

Latest Top Quark Measurements with the CMS Detector

29th Deep-Inelastic Scattering (DIS) and Related Subjects
May 2-6, 2022

Hideki Okawa for CMS Collaboration Fudan University

Top Quark: A Unique Particle

- Top quark is the heaviest elementary particle: near-unity Yukawa
- Decays (τ_t~0.5x10⁻²⁴s) before hadronizing & spin-decorrelation
 - → Bare quark properties, maintains spin-correlation in decay products
- Large corrections to EW observables & dominant contributions in the Higgs potential (insights to its origin & life time of the Universe)
- LHC is a "Top Factory," covering O(10⁶) range in top production xsec.
 - Allows precise xsec & property measurements, searches for rare processes

Recent measurements: arXiv:2112.09114, accepted by JHEP Phys. Rev. D 104 (2021) 092013

- Top-pair production cross section is measured at √s=5.02,7,8,13 TeV.
- New 2-lepton (& 1-lep combined)
 measurements at √s= 5.02 TeV.
 - 4.3% syst. unc., 8.2% stat. unc.
- New 1-lepton measurement with Full Run-2 data (also diff. xsec).
 - 3.2% precision, 1.8% lumi. unc.
- In good agreement with NNLO QCD+NNLL resummation (Top++ v2.0).

$tar{t}$ Differential Cross Section

Phys. Rev. D 104 (2021) 092013

- First combination of resolved & boosted events in 1-lepton channel.
- Resolved: reconstructed top-pair system with constraints on m_t, m_W using likelihood.
- Boosted: Top-tagger on Anti-kt R=0.8 jets with a neural network.
- Fixed-order NNLO prediction (MATRIX) can be directly compared to the parton-level xsec. It generally describes the kinematic distributions, but 2σ discrepancy in $p_T(t\bar{t})$ at low p_T .

Top Mass (Direct Measurement)

- <u>Determines the top mass parameter defined in MC from kinematic</u>

 the so-called "MC mass"
- Goodness-of-fit defined as $P_{gof} = \exp(-1/2 \chi^2)$ for jet-parton assignment.
- Profile likelihood w/ 5 variables: m_t^{reco}, m_w^{reco}, R_{b,q}^{reco}, m_{l,b}^{reco}/ m_t^{reco}, m_{l,b}^{reco}, m_{l,b}^{reco}/ m_t^{reco}

$$R_{b,q}^{reco} = (p_T^{b1} + p_T^{b2}) / p_T^{q1} + p_T^{q2})$$

- Considerable improvement from previous results w/ 5D fit.
- $m_t^{5D} = 171.77 \pm 0.38$ **GeV**

Top Mass (Pole Mass) from $t\bar{t}$ +jets

- Pole mass: mass defined in parton-level scattering amplitudes. Self-energy corrections are absorbed in this mass scheme.
- MVA used for kinematic reconstruction on dilepton channel.

$$\rho = \frac{2m_0}{m_{\rm t\bar{t}+iet}}$$

- Mass extracted from inverse invariant mass of $t\bar{t}$ +jets.
- Pole mass with NLO theory prediction.
- Top pole mass:
 - $m_t = 172.94 \pm 1.37 \text{ GeV (ABMP16NLO)}.$
 - $m_t = 172.16 \pm 1.44 \text{ GeV (CT18NLO)}$.

Single Top

t-Channel

W-association (tW)

s-Channel

 Inclusive xsec measurements are generally in good agreement w/ NLO+NNLL & NNLO prediction.

DIS2022

The very rare Z-association mode was observed in 2018.

Single Top Differential (tZq)

Inclusive & first differential xsec measurements for tZq (pure EW production).

- Binned fit to multivariate classifier in 3-lepton events categorized w/ n_{jets} & n_{b-jets}.
- Most precise tZq inclusive xsec so far. Differential xsec compatible w/ SM & top spin asymmetry also consistent w/ SM.

$t\bar{t}+V$

- Direct measurement of top couplings to gauge bosons → inputs to EFT
- ttW & ttZ are dominant irreducible BG for ttH.

 $t\bar{t}\gamma$ xsec & EFT

ttγ measured in dilepton channel.

decays.

- Fiducial xsec: 173.5±2.5(stat)±6.3(syst) fb, 153±27 fb (theory w/ NLO k-factor)
 - Theory does not include γ contributions from top decays → xsec underestimated
- Differential cross section for kinematic observables from leptons, jets & γ . Complementarity to $t\bar{t}Z$; improved constraints on Wilson coefficients w/ comb.

CMS-PAS-TOP-21-011 (2022)

$t\bar{t}$ +W Cross Section

- Measurement w/ SS 2-lepton & 3-lepton events. Multi-classification NN used for SS 2lepton & m_{3l} as discriminant for 3-lepton.
- Compared to prediction from NLO+NNLL & NLO w/ improved FxFx ME merging.
- Leading systematics: ttH norm (2.6%), lumi (1.9%), ttW scale (1.8%)
- Xsec visibly larger than NLO+NNLL prediction.
- R_{ttW+/ttW-} lower than SM by 2σ.

CMS-PAS-TOP-21-003 (2022)

EFT w/ $t\bar{t}$ +Boosted Z/H

- Higher sensitivity to BSM in boosted Z/H p_T region.
- 1-lepton channel with boosted Z/H(→bb̄) tagged w/ DNN (DeepAK8).
- $\mu_{ttZ}^{boost} = 0.65^{+1.05}_{-0.98}$
- $\mu_{ttH}^{boost} = -0.33^{+0.87}_{-0.85}$

Hideki Okawa

Search for FCNC in $t\bar{t}$

arXiv:2111.02219, submitted to PRL

 FCNC: forbidden at tree-level; highly suppressed at loop-level in SM (BR<0(10⁻¹²))

 8 BDTs: 0/1-lepton; resonant/non-resonant; tHu/tHc couplings.

- 7 categories from BDT scores & simultaneous fit of m_{yy} spectrum.
- BR(t→Hu)<0.019% (0.031%), obs (exp) BR(t→Hc)<0.073% (0.051%) @95%CL
- Currently most stringent limit.

First Search for Central Exclusive $t\bar{t}$

- Search for central exclusive $t\bar{t}$ production in 1 & 2-lepton channels.
 - Predicted xsec ~ O(0.1 fb).
 BSM can enhance xsec
- Presence of 1 or 2 protons remain intact. Tagged by Roman Pots.

- Fractional momentum loss of protons (ξ) provides key variables to select the signals.
- Cross section limit: <0.59 pb [obs], 1.14 pb [exp] at 95%CL.
 - Statistical unc. still dominates.

Summary

- Many new results in CMS with Full Run-2 dataset and/or with higher precision.
 - Inclusive & differential cross section measurements for $t\bar{t}$ production.
 - Top-quark mass precision continues to improve.
 - Starting to have differential cross section measurements in rare productions as well.
 - $t\bar{t}$ W production visibly larger than NLO+NNLL.
 - Searching for BSM with EFT and in direct searches for FCNC processes.
 - First search for central exclusive production of top pairs.
- More analyses are under way. Stay tuned!

CMS Public Results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

15

Top Mass (Direct Measurement)

histogram		set label				
observable	category	1D	2D	3D	4D	5D
m_{t}^{fit}	$P_{\rm gof} \ge 0.2$	X	Х	X	Х	X
$m_{ m W}^{ m reco}$	$P_{\rm gof} \ge 0.2$		X	X	X	X
$m_{\ell \mathrm{b}}^{\mathrm{reco}}$	$P_{\rm gof} < 0.2$			X	X	X
$m_{\ell \mathrm{b}}^{\mathrm{reco}}/m_{\mathrm{t}}^{\mathrm{fit}}$	$P_{\rm gof} \ge 0.2$				X	X
$R_{ m bq}^{ m reco}$	$P_{\rm gof} \ge 0.2$					X

Top Mass (Direct Measurement)

Top Mass (Pole Mass) from $t\bar{t}$ +jets

Top Mass (Pole Mass) from $t\bar{t}$ +jets

Hideki Okawa

Top Mass (Pole Mass)

- <u>Pole mass: mass defined in parton-level scattering amplitudes.</u> Self-energy corrections are absorbed in this mass.
- Extracted from total or differential cross sections.

- Triple differential measurements on N_{jet} , M_{tt} , y_{tt} in dilepton channel.
- Simultaneous fit on PDF, α_s & m_t at NLO.
- Most precise measurement of top pole mass: m_t = 170.5±0.8 GeV
- However, <u>higher-order effects near</u>
 the threshold can give as large as
 1.4 GeV effect (W.-L. Ju et al., JHEP06(2020)158).

Running of Top Mass

Phys. Lett. B 803 (2020) 135263

- First investigation on "running" of m_t in \overline{MS} scheme.
- m_t(µ) is extracted from the m_{tt} distribution in the dilepton channel.

Top Mass (MC Mass)

Top Pole Mass

