Measurement of Lepton-Jet correlation in DIS with H1 at HERA, using machine learning for unfolding

Miguel Arratia

DIS Born-level configuration $\gamma^* q ightarrow q$

A new channel to probe for quark transverse-momentum distributions (TMDs) and evolution

Liu et al. PRL. 122, 192003, Gutierrez et al. PRL. 121, 162001

"The advantage of the lepton-jet correlation as compared to the standard SIDIS processes is that it **does not involve TMD fragmentation functions.**"

Existing TMD data

Constraining TMD evolution with HERA data

Bridging DIS from fixed-target exp. and high Q2 Drell-Yan at colliders.

Fixing open issues of TMD factorization & universality

The H1 experiment at HERA

Tracking system
 (silicon tracker, jet chambers, proportional chambers)

- LAr calorimeter (em/had)
- Scintillating fiber calorimeter

Both combined using an energy flow algorithm

1% Jet energy scale

0.5-1% lepton energy scale

Unfolding with Omnifold (via machine-learning).

Andreassen et al. PRL 124, 182001 (2020)

Closure tests (Pseudo Data: Django, Response: Rapgap)

Systematic uncertainties

Systematic uncertainties

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Staff

Open Access

Measurement of Lepton-Jet Correlation in Deep-Inelastic Scattering with the H1 Detector Using Machine Learning for Unfolding

V. Andreev et al. (H1 Collaboration) Phys. Rev. Lett. **128**, 132002 – Published 31 March 2022

Article	References	No Citing Articles	Supplemental Material	PDF	HTML	Export Citation	
				-			

Jet transverse momentum

Well described by NNLO calculation, and some MCs like Herwig and Djangoh

Jet pseudorapidity

Not well described at large pseudorapidity by NNLO, missing higher-order terms.

Well described by Rapgap

Lepton-jet momentum imbalance $q_T = |\vec{p}_T^e + \vec{p}_T^{ ext{jet}}|$

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap between collinear and TMD frameworks

Momentum imbalance

Textbook example of "matching" between collinear and TMD frameworks

<u>First time seen in</u> <u>DIS!</u>

<u>(not seen in</u> <u>fixed-target DIS)</u>

TMD calculation, without free parameters, describes data over wide kinematic range

$$\begin{split} \frac{d^5 \sigma(\ell p \to \ell' J)}{dy_\ell d^2 k_{\ell\perp} d^2 q_\perp} &= \sigma_0 \int d^2 k_\perp d^2 \lambda_\perp x f_q(x, k_\perp, \zeta_c, \mu_F) \\ &\times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_\perp, \mu_F) \\ &\times \delta^{(2)}(q_\perp - k_\perp - \lambda_\perp). \end{split}$$

 TMD calculations by F. Yuan and Z. Kang, TMD PDFs and soft factors extracted from low Q2 DIS and DY data. Sun et al. arXiv:1406.3073

Lepton-jet azimuthal correlations

TMD calculation does a great job at low qT; collinear calculation does a great job at large qT.

Large overlap between collinear and TMD frameworks

Azimuthal correlation

Textbook example of "matching" between collinear and TMD frameworks

<u>First time seen in</u> <u>DIS!</u>

<u>(not seen in</u> <u>fixed-target DIS)</u>

Omnifold allowed us to do a simultaneous, unbinned "unfolding"

First-ever measurement that uses <u>machine-learning</u> to correct for detector effects.

Correlation matrix

q_T/Q

Simultaneous Unfolding of these observables

η^{jet}

p^{jet}

- Unbinned (binned here for reference)

Summary

- New measurement of lepton jet momentum and azimuthal imbalance in DIS, which provide a new way to constrain TMD PDFs and their evolution
 - Pure TMD calculation does a great job at low qT; Pure collinear calculation does a great job at large qT. Large overlap. Data can **constrain matching between TMD and collinear frameworks**
 - First-ever measurement that uses machine-learning to correct for detector effects. (using Omnifold method)
 - This is the first measurement in a series of studies that aim at creating a **pathfinder program for the future EIC**

EIC

H1@HERA

backup

Reweighting the reco-level distributions

We use simple fully connected networks with a few hidden layers.

The distribution is binned for illustration, but the reweighting is unbinned.

All these distributions are simultaneously reweighted

Jet performance (energy flow reconstruction)

Closure tests (Pseudo Data: Django, Response: Rapgap)

Hadronization corrections (applied to NNLO calculation)

Small, and consistent with Pythia8 and Herwig despite different models of hadronization

Response matrices (not actually used as our results are unbinned, but just for reference)

Response matrices (not actually used as our results are unbinned, but just for reference)

Lepton-jet imbalance $q_T = |\vec{k}_{l\perp} + \vec{p}_{\perp}^{\dagger}|$ In Born-level configuration Probes quark TMD PDFs

Liu et al. PRL. 122, 192003 (2019)

$$\begin{split} \frac{d^5 \sigma(\ell \, p \to \ell' J)}{dy_\ell d^2 k_{\ell\perp} d^2 q_\perp} &= \sigma_0 \int d^2 k_\perp d^2 \lambda_\perp x f_q(x, k_\perp, \zeta_c, \mu_F) \\ &\quad \times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_\perp, \mu_F) \\ &\quad \times \delta^{(2)}(q_\perp - k_\perp - \lambda_\perp). \end{split}$$

Evolution: Endgame

PASS

hérmes

1000

00