Phenomenological analysis of the scalar PDF

Aurore Courtoy
Instituto de Física
UNAM (National Autonomous University of Mexico)

Santiago de Compostela
May 2022

Higher-twist parton distribution functions

Gluon at low energy, "the glue that binds us all"?

What are higher-twist distribution functions?
(3) What information do they encapsulate?
(3) From low-energy experiments to higher Q2.

One possible definition for higher-twist contributions: terms effectively suppressed like (M/Q)t-2

Fixed Target DIS \& SIDIS: M/Q is not so small
(3) either spurious contaminations

- or spin asymmetries can be defined to be sensitive to twist-3

This talk: extraction of the twist-3 PDF $e(x)$ [2203.14975]

Scalar PDF

The composition of the scalar PDF is worked out through the EoM of QCD:

Only observable-related contribution to the proton mass:
the singularity of $\mathrm{e}(\mathrm{x})$ is proportional to the pion-nucleon sigma
term through sum rules [e.g. Kodaira \& Tanaka, PTP, Vol. 101].
[Schweitzer and Efremov, JHEP08006]
[Burkardt \& Koike, NPB632]
[Ji, NPB960]

Scalar PDF and the proton mass

QCD mass decomposition

[Lorcé, EPJC78; Lorcé et al, 2109.11785]
see talk by Andreas Metz (WG5)

Sigma terms

$$
\langle P| m_{u} \bar{u} u+m_{d} \bar{d} d|P\rangle=\sigma_{\pi N}
$$

- have been determined from theoretical analysis of πN data [Meissner et al.]
- have been evaluated on the lattice [Constantinou et al.]
- pheno analysis of $e(x)$ could pave the way towards another possible determination

Scalar PDF and the proton mass

QCD mass decomposition

[Ji, PRL 74; Ji, PRD 52]
[Lorcé, EPJC78; Lorcé et al, 2109.11785]
see talk by Andreas Metz (WG5)

Sigma terms

$$
\langle P| m_{u} \bar{u} u+m_{d} \bar{d} d|P\rangle=\sigma_{\pi N}
$$

- have been determined from theoretical analysis of πN data [Meissner et al.]
- have been evaluated on the lattice [Constantinou et al.]
pheno analysis of $e(x)$ could pave the way towards another possible determination
- can be accessed through single-hadron SIDIS [Efremov et al, PRD67]
- can be accessed through dihadron SIDIS: this talk

Twist-3 in SIDIS dihadron production

(5) collinear framework - led to collinear transversity extraction [Radici, Jakob \& Bianconi, PRD65].
(3) modulations of spin asymmetries single out:

$$
\left[\frac{\text { twist-3 PDF } \times \text { twist- } 2 \mathrm{FF}]+[\text { twist-2 PDF } \times \text { twist- } 3 \mathrm{FF}]}{\text { unpolarized }}\right.
$$

(1) Scalar PDF from the beam spin asymmetry

$$
A_{L U}^{\sin \phi_{R}}\left(x, z, m_{\pi \pi}\right) \propto \frac{M}{Q} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)+\frac{m_{\pi \pi}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, m_{\pi \pi}\right)}
$$

Beam spin asymmetry at CLAS and CLAS12

(1) dihadron SIDIS on proton target is
sensitive to $e^{P} \equiv \frac{1}{9}\left(4 e^{u_{\mathrm{V}}}-e^{d_{\mathrm{v}}}\right) ;$
[Bacchetta \& Radici, PRD69 (2004)]
[Courtoy, 1405.7659]
(1) non-vanishing twist-3 effects at CLAS12;

[CLAS Collaboration, PRL126 (2021) 6, 062002]
(3) projections of beam spin asymmetries on $\left(x, z, M_{h} ; Q^{2}, y\right)$ (x, z, M_{h})-triptychs from the parton distribution and fragmentation function.

Road map for $\mathrm{e}(\mathrm{x})$ extraction and (global) analysis.

CLAS12: $1.5<Q^{2}<5.7 \mathrm{GeV}^{2}$

[CLAS Collaboration, PRL126 (2021) 152501]

Extraction of $e(x)$ from CLAS data

$$
A_{L U}^{\sin \phi_{R}}\left(x, z, m_{\pi \pi}\right) \propto \frac{M}{Q} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)+\frac{m_{\pi \pi}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, m_{\pi \pi}\right)}
$$

Twist-2 Dihadron Fragmentation Functions

(1) Phenomenologically tested for the twist-2 transversity PDF [Bacchetta, Courtoy \& Radici, PRL107 and follow-ups]
(3) extracted in $\mathrm{e}^{+} \mathrm{e}^{-}$at Belle here: [Radici, Courtoy, Bacchetta, JHEP 05 (2015)]
(3) wet the ratio R that is believed to be universal (portable) up to evolution effects

$$
R\left(z, M_{h}\right)=\frac{|\boldsymbol{R}|}{M_{h}} \frac{H_{1}^{\varangle u}\left(z, M_{h} ; Q_{0}^{2}\right)}{D_{1}^{u}\left(z, M_{h} ; Q_{0}^{2}\right)}
$$

Extraction of $e(x)$ from CLAS data

$$
\begin{aligned}
& \qquad A_{L U}^{\sin \phi_{R}}\left(x, z, m_{\pi \pi}\right) \propto \frac{M}{Q} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)+\frac{m_{\pi \pi}}{z M} f_{1}^{q}(x) \tilde{G}_{s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, m_{\pi \pi}\right)} \\
& \text { Twist-2 Dihadron Fragmentation Functions } \\
& \text { Phenomenologically tested for the twist-2 transversity PDF [Bacchetta, Courtoy \& Radici, PRL107 and follow-ups] } \\
& \text { extracted in } \mathrm{e}^{+} \mathrm{e}^{-} \text {at Belle here: [Radici, Courtoy, Bacchetta, JHEP 05 (2015)] } \\
& \text { we get the ratio } \mathrm{R} \text { that is believed to be universal (portable) up to evolution effects }
\end{aligned}
$$

$$
R\left(z, M_{h}\right)=\frac{|\boldsymbol{R}|}{M_{h}} \frac{H_{1}^{\varangle u}\left(z, M_{h} ; Q_{0}^{2}\right)}{D_{1}^{u}\left(z, M_{h} ; Q_{0}^{2}\right)}
$$

How to treat twist-3 Dihadron Fragmentation Functions?

Extraction of $e(x)$ from CLAS data

$$
A_{L U}^{\sin \phi_{R}}\left(x, z, m_{\pi \pi}\right) \propto \frac{M}{Q} \frac{\sum_{q} e_{q}^{2}\left[x e^{q}(x) H_{1, s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)+\frac{m_{\pi \pi}}{z M} f_{1}^{q}(x) \widetilde{G}_{s p}^{\varangle, q}\left(z, m_{\pi \pi}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1, s s+p p}^{q}\left(z, m_{\pi \pi}\right)}
$$

Twist-3 Dihadron Fragmentation Functions

(Unknown phenomenologically;
(1) Model evaluations for genuine twist-3 DiFF: $\tilde{D}^{\triangleleft}$ [Luo et al.,PRD100], $\tilde{G}^{\triangleleft}$ [Yang et al., PRD99]
(3stimate of Interference FF through the asymmetries on longitudinally-polarized target at COMPASS
[Sirtl, PhD thesis, 2017]

$$
\begin{aligned}
& A_{U L}^{\sin \left(\phi_{R}\right)}=-\frac{M}{Q} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x h_{L}^{q}(x) H_{1}^{\langle q, s p}\left(z, M_{h}^{2}\right)+\frac{M_{h}}{M} z_{1}^{q}(x) \tilde{G}^{\angle q, s p}\left(z, M_{h}^{2}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q, s s+p p}\left(z, M_{h}^{2}\right)} \\
& A_{L L}^{\cos \left(\phi_{R}\right)}=\frac{M}{Q} \frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2}\left[x e_{L}^{q}(x) H_{1}^{\angle q, s p}\left(z, M_{h}^{2}\right)-\frac{M_{h}}{M z} q_{1}^{q}(x) \tilde{D}^{\angle q, s p}\left(z, M_{h}^{2}\right)\right]}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q, s s+p p}\left(z, M_{h}^{2}\right)} .
\end{aligned}
$$

$$
\begin{aligned}
& A_{U L}^{\sin \left(\phi_{R}\right)}=0.0050 \pm 0.0010(\text { stat }) \pm 0.0007(\mathrm{sys}) . \\
& A_{L L}^{\cos \left(\phi_{R}\right)}=-0.0135 \pm 0.0064(\text { stat }) \pm 0.0046(\mathrm{sys})
\end{aligned}
$$

$$
\Rightarrow\left|A_{L L}^{\cos \phi_{R}}\right| \gg A_{U L}^{\sin \phi_{R}}
$$

Twist-3 dihadron fragmentation functions: COMPASS

Can we understand $\left|A_{L L}^{\cos \phi_{R}}\right| \gg A_{U L}^{\sin \phi_{R}}$ in the usual approximations?

Our goal here is to find a proportionality factor κ such that

$$
\max \left\{\int \tilde{G}^{\varangle}\right\} \equiv \int \tilde{D}^{\varangle}=\kappa \int \tilde{H}_{1}^{\varangle}
$$

[Radici, AC, Bacchetta, JHEP 05 (2015)]

Our ansatz for the twist-3 DiFF contribution

(1) CLAS12: split invariant-mass regions $M_{h}>$ or $<0.63 \mathrm{GeV}$ to pinpoint vector meson contributions
(1) We assume the trend of all interference DiFFs in the invariant mass is similar for $M_{h}>0.63 \mathrm{GeV}$ (up to overall sign)

$$
\Rightarrow \text { supported by model evaluation of } \tilde{D}^{\Varangle} \text { and } \tilde{G}^{\Varangle}
$$

(3) Reproducing $A_{L L}^{\cos \phi_{R}}$ in that range sets our upper bound to $\kappa \Rightarrow \kappa_{M_{h}}$

(3) $\kappa_{M_{h}}$ reproduces the order of magnitude for $A_{U L}^{\sin \phi_{R}}$ adequately

Invariant-mass behavior is key, twist-2 DiFFs alone not enough to
 interpret all M_{h}-projected twist-3 asymmetries.

Point-by-point e(x) from CLAS data

(1) Scenario I: Wandzura-Wilczek approximation

Scenario II: beyond WW approximation
$\frac{e^{V}(x)}{f_{1}^{\Sigma}(x)} \frac{\tilde{H}_{1}^{\varangle}}{D_{1}} \propto \frac{Q}{M} A_{L U}^{\sin \phi_{R}}$
$\frac{e^{V}(x)}{f_{1}^{\Sigma}(x)} \frac{\tilde{H}_{1}^{\varangle}}{D_{1}} \propto \frac{Q}{M} A_{L U}^{\sin \phi_{R}} \pm \kappa \frac{f_{1}^{V}(x)}{f_{1}^{\Sigma}(x)} \frac{\tilde{H}_{1}^{\varangle}}{D_{1}}$

Evolution omitted thanks to low- Q^{2} values $-\mathrm{Q}=1 \mathrm{GeV}$
Uncertainty on unpolarized PDF taken into account
Sign of twist-3 DiFFs undetermined

Point-by-point e(x) from CLAS data

Scenario I: Wandzura-Wilczek approximation
$\frac{e^{V}(x)}{f_{1}^{\Sigma}(x)} \frac{\tilde{H}_{1}^{\varangle}}{D_{1}} \propto \frac{Q}{M} A_{L U}^{\sin \phi_{R}}$

Scenario II: beyond WW approximation

$$
\frac{e^{V}(x)}{f_{1}^{\Sigma}(x)} \frac{\tilde{H}_{1}^{\varangle}}{D_{1}} \propto \frac{Q}{M} A_{L U}^{\sin \phi_{R}} \pm \kappa \frac{f_{1}^{V}(x)}{f_{1}^{\Sigma}(x)} \frac{\tilde{H}_{1}^{\varangle}}{D_{1}}
$$

Combined uncertainty at 90\% CL

What is the probability for $e^{P}(x)$ to be non-zero?

Probability that the proton combination is greater than zero - not exactly "how incompatible with zero is it?" is a useful information from the point-by-point extraction of a collinear twist-3 PDF with a minimum set of approximations.

Universality of non-perturbative functions

(3ihadron fragmentation functions
DiFF extracted in $\mathrm{e}^{+}{ }^{-}$-, to be tested against SIDIS multiplicities Consistency check on SIDIS $\left(z, M_{h}\right)$ dependence at CLAS \& CLAS12
Determination of the integral of $e^{P}(x)$ from reconstruction: n_{x}

Twist-2 and -3 PDFs

- Universality of transversity in pp and SIDIS [Radici et al, PRD94]
- Global analysis of the transversity possible [Radici \& Bacchetta, PRL120; JAM Coll., PRD102]
- Are twist-3 PDFs universal?

Yet to be answered.
Examples through TMD and dynamical twist-3 relations (e.g. Sivers and Qiu-Sterman)

Consequences of the extraction

1. Are twist-3 PDFs non-zero? Yes, to a certain CL.
2. Can we access qgq correlations and more non-perturbative information? Let's take the example of $\mathrm{e}(\mathrm{x})$.

Some nonperturbative effects expected in the small(ish)- x region, e.g. [Pasquini \& Rodini, PLB 788]

Schematic models for illustration purpose only!
Other nonperturbative effects at not so small x, e.g. in the MIT bag.
Moments will matter.

Conclusions

We have discussed the role of higher-twist distributions in the understanding of hadron structure. We have presented a truly updated extraction of the scalar PDF, e(x). It is non-zero to more than 75\% probability.

The study of higher-twist PDFs will contribute to, e.g.

- Precision 3D imaging of nucleons.
- Emergence of hadronic mass - from the scalar PDF.
- Proton spin puzzle - from GPDs.

Higher-twist distributions will unveil aspects of hadron dynamics.

Higher-twist distributions are accessible but require more statistics, phenomenological and theoretical developments.

Combine efforts with the lattice QCD?
[e.g. Bhattacharya et al, PRD102; Braun \& Vladimirov, JHEP10(2021)087]

Backup

PDF kinematics coverage: collinear PDFs

One possible definition for higher-twist contributions:Fixed Target DIS \& SIDIS: M/Q is not so small terms effectively suppressed like (M/Q)t-2
(3purious contaminations
(7) Spin asymmetries can be defined to get sensitive to twist-3
(1) Present data: Hermes, COMPASS, JLab.

Higher-twist in observables

(From spurious contaminations...
CJ15 global analysis includes lower cuts on W ${ }^{2}$. [Accardi et al., R R. $\left.\mathcal{Q}(x] Q^{2}\right)=F_{2}^{\mathrm{LT}\left(x, Q^{2}\right)\left(1+\frac{C_{\mathrm{HT}}(x)}{Q^{2}}\right)}$
HT's role in fulfilling duality [e.g. Melnitchouk et al., Phys.Rept.406]

JAM analysis of the helicity PDF g_{1} extends to g_{T}, with $g_{T}=g_{1}+g_{2}$. [Sato et - ...to gennuine effects

$$
g_{2}^{(\tau 3)}\left(x, Q^{2}\right)=D\left(x, Q^{2}\right)-\int_{x}^{1} \frac{d z}{z} D\left(z, Q^{2}\right)
$$

Higher-twist in observables

(From spurious contaminations...

HT's role in fulfilling duality [e.g. Melnitchouk et al., Phys.Rept.406]

JAM analysis of the helicity PDF g_{1} extends to g_{T}, with $g_{T}=g_{1}+g_{2}$. [Sato et (-..to grdg3luine effects

$$
g_{2}^{(\tau 3)}\left(x, Q^{2}\right)=D\left(x, Q^{2}\right)-\int_{x}^{1} \frac{d z}{z} D\left(z, Q^{2}\right)
$$

g_{T} is the only twist-3 PDF accessible through inclusive DIS
Exploratory studies suggest that quark-gluon-quark correlations are non-zero.
[Accardi et al, JHEP11 (2009)]

$$
\Delta_{\mathrm{ex}}\left(x_{B}, Q^{2}\right)=g_{2}^{\mathrm{ex}}\left(x_{B}, Q^{2}\right)-g_{2}^{\mathrm{WW}}\left(x_{B}, Q^{2}\right)
$$

Can we study qgq correlation at the EIC?

EIC Yellow Report [2103.05419]

Future: EIC will cover low- to mid- Q^{2} and smallish x values
(7ellow Report: access to multiparton correlations.
(Proposal for a 2nd interaction region - IR2@EIC.
(Complementarity with present data.

Expectations for the EIC

EIC Yellow Report [2103.05419]
D EIC error projections (from transversity studies)
(3) Proton target shown, but need for neutron
(1) Models \times DiFFs predictions

- LC model [Pasquini \& Rodini, PLB 788]
- made-up mass-term contribution with $\mathrm{mq}=300 \mathrm{MeV}$
(30n-negligjble for lowest beam configurations
Archetype of observables for IR2@EIC

(3volution equations for genuine qgq twist-3 known in most cases;
(3) Understanding of the various contributions to twist-3 PDFs;
(7) Especially "hot" for TMD studies.
(Require a second interaction region @EIC.

from H. Avakian : Paper for IR2@EIC.

Multi-parton distributions at the EIC

- Collinear observables.
- Plethora of interesting TMD, GPD higher-twist observables to be considered too
- subWG: Avakian, Burkardt, AC, Gamberg, Pitonyak, Sato, Schweitzer, Vossen

EIC coverage

- EIC error projections (from transversity studies)
- Proton target shown, but need for neutron
- Models \times DiFFs predictions
- LC model [Pasquini \& Rodini, PLB 788]
- made-up mass-term contribution with $\mathrm{m}_{\mathrm{q}}=300 \mathrm{MeV}$
- Non-negligible for lowest beam configurations

Archetype of observables for IR2@EIC

QCD and twist-3 PDFs

Underlying and omitted in all this presentation: Q²-evolution!

(3volution equations for genuine qgq twist-3 known in most cases;
(3nderstanding of the various contributions to twist-3 PDFs;

- Especially "hot" for TMD studies.
(3) Require a second interaction region @EIC.

Multi-parton distributions at the EIC

Multi-parton distributions at the EIC

- Collinear observables.
- Plethora of interesting TMD, GPD higher-twist observables to be considered too
- subWG: Avakian, Burkardt, AC, Gamberg, Pitonyak, Sato, Schweitzer, Vossen

