Gluon helicity distribution

Yiyu Zhou

Institute of Quantum Matter, South China Normal University
Jefferson Lab Angular Momentum Collaboration

May 3, 2022
Outline

1. Introduction
2. Unpolarized PDFs
3. Polarized PDFs
4. Helicity
Proton spin puzzle

What is the decomposition of the proton spin [Nucl. Phys. B 337, 509-546 (1990)]?

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + \Delta G + L_g \]

- current extraction of $\Delta \Sigma$ is around 0.3
- spin can be extracted from parton distribution functions (PDFs)
- orbital angular momentum can be extracted from GPDs
Parton distribution functions

- Probability to find a quark i or a gluon g in a hadron h carrying a fraction x of the hadron’s momentum.

- Spin-averaged (unpolarized): $f = f^\uparrow + f^\downarrow$

- Spin-dependent (polarized): $\Delta f = f^\uparrow - f^\downarrow$
Global QCD analysis of high-energy scattering reactions

- Factorization theorems
- Bayesian inference
- Monte Carlo sampling
- Multi-step strategy
- Mellin transformation
Introduction

Unpolarized Polarized Helicity

Global QCD analysis - Bayesian inference

\[d\sigma^{\text{DIS}} = \sum_i H_i^{\text{DIS}} \otimes f_i \]
\[d\sigma^{\text{DY}} = \sum_{i,j} H_i^{\text{DY}} \otimes f_i \otimes f_j \]
\[d\sigma^{\text{jet}} = \sum_{i,j} H_i^{\text{jet}} \otimes f_i \otimes f_j \]

hadron structure

\[\rho(\vec{p}|\text{data}) \sim L(\vec{p}|\text{data})\pi(\vec{p}) \]

likelihood

polynomial

\[f_i(x) = n_i x^{\alpha_i} (1 - x)^{\beta_i} P(x) \]
\[\vec{p} = (n_i, \alpha_i, \beta_i, \ldots) \]

posterior beliefs

\[L(\vec{p}|\text{data}) = \exp\left(-\frac{1}{2}\chi^2(\vec{p}|\text{data})\right) \]

evidence

\[\chi^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{(E_i - T_i)^2}{\alpha_i^2} \]

Gluon helicity distribution
RHIC measures double longitudinal spin asymmetry

\[A_{LL}^{jets} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\Delta \sigma(\Delta g, \ldots)}{\sigma(g, \ldots)} \]

- \(\sigma^{\pm} \) are differential cross sections when proton beams have equal & opposite helicity
- denominator is spin-averaged cross section

We also include unpolarized DIS, Drell-Yan, and polarized inclusive DIS (total of 3576 points).
Fits to jet in unpolarized collisions

Good agreement between theory and Tevatron data

First inclusion of unpolarized RHIC jets!

PRD 105, 074022 (2022)
An overall good agreement is found.
Previous extractions of Δf

PRL 113, 012001 (2014)

Introduction

Unpolarized

Polarized

Helicity

Theory assumptions

1. SU(2) flavor symmetry only
2. SU(2) and SU(3)
3. SU(2) and SU(3), and PDF positivity

more constraints
more biases
less data driven
Extracted polarized PDFs

\[\Delta q^+ = \Delta q + \Delta \bar{q}, \quad q = u, d, s \]
Fits to jet A_{LL}

Good agreement with data for $\Delta g > 0$ and $\Delta g < 0$

Large cancellation between gg and qg channels for $\Delta g < 0$

Gluon helicity distribution

Yiyu Zhou
First moments - $\Delta G = \int_{0.05}^{1} \Delta g \, dx$

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + \Delta G + L_g
\]

- **SU(2):**
 - $\Delta g > 0$: 0.20 ± 0.13
 - $\Delta g < 0$: -0.56 ± 0.12

- **SU(3):**
 - $\Delta g > 0$: 0.27 ± 0.03
 - $\Delta g < 0$: -0.61 ± 0.04

- **SU(3) + pos:** 0.25 ± 0.03

- **DSSV14:** 0.2 ± 0.05

PRL 113, 012001 (2014)

PRD 105, 074022 (2022)

Helicity basis PDFs

- u^\uparrow / \downarrow and d^\uparrow / \downarrow are well separated.
- s^\uparrow / \downarrow can be hardly distinguished.
- First simultaneous extraction of f^\uparrow and f^\downarrow.
- g^\uparrow / \downarrow for $\Delta g > 0$ (blue and green) and $\Delta g < 0$ (orange and red).

Gluon helicity distribution

Yiyu Zhou
ROC and AUC

- indistinguishable
- somewhat distinguishable
- clearly distinguishable

ROC: receiver operating characteristic curve
AUC: area under curve of ROC

Gluon helicity distribution

Yiyu Zhou
AUC for helicity PDFs

- 0.5: can barely discriminate $f^{↑}$ and $f^{↓}$
- 1.0: can clearly discriminate $f^{↑}$ and $f^{↓}$
Currently working on...

- polarized SIDIS with large q_T: linear dependence on Δg at LO
- di-jets: also sensitive Δg at LO
- π^\pm and K^\pm production in pp collisions
In collaboration with Nobuo Sato and Wally Melnitchouk in Jefferson Lab.

And thanks to Carlota Andrés, Patrick Barry, Christopher Cocuzza, Eric Moffat for helpful discussions!