Evidence for top quark production in nucleus-nucleus collisions with the CMS experiment

Luis F. Alcerro
(On behalf of the CMS Collaboration)

<u>l.alcerro@cern.ch</u>

Department of Physics & Astronomy University of Kansas

DIS2022
Santiago de Compostela
May 4, 2022

Introduction

Top quark:

- Discovered in 1995 in Tevatron
- ightharpoonup Heaviest particle in the SM: $m_t \sim 173~{\rm GeV}$
- Decay modes:

$$bt \rightarrow bW \rightarrow b + \ell\nu (\sim 33\%)$$

 \red Primarily produced in $t\bar{t}$ pairs by gluon fusion at LHC

- Channels:
 - $\ell + jets$ (semileptonic): $t\bar{t} \to bb'W(\to \ell\nu)W'(\to q\bar{q}')$ High BR
 - Dilepton (leptonic): $t\bar{t} \to bb'W(\to \ell\nu)W'(\to \ell'\nu')$ Cleanest
 - All jets (hadronic): $t\bar{t} \to bb'W(\to q\bar{q}')W'(\to q''\bar{q}''')$ Dirtiest and more challenging.

Introduction

- Since its discovery, $t\bar{t}$ observed in:
 - $t\bar{t}$ in pp: $\sqrt{s} = 5$ arXiv:2112.09114, 7, 8, JHEP 08 (2016) 029 Eur. Phys. J.C. 77, 15 (2017) 13 JHEP 09 (2017) 051 Eur. Phys. J.C. 77, 172 (2017) TeV
 - $t\bar{t}$ in pPb: $\sqrt{s}=8$ TeV Phys. Rev. Lett. 119, 242001
- Relevance:
 - pp:
 - pA and AA profit from pp measurements.
 - Constrain to proton PDF ($x \sim 1/\sqrt{s}$).
 - Different \sqrt{s} test different Bjorken -x gluon distribution functions.

- pA and AA:
 - Probe for nuclear PDFs
 - Paves the way for using top to probe QGP.

Methods

- First evidence of $t\bar{t}$ in nucleus-nucleus using PbPb collision data recorded by CMS in 2018 at $\sqrt{s}=5.02\,{\rm TeV}$ Phys. Rev. Lett. 125, 222001
- ▶ Data sample corresponds to $\mathcal{L} = 1.7 \pm 0.1 \ nb^{-1}$
- Dilepton ($t\bar{t}\to\ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}$) final states were analyzed.
 - BR($t\bar{t} \to \ell^+\ell^-\nu_\ell \bar{\nu}_\ell b\bar{b}$) ~ 5 %
- Two methods to extract $\sigma_{t\bar{t}}$:
 - Dilepton only: Final state kinematic properties alone
 - Dilepton + b-jets: Imposing extra requirements on the number of b-tagged jets

Theoretical prediction (CT14 NLO + EPPS16 NLO) J. Comp. Phys. Com. Vol. 185., Phys. Rev. Lett. 110, 252004:

$$\sigma_{t\bar{t}}^{th} = 3.22^{+0.38}_{-0.35} (nPDF \oplus PDF)^{+0.09}_{-0.10} (scale) \mu b$$

CMS-HIN-19-001

Methods

Signal extraction

- Boosted decision trees (BDT): based on kinematics of the leading and sub-leading p_T leptons.
- Simultaneous (three final states) likelihood fits to binned BDT distributions are performed separately for the two methods.
- Fits account to all sources of uncertainty
- Signal strength is extracted: $\mu = \sigma_{t\bar{t}}/\sigma_{theory}$

Simulation

- Signal NN (N=p,n) $\rightarrow t\bar{t}$: MadGraph5_aMC@NLO embedded to HYDJET
- Main background is DY (Z/γ *). Estimated from MC and data.
- Nonprompt (QCD multijet, W+jets) from control regions in data.

Event selection

CMS-HIN-19-001

Results

Results

Dilepton + b-jets

$$\sigma_{t\bar{t}} = 2.03^{+0.71}_{-0.64} \,\mu b$$

$$\sigma_{t\bar{t}} = 2.54^{+0.84}_{-0.74} \,\mu b$$

- lacktriangle Compatible with pp scaled data and QCD calculations.
- Statistical uncertainties dominate by far.
- Evidence of top production in PbPb

Phys. Rev. Lett. 125, 222001

Going further dileptons...

- \bullet $t\bar{t}$ in pp: baseline reference for AA
 - * $t\bar{t}$ in pp at 5.02 TeV update in dilepton channel with 2017 data. arXiv:2112.09114
 - Dilepton & $\ell + jets$ channel accessible
 - Reaching higher precision

2015: dilepton & $\ell + jets$

$$\sigma_{t\bar{t}} = 69.5 \pm 6.1 \, (stat) \pm 5.6 \, (syst) \pm 1.6 \, (lumi) \, pb$$

dilepton(2017) & $\ell + jets$ (2015)

$$\sigma_{t\bar{t}} = 63.0 \pm 4.1 \ (stat) \pm 3.0 \ (syst + lumi) \ pb$$

Projections for $t\bar{t}$ in PbPb at HL-LHC

- Focusing on dilepton only method (no b-jets).
- Total uncert. expected to be halved w.r.t. Run 2.

Going further dileptons...

• Unlike other jet quenching probes (dijets, $Z/\gamma + jets$) which are produced simultaneously with the collision, tops can resolve the time evolution of QGP:

- Depending p_t tops can decay before or within QGP.
- Taking "snapshots" at different times (p_t) , one could resolve the QGP time evolution.

PRL 120 (2018) 232301 PRL 120 (2018) 232301

Summary

- \bullet $t\bar{t}$ in pp, pPb and and evidence in PbPb.
- \bullet $\sigma_{t\bar{t}}$ in all systems consistent with theory.
- \bullet $t\bar{t}$ in AA collisions has the potential to resolve the time structure of the QGP in the context of HL-LHC and future colliders.

Backup slides

Uncertainties

Source	$\Delta\mu/\mu$		
	Dilepton only	Dilepton plus b-tagged jets	
Total statistical uncertainty	0.27	0.28	
Total systematic experimental uncertainty	0.17	0.19	
Background normalization	0.12	0.12	
Background and tt signal distribution	0.07	0.08	
Lepton selection efficiency	0.06	0.06	
Jet energy scale and resolution		0.02	
b jet identification ($\varepsilon_{\rm b}$)		0.06	
Integrated luminosity	0.05	0.05	
Total theoretical uncertainty	0.05	0.05	
nPDF, μ_R , μ_F scales, and $\alpha_S(m_Z)$	< 0.01	< 0.01	
Top quark and Zboson $p_{\rm T}$ modelling	0.05	0.05	
Top quark mass	< 0.01	< 0.01	
Total uncertainty	0.32	0.34	

CMS-HIN-19-001

Backup

Identification of b-jets

Combined Secondary Vertex Algorithm (CSV Run I, CSv2V Run II): combines the info. of displaced tracks and secondary vertices associated with the jet using MVA.

JINST 13 (2018) P05011

Table 1: Input variables used for the Run 1 version of the CSV algorithm and for the CSVv2 algorithm. The symbol "x" ("—") means that the variable is (not) used in the algorithm

Input variable	Run 1 CSV	CSVv2
SV 2D flight distance significance	X	X
Number of SV	_	X
Track $\eta_{\rm rel}$	X	X
Corrected SV mass	X	X
Number of tracks from SV	X	X
SV energy ratio	X	X
$\Delta R(SV, jet)$	_	X
3D IP significance of the first four tracks	X	X
Track $p_{T,rel}$	_	X
$\Delta R(\text{track}, \text{jet})$	_	X
Track $p_{T,rel}$ ratio	_	X
Track distance	_	Χ
Track decay length	_	X
Summed tracks $E_{\rm T}$ ratio	_	Χ
ΔR (summed tracks, jet)	_	X
First track 2D IP significance above c threshold	_	X
Number of selected tracks	_	Χ
Jet p_{T}	_	Χ
Jet η	_	X

Backup

Boosted Decision Trees (BDT)

Decision Tree (DT): binary classifier in which repeated decisions are taken until a stop criterion is reached.

Boosted DT (BDT): extends the idea from one tree (weak classifier) to several trees (forest)

Better performance classifier

By convention, signal (background) events accumulate at large (small) BDT score.

CERN-OPEN-2007-007

 $t\bar{t}$ in PbPb: BDT is trained with kinematics of the two leading- p_T leptons.

 p_T of leading lepton, $p_T(\ell_1)$

Asymmetry in lepton- p_T 's, $\frac{p_T(\ell_1) - p_T(\ell_2)}{p_T(\ell_1) + p_T(\ell_2)}$

Dilepton system p_T , $p_T(\ell\ell)$

Dilepton system pseudorapidity, $|\eta(\ell\ell)|$

Absolute azimuthal separation in ϕ of the two leptons, $|\Delta\phi(\ell\ell)|$

Sum of absolute η 's of leptons, $\sum_{i} |\eta_i|$

CMS-HIN-19-001