV/EHU & Ikerbasque, Bilbao, Spain ²³ University of Hawaii, Honolulu Hawaii 96822 ²⁴Duke University, Durham North Carolina 27708 ²⁵ University of York, Heslington, York, YO10 5DD, UK (Dated: December 1, 2021) ### CORE — an effort of a small but enthusiastic proto-collaboration #### CORE - a COmpact detectoR for the EIC R. Alarcon,¹ M. Baker,² V. Baturin,³ P. Brindza,³ S. Bueltmann,³ M. Bukhari,⁴ R. Capobianco,⁵ E. Christy,² S. Diehl,^{5,6} M. Dugger,¹ R. Dupré,⁷ R. Dzhygadlo,⁸ K. Flood,⁹ K. Gnanvo,² L. Guo,¹⁰ T. Hayward,⁵ M. Hattawy,³ M. Hoballah,⁷ M. Hohlmann,¹¹ C. E. Hyde a,³ Y. Ilieva,¹² W. W. Jacobs,¹³ K. Joo,⁵ G. Kalicy,¹⁴ A. Kim,⁵ V. Kubarovsky,² A. Lehmann,¹⁵ W. Li,¹⁶ D. Marchand,⁷ H. Marukyan,¹⁷ M. J. Murray,¹⁸ H. E. Montgomery,² V. Morozov,¹⁹ I. Mostafanezhad,⁹ A. Movsisyan,¹⁷ E. Munevar,²⁰ C. Muñoz Camacho,⁷ P. Nadel-Turonskib,¹⁶ S. Niccolai,⁷ K. Peters,⁸ A. Prokudin,^{2,21} J. Richards,⁵ B. G. Ritchie,¹ U. Shrestha,⁵ B. Schmookler,¹⁶ G. Schnell,²² C. Schwarz,⁸ J. Schwiening,⁸ P. Schweitzer,⁵ P. Simmerling,⁵ H. Szumila-Vance,² S. Tripathi,²³ N. Trotta,⁵ G. Varner,²³ A. Vossen,²⁴ E. Voutier,⁷ N. Wickramaarachchi,¹⁴ and N. Zachariou²⁵ ¹Arizona State University, Tempe Arizona 85287 ² Thomas Jefferson National Accelerator Laboratory, Newport News VA 23606 ³Old Dominion University, Norfolk Virginia 23529 ⁴Jazan University, Gizan 45142, Saudi Arabia ⁵ University of Connecticut, Storrs Connecticut 06269 ⁶Justus Liebig Universitaet Giessen, Giessen, Germany ⁷ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ⁸GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany ⁹Nalu Scientific, Honolulu Hawaii 96822 ¹⁰Florida International University, Miami Florida 33199 ¹¹Florida Institute of Technology, Melbourne, Florida 32901 ¹² University of South Carolina, Columbia South Carolina 29208 ¹³CEEM, Indiana University, Bloomington Indiana 47405 ¹⁴ Catholic University of America, Washington D.C. 20064 ¹⁵Erlangen-Nuremberg University, 91058 Germany ¹⁶CFNS, Stony Brook University, Stony Brook, New York 11794 ¹⁷A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Yerevan Armenia ¹⁸ University of Kansas, Lawrence Kansas 66045 ¹⁹Oak Ridge National Laboratory, Oak Ridge Tennessee 37830 ²⁰ Universidad Distrital Francisco José de Caldas, Bogotá Colombia ²¹Penn State University Berks, Reading Pennsylvania 19610 ²² University of the Basque Country UPV/EHU & Ikerbasque, Bilbao, Spain ²³ University of Hawaii, Honolulu Hawaii 96822 ²⁴Duke University, Durham North Carolina 27708 ²⁵ University of York, Heslington, York, YO10 5DD, UK (Dated: December 1, 2021) #### Main EIC physics goals: EIC White Paper - proton spin: polarized quarks (ΔΣ) & gluons (ΔG) (semi-)inclusive DIS - 3d imaging - transverse-momentum structure: transverse-momentum distributions (TMDs) → semi-inclusive DIS - Tomographic (spatial) images of the proton: generalized parton distributions (GPDs) → exclusive reactions - QCD matter at extreme gluon density - coherent diffraction on heavy nuclei - quark hadronization #### Main EIC physics goals: EIC White Paper & NAS EIC Science Case - proton spin: polarized quarks (ΔΣ) & gluons (ΔG) (semi-)inclusive DIS - 3d imaging - transverse-momentum structure: transverse-momentum distributions (TMDs) → semi-inclusive DIS - Tomographic (spatial) images of the proton: generalized parton distributions (GPDs) → exclusive reactions - QCD matter at extreme gluon density - coherent diffraction on heavy nuclei - quark hadronization - origin of mass: - spatial distribution of energy density and pressure - origin of spin: - gluon spin - quark and gluon orbital angular momentum - gluons in nuclei: - gluons and nuclear binding - gluon saturation in nuclei - coherent diffraction off heavy nuclei G. Schnell 4 ### CORE & call for EIC detector proposals - general call for detector proposals (deadline 12/2021); review report in 03/2022 - CORE addresses the EIC White Paper & NAS Report science case, and meets/exceeds design requirements of Yellow Report (YR) [Tab. 3.1 of https://physdiv.jlab.org/DetectorMatrix] - CORE physics program would thus match the physics performance of any simulation based on these requirements, e.g., presented in the YR - central CORE detector is compatible with either the IR layout of the EIC CDR - can be placed at IR6 or IR8 - CORE only requires a magnet-free space of 4m increase in luminosity, forward acceptance and decrease in chromaticity compared to CDR (assumes 4.5 m) - CORE is synergetic with a secondary focus at IR8 - CORE with distinct complementarity to the YR reference detector: offers unique opportunities for science beyond the EIC White Paper # CORE detector at a glance #### COmpact detectoR for Eic (CORE) #### CORE detector at a glance **Dual-radiator RICH** - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/all-Si tracker, and a higher luminosity - size makes it cost effective with ample space for supports and services - affordable to use the best possible EM calorimetry in the barrel region - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/all-Si tracker, and a higher luminosity - size makes it cost effective with ample space for supports and services - affordable to use the best possible EM calorimetry in the barrel region - hermetic detector, in particular, full EM calorimetry within -4 < η < 4 - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes) - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/all-Si tracker, and a higher luminosity - size makes it cost effective with ample space for supports and services - affordable to use the best possible EM calorimetry in the barrel region - hermetic detector, in particular, full EM calorimetry within -4 < η < 4 - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes) - DIRC for barrel PID & TOF PID for electron endcap - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker, and a higher luminosity - size makes it cost effective with ample space for supports and services - affordable to use the best possible EM calorimetry in the barrel region - hermetic detector, in particular, full EM calorimetry within -4 < η < 4 - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes) - DIRC for barrel PID & TOF PID for electron endcap - Belle-II-like K_L—μ (KLM) system in flux return for neutral-hadron and muon ID - beneficial for, e.g., jets reconstructed from individual particles - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker, and a higher luminosity - size makes it cost effective with ample space for supports and services - affordable to use the best possible EM calorimetry in the barrel region - hermetic detector, in particular, full EM calorimetry within -4 < η < 4 - W vs. Pb shashlik EMcal considerably improves resolution (esp. for exclusive processes) - DIRC for barrel PID & TOF PID for electron endcap - Belle-II-like K_L—μ (KLM) system in flux return for neutral-hadron and muon ID - beneficial for, e.g., jets reconstructed from individual particles - in general, mostly low-risk and cost-efficient solutions without compromising physics goals but rather extending physics reach of YR reference detector - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker - central tracking complemented with forward tracker behind dRICH - primary purpose: assist dRICH ring finder - large distance to IP: - great lever arm for large-η particle tracking - improved momentum resolution - inner disk tracker (IDT) to increase acceptance - ompact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker - ⇒ (sub-)%-level momentum resolution in most of η coverage - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker - sufficient vertex resolution to tag charm G. Schnell DIS 2022 - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker - ⇒ sufficient vertex resolution to tag charm G. Schnell - compact, high-field (3T) solenoid: coil length 2.5m with 1m inner radius - enables high-resolution tracking together w/ all-Si tracker - ⇒ sufficient vertex resolution to tag charm number of D⁰, purity of D⁰ sample after vertex constraints: $|v_k-v_{\pi}| < 50 \mu m$, $|v_e-v_{\pi}| > 50 \mu m$ Already with simple vertex constraints a rather clean D⁰ sample (purity of 87–97%) with high efficiency can be achieved. Performance is sufficient for both asymmetry and cross-section measurements. Further improvements from refined analysis, e.g., K/π -momentum ranking for higher-momenta D^0 , easily possible. #### electron hemisphere (η < 0) - best EMcal for e/ π ID is PbWO (2% \sqrt{E} + 1%) - used to cover full electron hemisphere - endcap: non-projective & barrel: projective - endcap EMcal is small & light can be cantilevered from behind to reduce supports, improving hermeticity - hadron hemisphere $(\eta > 0)$ - W-shashlik (6%√E + 2%) - hadron endcap: 20 X₀ non-projective forward part of the barrel: 25 X₀ projective - excellent position resolution (γ/π^0 at high E) #### electron hemisphere (η < 0) - best EMcal for e/ π ID is PbWO (2% \sqrt{E} + 1%) - used to cover full electron hemisphere - endcap: non-projective & barrel: projective - endcap EMcal is small & light can be cantilevered from behind to reduce supports, improving hermeticity #### • hadron hemisphere $(\eta > 0)$ - W-shashlik (6%√E + 2%) - hadron endcap: 20 X₀ non-projective forward part of the barrel: 25 X₀ projective - excellent position resolution (γ/π^0 at high E) [example, not actual CORE module] - W-shashlik with interleaved layers of - 1.25mm W/Cu alloy (80% / 20%) - 2mm scintillator - deeply virtual Compton scattering (DVCS): e A → e γ A - transverse momentum transfer essential for transverse imaging - can infer momentum transfer from scattered proton (nucleus) in far-forward detectors ("Roman pots") - → limitations from hadron-beam effects - OR: use well reconstructed e & γ kinematics; with equal or even better resolution at CORE compared to YR → forward hadron detection in addition improves exclusivity / BG suppression - deeply virtual Compton scattering (DVCS): e A → e γ A - transverse momentum transfer essential for transverse imaging - can infer momentum transfer from scattered proton (nucleus) in far-forward detectors ("Roman pots") - ⇒ limitations from hadron-beam effects - OR: use well reconstructed e & γ kinematics; with equal or even better resolution at CORE compared to YR → forward hadron detection in addition improves exclusivity / BG suppression C. Hyde's WG6 talk on We G. Schnell - deeply virtual Compton scattering (DVCS): e A → e γ A - transverse momentum transfer essential for transverse imaging - can infer momentum transfer from scattered proton (nucleus) in far-forward detectors ("Roman pots") - → limitations from hadron-beam effects - OR: use well reconstructed e & γ kinematics; with equal or even better resolution at CORE compared to YR → forward hadron detection in addition improves exclusivity / BG suppression - similar arguments for exclusive meson production → Diffraction maxima up to 0.075 GeV² will be visible (in IR6) # CORE: some notable features — hadron calorimetry & muons - $\eta > 1.2$: Hcal based on STAR FCS - 520 STAR FCS modules are re-used for the outer ring - original STAR FCS has 36 Fe/Sci layers (20+3 mm); new modules will have 44 - divided into two parts that can be moved out to the sides #### CORE: some notable features — hadron calorimetry & muons - η > 1.2 : Hcal based on STAR FCS - 520 STAR FCS modules are re-used for the outer ring - original STAR FCS has 36 Fe/Sci layers (20+3 mm); new modules will have 44 - divided into two parts that can be moved out to the sides - η < 1.2 : neutral hadron and muon ID detector based on the Belle II KLM - layers of orthogonal scintillator readout strips interleaved with the solenoid return steel - high detection efficiency and good angular resolution G. Schnell #### CORE: some notable features — hadron calorimetry & muons $M_{\mu+\mu}$ [GeV] - $\eta > 1.2$: Hcal based on STAR FCS - 520 STAR FCS modules are re-used for the outer ring - original STAR FCS has 36 Fe/Sci layers (20+3 mm); new modules will have 44 - divided into two parts that can be moved out to the sides - η < 1.2 : neutral hadron and muon ID detector based on the Belle II KLM - layers of orthogonal scintillator readout strips interleaved with the solenoid return steel - high detection efficiency and good angular resolution p [GeV] #### **CORE:** electron kinematics - high-resolution calorimetry allows for precision DIS on protons and nuclei - electron method sufficient for most y=(q•P)/(k•P) q ... virtual photon k ... incoming lepton P ... incoming proton - only at low y, need alternative methods like Jaquet-Blondel (JB) or double-angle (DA) method - low-x region (large y) with %-level precision #### **CORE:** electron kinematics - high-resolution calorimetry allows for precision DIS on protons and nuclei - electron method sufficient for most y=(q•P)/(k•P) q ... virtual photon k ... incoming lepton P ... incoming proton - only at low y, need alternative methods like Jaquet-Blondel (JB) or double-angle (DA) method - low-x region (large y) with %-level precision #### CORE: some notable features — PID - dual-radiator RICH (aerogel+gas) in hadron endcap - smaller version of the eRD14 design (most dimensions scaled by a factor 2, though length of the gas along the beam only reduced from 1.6 m to 1.2 m) - high-performance DIRC in the barrel - can re-use bars from BaBar - thanks to small size of DIRC, affordable to build new (thinner) bars - ⇒ significant reduction of multiple scattering and radiator material (by ~40%) - time-of-flight (TOF) for electron endcap - most hadrons have small momentum TOF system sufficient, while highly compact, radiation hard & B-field tolerant #### CORE: some notable features — PID combination of electron and hadron PID provides substantial pion suppression - remaining pion / electron ratio is at the level of 0.1% or better for standard DIS kinematics - emphasizes purity of electron reconstruction; important for, e.g., parity-violating DIS - complementarity between EIC detectors hadron PID system covers important part of phase space for semi-inclusive DIS Threshold mode - hadron PID system covers important part of phase space for semi-inclusive DIS - no obvious gaps in phase space [e.g., $$P_{hT}$$ vs. $z=(p_h \cdot P)/(q \cdot P)$]: hreshold mode for TMD physics, it is not the transverse momentum in lab frame that matters! → momentum coverage in DIRC does not seriously impact PhT coverage - excellent coverage both in P_{hT} and z (here shown for pions) - with very competitive resolution 28 DIS 2022 - excellent coverage both in P_{hT} and z (here shown for pions) - with very competitive resolution 28 DIS 2022 ### CORE: some notable features — PID (for exclusive processes) - exclusively produced hadrons in general more energetic decay products well covered by PID acceptance - in electron endcap, TOF covers the kaons only at lowest electron beam energies - ightharpoonup with the excellent invariant-mass resolution of the tracker, the ϕ yield can be extracted using sideband subtraction ### Secondary focus at IR8 QFFDS02A Quadrupole QFFDS01B Quadrupole QFFDS01A Quadrupole BXSP01 Diople - CORE & IR8 far-forward region compatible with secondary focus - much improved tagging of target remnants - new physics opportunities # Secondary focus at IR8 - basically all daughter nuclei from ²³⁸U can be detected & identified with IR8 secondary focus - spectroscopy of short-lived rare isotopes from boosted photons in ZDC (w/ sufficient resol.) # instead of summary: CORE — what next? - March 21, 2022: Report from the EIC Detector Proposal Advisory Panel (DPAP) - ECCE-like detector as "EIC Detector 1" - panel also supports a second detector at IR8: - "an IR with a secondary focus can significantly broaden the physics scope and output of the EIC" - "a second detector could also be more specialized towards a particular physics area" - ⇒ CORE is a strong contender of being first choice for second detector ### instead of summary: CORE — what next? - March 21, 2022: Report from the EIC Detector Proposal Advisory Panel (DPAP) - ECCE-like detector as "EIC Detector 1" - panel also supports a second detector at IR8: - "an IR with a secondary focus can significantly broaden the physics scope and output of the EIC" - "a second detector could also be more specialized towards a particular physics area" - → CORE is a strong contender of being first choice for second detector - a CORE study group for a 2nd detector formed - open to everyone's participation - clearly ample opportunity to take leading roles ### instead of summary: CORE — what next? - March 21, 2022: Report from the EIC Detector Proposal Advisory Panel (DPAP) - ECCE-like detector as "EIC Detector 1" - panel also supports a second detector at IR8: - "an IR with a secondary focus can significantly broaden the physics scope and output of the EIC" - "a second detector could also be more specialized towards a particular physics area" - ⇒ CORE is a strong contender of being first choice for second detector - a CORE study group for a 2nd detector formed - open to everyone's participation - clearly ample opportunity to take leading roles #### Key aspects of a compact detector - Lower cost (without compromising any physics capabilities) - performance of many subsystems (DIRC, EMcal, etc) does not depend on overall system size or location - compact detector simply has fewer modules, making it more cost-effective #### Lower risk - a smaller new solenoid is not only less expensive but has lower technical and schedule risks - a shorter detector is easier to integrate into the IR, as it leaves more space for accelerator infrastructure near the collision point and reduces challenges related to solenoid compensation - Synergies with IR8 (and the physics opportunities enabled by a secondary focus) - lower cost equivalent subsystems makes it affordable to invest in key capabilities - an example is a PbWO₄ EMcal for eta < 0, which makes it possible to reconstruct DVCS kinematics using the photon, while only tagging the proton or ion (fragments) in the Roman pots - in combination with the low-pT acceptance with a 2nd focus creates new opportunities for imaging of ions beyond He #### Complementarity a compact 3 T solenoid can in combination with an all-Si tracker provide excellent tracking resolution, and is technologically complementary to the hybrid tracker in a 1.5 T BaBar solenoid in Detector 1